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What are solution concepts?

Solution concept: a subset of the outcomes in the game that
are somehow interesting.

There is an implicit computational problem of finding these
outcomes given a particular game.

Depending on the concept, existence can be an issue.

Solution concepts we’ve seen so far:

Pareto-optimal outcome

Pure-strategy Nash equilibrium

Mixed-strategy Nash equilibrium

Other Nash variants:
weak Nash equilibrium
strict Nash equilibrium

maxmin strategy profile

minmax strategy profile
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Maxmin and Minmax

Definition (Maxmin)

The maxmin strategy for player i is arg maxsi mins−i ui(s1, s2),
and the maxmin value for player i is maxsi mins−i ui(s1, s2).

Definition (Minmax, 2-player)

In a two-player game, the minmax strategy for player i against
player −i is arg minsi

maxs−i u−i(si, s−i), and player −i’s minmax
value is minsi maxs−i u−i(si, s−i).

We can also generalize minmax to n players.
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Minmax Theorem

Theorem (Minimax theorem (von Neumann, 1928))

In any finite, two-player, zero-sum game, in any Nash equilibrium
each player receives a payoff that is equal to both his maxmin
value and his minmax value.

1 Each player’s maxmin value is equal to his minmax value. By
convention, the maxmin value for player 1 is called the value of the
game.

2 For both players, the set of maxmin strategies coincides with the set
of minmax strategies.

3 Any maxmin strategy profile (or, equivalently, minmax strategy
profile) is a Nash equilibrium. Furthermore, these are all the Nash
equilibria. Consequently, all Nash equilibria have the same payoff
vector (namely, those in which player 1 gets the value of the game).
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Saddle Point: Matching Pennies
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Linear Programming

A linear program is defined by:

a set of real-valued variables

a linear objective function

a weighted sum of the variables

a set of linear constraints

the requirement that a weighted sum of the variables must be
greater than or equal to some constant
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Linear Programming

Given n variables and m constraints, variables x and constants w,
a and b:

maximize
n∑

i=1

wixi

subject to
n∑

i=1

aijxi ≤ bj ∀j = 1 . . . m

xi ∈ {0, 1} ∀i = 1 . . . n

These problems can be solved in polynomial time using
interior point methods.

Interestingly, the (worst-case exponential) simplex method is
often faster in practice.
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Computing equilibria of zero-sum games

minimize U∗1

subject to
∑

a2∈A2

u1(a1, a2) · sa2
2 ≤ U∗1 ∀a1 ∈ A1∑

a2∈A2

sa2
2 = 1

sa2
2 ≥ 0 ∀a2 ∈ A2

First, identify the variables:

U∗1 is the expected utility for player 1
sa2
2 is player 2’s probability of playing action a2 under his

mixed strategy

each u1(a1, a2) is a constant.
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Computing equilibria of zero-sum games

Now let’s interpret the LP:

minimize U∗1

subject to
∑

a2∈A2

u1(a1, a2) · sa2
2 ≤ U∗1 ∀a1 ∈ A1∑

a2∈A2

sa2
2 = 1

sa2
2 ≥ 0 ∀a2 ∈ A2

s2 is a valid probability distribution.
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Computing equilibria of zero-sum games

Now let’s interpret the LP:

minimize U∗1

subject to
∑

a2∈A2

u1(a1, a2) · sa2
2 ≤ U∗1 ∀a1 ∈ A1∑

a2∈A2

sa2
2 = 1

sa2
2 ≥ 0 ∀a2 ∈ A2

Player 1’s expected utility for playing each of his actions under
player 2’s mixed strategy is no more than U∗1 .

Because U∗1 is minimized, this constraint will be tight for some
actions: the support of player 1’s mixed strategy.
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Computing equilibria of zero-sum games

minimize U∗1

subject to
∑

a2∈A2

u1(a1, a2) · sa2
2 ≤ U∗1 ∀a1 ∈ A1∑

a2∈A2

sa2
2 = 1

sa2
2 ≥ 0 ∀a2 ∈ A2

This formulation gives us the minmax strategy for player 2.

To get the minmax strategy for player 1, we need to solve a
second (analogous) LP.
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Computing Maxmin Strategies in General-Sum Games

Let’s say we want to compute a maxmin strategy for player 1 in an
arbitrary 2-player game G.

Create a new game G′ where player 2’s payoffs are just the
negatives of player 1’s payoffs.

The maxmin strategy for player 1 in G does not depend on
player 2’s payoffs

Thus, the maxmin strategy for player 1 in G is the same as the
maxmin strategy for player 1 in G′

By the minmax theorem, equilibrium strategies for player 1 in
G′ are equivalent to a maxmin strategies

Thus, to find a maxmin strategy for G, find an equilibrium
strategy for G′.
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Domination

Let si and s′i be two strategies for player i, and let S−i be is
the set of all possible strategy profiles for the other players

Definition

si strictly dominates s′i if ∀s−i ∈ S−i, ui(si, s−i) > ui(s′i, s−i)

Definition

si weakly dominates s′i if ∀s−i ∈ S−i, ui(si, s−i) ≥ ui(s′i, s−i) and
∃s−i ∈ S−i, ui(si, s−i) > ui(s′i, s−i)

Definition

si very weakly dominates s′i if ∀s−i ∈ S−i, ui(si, s−i) ≥ ui(s′i, s−i)
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Equilibria and dominance

If one strategy dominates all others, we say it is dominant.

A strategy profile consisting of dominant strategies for every
player must be a Nash equilibrium.

An equilibrium in strictly dominant strategies must be unique.

Consider Prisoner’s Dilemma again

not only is the only equilibrium the only non-Pareto-optimal
outcome, but it’s also an equilibrium in strictly dominant
strategies!
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Traveler’s Dilemma

Two travelers purchase identical African masks while on a
tropical vacation. Their luggage is lost on the return trip,
and the airline asks them to make independent claims for
compensation. In anticipation of excessive claims, the
airline representative announces: “We know that the
bags have identical contents, and we will entertain any
claim between $180 and $300, but you will each be
reimbursed at an amount that equals the minimum of the
two claims submitted. If the two claims differ, we will
also pay a reward R to the person making the smaller
claim and we will deduct a penalty R from the
reimbursement to the person making the larger claim.”
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Traveler’s Dilemma

Action: choose an integer between 180 and 300

If both players pick the same number, they both get that
amount as payoff

If players pick a different number:

the low player gets his number (L) plus some constant R
the high player gets L−R, R = 5.

Play this game once with a partner; play with as many
different partners as you like.

Now set R = 180, and again play with as many partners as
you like.
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Traveler’s Dilemma

What is the equilibrium?

(180, 180) is the only equilibrium, for all R ≥ 2.

What happens?

with R = 5 most people choose 295–300
with R = 180 most people choose 180
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Dominated strategies

No equilibrium can involve a strictly dominated strategy

Thus we can remove it, and end up with a strategically
equivalent game
This might allow us to remove another strategy that wasn’t
dominated before
Running this process to termination is called iterated removal
of dominated strategies.
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Iterated Removal of Dominated Strategies: Example

L C R

U 3, 1 0, 1 0, 0

M 1, 1 1, 1 5, 0

D 0, 1 4, 1 0, 0

R is dominated by L.
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Iterated Removal of Dominated Strategies: Example

L C

U 3, 1 0, 1

M 1, 1 1, 1

D 0, 1 4, 1

M is dominated by the mixed strategy that selects U and D
with equal probability.
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Iterated Removal of Dominated Strategies: Example

L C

U 3, 1 0, 1

D 0, 1 4, 1

No other strategies are dominated.
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Iterated Removal of Dominated Strategies

This process preserves Nash equilibria.

strict dominance: all equilibria preserved.
weak or very weak dominance: at least one equilibrium
preserved.

Thus, it can be used as a preprocessing step before computing
an equilibrium

Some games are solvable using this technique.
Example: Traveler’s Dilemma!

What about the order of removal when there are multiple
dominated strategies?

strict dominance: doesn’t matter.
weak or very weak dominance: can affect which equilibria are
preserved.
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Computational Problems in Domination

Identifying strategies dominated by a pure strategy

Identifying strategies dominated by a mixed strategy

Identifying strategies that survive iterated elimination

Asking whether a strategy survives iterated elimination under
all elimination orderings

We’ll assume that i’s utility function is strictly positive
everywhere (why is this OK?)
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Is si strictly dominated by any pure strategy?

Try to identify some pure strategy that is strictly better than si for
any pure strategy profile of the others.

for all pure strategies ai ∈ Ai for player i where ai 6= si do
dom← true
for all pure strategy profiles a−i ∈ A−i for the players other than i
do

if ui(si, a−i) ≥ ui(ai, a−i) then
dom← false
break

end if
end for
if dom = true then return true

end for
return false

What is the complexity of this procedure?

Why don’t we have to check mixed strategies of −i?

Minor changes needed to test for weak, very weak dominance.

Computing Minmax; Dominance CPSC 532A Lecture 5, Slide 28



Recap LP Computing Maxmin Domination Fun Game Iterated Removal Computing Domination

Is si strictly dominated by any pure strategy?

Try to identify some pure strategy that is strictly better than si for
any pure strategy profile of the others.

for all pure strategies ai ∈ Ai for player i where ai 6= si do
dom← true
for all pure strategy profiles a−i ∈ A−i for the players other than i
do

if ui(si, a−i) ≥ ui(ai, a−i) then
dom← false
break

end if
end for
if dom = true then return true

end for
return false

What is the complexity of this procedure?

Why don’t we have to check mixed strategies of −i?

Minor changes needed to test for weak, very weak dominance.

Computing Minmax; Dominance CPSC 532A Lecture 5, Slide 28


	Recap
	Linear Programming
	Computational Problems Involving Maxmin
	Domination
	Fun Game
	Iterated Removal of Dominated Strategies
	Computational Problems Involving Domination

