
Fundamental Properties of Market-Based CPU Scheduling across the
Internet

Brad Penoff

University of British Columbia
201-2366 Main Mall

Vancouver, BC V6T 1Z4 CANADA
penoff@cs.ubc.ca

Abstract
This paper outlines the issues around scheduling CPU-time
across the Internet. Many have used market-based
approaches to solve this problem, however each failed to
produce a thorough, realistic solution. We offer some
desired properties an ideal market-based solution would
need and offer suggestions to existing solutions for
satisfying these fundamental properties.

1. Introduction
Over time, the computational strength available to users
has rapidly increased through the development of faster
individual CPUs. As this has occurred, there has
continued to be a development of computationally
intensive applications that still yearn for further extensions
of computational power to do their work more quickly.
Faster and inexpensive networking speeds, expansion of
computer sales, and rapid growth in popularity of the
Internet indicate that, in theory, there exists an additional
supply of reachable computing power for such
applications. It is therefore a possibility that extra
computational capabilities could come from the
collaboration of networked computers willing to donate
their resources, particularly their CPU cycles.

Under this scenario, there would be users wishing to run
their applications and also hosts with extra CPU cycles to
give away. Once these respective sides are known, there
needs to be a means of matching members of these two
parties. One decision that needs to be made is whether or
not to assign a CPU to a particular task. This is typically
defined as a problem of resource allocation. However,
there is also often a need to know when exactly a
computation should be performed. When this time element
is a factor in addition to the allocation of the resource, this
is termed to be a scheduling problem. As such, scheduling
is just a more specific instance of resource allocation.

Copyright © 2002, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

Scheduling in distributed computer systems has long been
researched, both in single and multiple CPU situations.
Many proposed solutions have revolved around the use of
heuristics, and others involve the use of deterministic
mathematical models. Particularly, research in one branch
has involved the use of economic algorithms in what have
been called market-based scheduling strategies.
Originally, such strategies were used in single CPU setups
[8] but more recently, they have been applied in
networked, multi-CPU setups. Within this branch even,
researchers have taken various approaches, each with their
own goals and assumptions. Based on the results from
these approaches, in this paper, we will demonstrate what
properties an ideal market-based approach should possess
when trying to realistically solve the problem of allocating
CPU-time across the Internet.

This paper is set up as follows. After this introduction, we
move on to briefly describe some key technical issues
surrounding the general problem of Internet-based
allocation of CPU-time. From there, after some initial
assumptions, we present and argue for what we believe are
fundamental properties which should be required by any
realistic, market-based solution to CPU-time scheduling
across the Internet.

2. Technical Issues

The allocation of CPUs over the Internet brings up several
technical issues independent of the means chosen to
attempt to perform the actual scheduling. Firstly, there
may be concerns about whether a given application can
even be run on different platforms in a heterogeneous
environment due to lack of portability. But supposing the
applications can run, the next question is why a host would
be motivated in the first place to make their resources
eligible for use. Provided they are just nice, they may still
have trust concerns since someone else is using their
resources, possibly maliciously. Trust factors can go both
ways though. How can we say that hosts are not telling
lies about the answers calculated?

Even more issues come up when tackling this scheduling
problem. First, most systems are not connected to the
Internet at all time. People coming and going might affect
which hosts can still help perform computations not to
mention if an application currently being run needs to even
continue if the user who submitted the job has recently
vanished. Not only must the scheduling approach be fault
tolerant, but it must also bear in mind the scale that they
intend to accommodate; here since we are on the Internet,
the potential numbers could be quite vast.

Other key issues crop up around communication costs.
Obviously, the total cost of communication and
computation should be less than the time saved if a user
were to simply do the computations themselves. There are
several communication costs though, and they can be
further split up and analyzed separately. There are the
costs associated with initially establishing who needs
which resources and who can supply these facilities.
Further, there will be costs for doing the actual CPU
assignment, for example, by passing the actual executable
from the user to the host. In the case of parallel
applications, there may also be a need to coordinate
calculations with tasks running elsewhere. In an IO-bound
application, the quality of task assignments would
therefore be heavily dependent on the latency between the
nodes chosen by the mechanism.

The knowledge available amongst agents will also play a
role with regards to its capabilities. One simple
assumption could be that each agent has full access to all
information in the system. This information would include
exact runtimes, exact desires for users and hosts, exact
arrival and departure times for agents, etc. However,
under most circumstances, all of this information will not
be available for one of several reasons. On the one hand,
agents may contain conflicting and competing private
information. On the other hand, it may be impossible to
obtain exact information in the first place, for example, an
accurate, universally compatible benchmark of a task's
computational requirements may not be achievable.
Similarly, a user or host could go offline due to some
unforeseen networking failure; expecting to know
everything ahead of time would typically be unrealistic, so
the scheduling means must compensate.

3. Assumptions in Market-Based Approaches

As the previous section has demonstrated, there are many
inherent issues in scheduling CPU-time across the Internet.
All scheduling solutions must bear these issues in mind
and attempt to address each as well as they can.
Accordingly, market-based scheduling approaches are no
exception.

When using markets as a means of scheduling CPU-time
over the Internet, often the way that it is basically framed
is quite similar from one approach to the next [1, 5, 7, 10];

it is in the fine details which they differ. The goods in the
micro-economy are some quantification of required
computation e.g. wall time, operations, tasks, etc.
Typically, there are two types of agents: the users wishing
to run their intensive applications are viewed as the auction
buyers, with those lending out their CPU cycles treated as
the sellers. All agents share recognition of some common
electronic currency. Bids and asks are made for the goods
in terms of this common currency.

One aforementioned trait of trying to collaborate across the
Internet is the fact that a given agent on the Internet could
become disconnected at any time. Our mechanisms must
therefore deal with such catastrophes, and their models
must not make any assumptions about the arrival times or
persistence of a given agent. All of the approaches studied
here did this appropriately by treating their respective
markets like an online algorithm.

There are other properties common amongst market-based
approaches. One is that everyone desires a mechanism that
is computationally feasible. As we will see, this wish often
requires tradeoffs elsewhere in the mechanism. Another
property which all share is the desire to minimize
communication introduced in the markets overhead. This
is handled in most approaches through the use of sealed-
bid based auctions.

These are the only assumptions we have made across all
micro-economies. We have deliberately not assumed
certain design characteristics simply because they differ
quite drastically within approaches. Examples of those not
assumed are items like bidding language expressiveness,
market type, currency assumptions, and information
availability, to name a few. The choices the various
approaches took with regards to these overlooked
assumptions will be the fuel to the fire of our statement
and discussion of the fundamentals for market-based
approaches to scheduling CPU-time across the Internet.

4. Fundamentals in Market-Based
Approaches

As indicated earlier, opening the playing field up to
potentially include any system on the Internet simply
indicates that the scale could be quite vast. This tells us
that any realistic usage of markets would therefore not
have the market itself be a bottleneck. This leads us to our
first property:

(1) The market chosen must not be a centralized solution.

In the POPCORN approach [7], many market types are
experimented with but each shares the trait of being a
centralized solution. They excuse this as being appropriate
by saying that each computational chunk must be “CPU-
time-consuming enough relative to the market overhead”.
This is an obvious fact of all systems relationship to their

overhead but essentially what they are saying here is that
whatever the degree of bottleneck their approach presents,
it is the market agents that are responsible for dealing with
it. A decentralized solution would instead strive to avoid
the existence of a bottleneck in the first place by placing
less computational burden on a central market.

Decentralized approaches have been vastly researched for
scheduling. Here, each agent calculates its own bidding
strategy, based on local information. Walsh [10, 11]
discusses a decentralized protocol that was designed for
scheduling. Spawn [9] also takes a decentralized
approach.

Bredin [1] has an approach that primarily is concerned
with mobile code that moves around a network to sets of
required computational resources. In this sense, they claim
that their code mobility “provides an extra layer of fault
tolerance” in that if one of the resources their code had
wanted to use were to suffer catastrophe, then that code
could simply instead choose another similar resource.
Essentially, this is true of any market-based approach, so
this is by no means unique. But here, in his setup, this
relocation occurs through a piece of code successfully
bidding for a resource in some central auction1. If the
auctioneer itself were to become unreachable, the entire
approach would come to a standstill. This again proves the
need for a decentralized approach.

It was also alluded to that in order for a host to offer their
resource on the Internet, more than likely they will need
some sort of motivation since the Internet is an
environment where not everyone necessarily cares
intimately about each other already. We assumed that a
market-based approach would have some notion of a
common currency. Regarding this currency, we must then
establish yet another property:

(2) Money, regardless if it is fake or not, must represent

incentive and priority. Agents must value having more
money.

In our own consumer world, humans generally value
having more money than not. The same must be
analogously true of problems framed in terms of markets in
order for this money to fully represent an agent's genuine
incentive. Bredin's approach genuinely fails to capture this
property with its version of currency. Here, the programs
themselves possess the money, and when the money is
spent, it evaporates in that the sellers do not keep track of
their obtained funds. They say that there “is no additional
utility for an agent to have a positive endowment after
completing all of its jobs”. In other words, having extra
money in the end is therefore not valued. We believe that

1 Bredin’s focus is on a centralized approach but briefly makes reference
to how a potential decentralized alternative would look.

Bredin’s approach would more accurately model incentive
if instead the agents persistently possessed the money.

POPCORN, for example, appropriately encourages
collaboration by satisfying property 2. Exchanges of
currency take place with each sale, with the auctioneer
making no profit i.e. the auction is budget balanced. The
market centrally and persistently maintains agents’ current
funding allotments. Agents prefer to minimize their
expenditures and maximize their gains, successfully
motivating CPU sharing and competition.

As mentioned, there are also many trust factors
encountered when collaborating across the Internet.
Sellers could worry about malicious use of their facilities.
Technical answers to this have included what is known as
sandboxing, or the placing of restrictions to resource
access [4]. Buyers could also worry about false reports of
computed values. For this, cryptology-based solutions
have been proposed [3]. Specifically, in the case of
markets-based approaches, one could imagine that a given
agent could forge some electronic currency. These trust
issues combined bring us to our next property:

(3) Solutions should not have any assumed trust.

Most approaches currently do not take this property fully
into account. Perhaps, this is because their focus was more
on studying the use of markets applied to this particular
resource allocation problem. For instance, SPAWN even
admits it is lacking in security when mentioning future
work. In POPCORN, the extent of the security is that the
money itself is always kept within the accounts kept by the
market, which requires a password to login. In terms of
real-world deployment though, any approach would be a
more realistic solution having the appropriate security
extensions like sandboxing and cryptological login and
answer checking.

Moving onward, we mentioned in our technical issues
discussion that another concern which scheduling
approaches must have is with regards to the amount of
knowledge available to the agents at the time of preference
submission. We established that a realistic scenario would
typically not be all knowing. This leads us to our next
property:

(4) Agents must work as best they can from imperfect

information.

Approaches like Bredin’s make the unrealistic assumption
that there is perfect information across agents. Obviously,
this could be more realistic if it was not the case. The
MAJIC system [5] takes a different approach that we
believe satisfies property 4. MAJIC is a system that seeks
to design a general-purpose resource allocation scheme
through the use of markets. By resources, they mean not
just CPUs but potentially printers, databases, services, etc.

One could imagine that with complex services, like
printing, users may want particular properties of a printer
and the services it can perform. It therefore would be
unrealistic to only have perfect matches since an available
printer may satisfy some of the sought-after properties.
Accordingly, their matching mechanisms are able to
estimate the closeness of a match by requiring buyers to
submit a parameter search engine that fully expresses their
resource property preferences. Having the buyers submit
this engine to the market along with their bid disables them
from being able to strategize their bid amounts with
regards to the current available sellers. The market hides
the preference lists to the sellers and the property lists of
the sellers from the buyers. Agents are induced to partially
reveal some private information to the mechanism in
exchange for obtaining a more desirable schedule. All
agents in the system have imperfect information with
respect to each other, as would be the case on the Internet.

Yet another common desire that we mentioned was
minimizing communication costs. Within the market, this
is done through the use of sealed-bid auctions. Let us say
that a buyer has a parallel application consisting of several
tasks. The tasks are considered complementaries in
economic terms since the user will value all of them
getting executed more than the sum of having only run
each task1. Additionally, the user wants to minimize his
own coordination communication costs between his
respective tasks. The user needs to somehow make the
market aware of these desires. This requirement leads to
our next fundamental property:

(5) The bidding language should be expressive enough to

efficiently relay agents’ desires but not overly
expressive as to compromise computational feasibility.

The bidding language’s expressiveness of approaches like
Bredin’s, POPCORN, and SPAWN are mostly limited to
bid ranges and execution time restraints. Each could be
bettered by of course allowing agents to relay more
information. But adding expressiveness cannot guarantee
that in all cases the globally optimal allocation will be
established. In fact, this never occurs in such an online
algorithm [2]. Optimal allocations are intractable to
obtain. Operating under the assumption that we also desire
computational feasibility, it can then be said that we must
compromise slightly solution quality, no matter how robust
our bidding language is. The main point though, is that
having more information certainly cannot decrease the
quality of calculated allocations.

This property is better illustrated within MAJIC. We
mentioned above that bids in MAJIC also accept a
parameter search engine. Not only does this information
help the agents operate under imperfect information, but
also such a tool empowers agents to more expressively

1 Complementaries cannot arise in a single-unit scheduling problem [12].

describe their preferences. Computationally, this
expressiveness is limited to the complexity of the
parameter space. In complicated parameter spaces, MAJIC
leaves it up to the individual agents to maintain
computational feasibility by supplying as good an estimate
of a mapping to their utilities as they can. Similarly,
Wellman [12] also allows for parameterization of
preferences through the submission of a matching
algorithm by an agent to the market.

We said that due to computational considerations, we must
often settle for a sub-optimal result. In doing so, we must
have particular interests in the result’s quality. This leads
us to our next fundamental property:

(6) The approach should guarantee convergence to a

quality solution.

In this case, we must firstly be concerned that we even get
any result, and secondly that the solution is one of high
quality. Bredin obtains Nash equilibrium in his produced
schedules but does so assuming perfect information, so he
satisfies property 6 but at the expense of property 4. Also,
it would be impossible to expect to find equilibrium for all
cases in more complex markets than Bredin’s. His
approach is for a single good; it has been shown that in
single good auctions, there always exists equilibrium.
However, in an auction with multi-goods such as the
parallel task example mentioned above, it is possible that
no equilibrium exists [12].2 We therefore must settle for
some other degree of acceptability in order to still be
computationally feasible.

Unfortunately, although auctions with multi-goods are
realistic, a comprehensive understanding of their properties
is still lacking. Reeves [6] studies solution quality within
simultaneous multi-good auctions. His work is not
specifically dealing with CPU allocation, but his findings
are still relevant. In his work, a different auction is run for
each scheduled time slot on a given resource. Auctions
halt and clear the goods once an amount of time passes
without a new admissible bid for any of the auctions3. In
his study, he focuses on markets that possess
complementaries since they are often the cause of
scenarios where no equilibrium exists. As we have seen,
complementaries tend to be quite common in real markets,
so understanding the effects is of particular importance.

Reeves finds that agents in multi-good markets containing
complementaries are particularly at risk of the so-called
exposure problem. This problem is when an agent desires
a particular combination of goods but it must expose itself
to the risk that it very well could get caught with an
incomplete set of these goods. His study of potential

2 If agents have additive preferences for completing multiple single-unit
jobs, then equilibrium exists [12].
3 Quiescence is often the term used for this idea of reaching a steady state
where new bids have ceased to continue arriving.

equilibrium in such markets takes in him on a journey of
various agent strategies. For myopic best response
strategy, the research finds that it “is not even
approximately optimal” even if all bidders are having this
same strategy. He tries to continue using evolutionary
strategy search techniques but finds that the strategy space
is simply too huge to produce many findings. He
concludes by saying that despite the lack of findings,
simultaneous markets are still decentralized and therefore a
realistic analogy to the way the world really works; in this
way, a deeper understanding of multi-good auctions will
certainly be needed eventually. Current gaps in knowledge
tell us that the satisfaction of property 6 is not yet
quantifiable but instead should be made by a fair judgment.

Reeve’s market assumptions in his experiments were quite
robust. Results in some approaches simply are not. This
leads us to our final property:

(7) Simulations of an approach should be analogous to

realistic conditions.

In the POPCORN approach, it is claimed that when
running their clearinghouse double auction in an online
fashion, its allocations are c-competitive with the offline
optimal allocations. At first, this appears to score some
points in favor of property 6. However, upon further
investigation, it becomes apparent that POPCORN’s
evaluations may not be fully justified. Their observations
were based off of models of simulated buyers and sellers
whose arrival was governed by a constant Poisson process.
On the Internet, arrival and departure would not be so
regular. The setup assumes each buyer only has a single
computational chunk to run while each seller only has the
desire to run a single chunk before they leave the market.
We have seen that single good markets yield nicer results.
Single-good solutions also take less computation to obtain,
so making such assumptions would not only be unrealistic
but they could increase the perceived overall performance.

The simulation also makes assumptions about its sellers’
homogeneity in that all hosts have the same computational
power. This simplifies the sort of work the clearing
function has to perform since it essentially has fewer
criteria it needs to match. Obviously, this is an unrealistic
assumption as well because computational power from
hosts to hosts can vary drastically.

Another assumption made is with regards to
communication overhead. Relaying information across the
Internet is known to take considerable latency. Messages
could even be lost and require retransmission. In their
experiments, the simulated buyers are not performing over
the Internet but instead within a single computer
simulation. As a result, applicable communication
overhead was not modeled, and it is not realized to what
extent how much of a bottleneck this centralized approach
is.

To more convincingly satisfy property 7, POPCORN could
have instead followed a few of the steps of Reeves.
Reeves uses a multi-good market with complementaries.
POPCORN could also simulate message latency and
heterogeneous sellers as well. Of course, this would be
more complex, but also this would be a more realistic
demonstration so claims like being c-competitive could be
taken more seriously.

5. Conclusion

In this paper, we have listed and argued for the need of
some particular fundamental properties in market-based
approaches to CPU scheduling across the Internet. We
have illustrated how they could be applied to existing
implementations in order to result in a more realistic end-
product for CPU-time scheduling. Having such products
in place, the desire of accessing additional computational
power across the Internet could then become more of a
reality.

References
[1] Bredin, Jonathan et al. A Game-Theoretic Formulation
of Multi-Agent Resource Allocation. In Proceedings of
the 2000 International Conference on Autonomous Agents,
Barcelona, Spain, June 2000.

[2] El-Yaniv, R. and A. Borodin. On-Line Computation
and Competitive Analysis. Cambridge University Press,
1998.

[3] P. Golle and I. Mironov. Uncheatable Distributed
Computations. In Proceedings in RSA Conference 2001.

[4] Jensen, Christian and Daniel Hagimont. Protection
wrappers: a simple and portable sandbox for untrusted
applications. In Proceedings of the 8th ACM SIGOPS
European workshop on Support for composing distributed
applications, 104-110, 1998.

[5] L. Levy, L. Blumrosen, and N. Nisan. OnLine
Markets for Distributed Object Services: the MAJIC
system. In Proceedings in SITS 2001.

[6] DM Reeves, MP Wellman, JK MacKie-Mason, and A
Osepayshvili. Exploring bidding strategies for market-
based scheduling. to appear, Decision Support Systems.

[7] O. Regev and N. Nisan. The Popcorn Market: Online
Markets for Computational Resources. In Proceedings of
First International Conference on Information and
Computation Economies, pages 148-157, Chaleston, SC,
Oct. 1998. ACM Press.

[8] Sunderland, I.E. A futures market in computational
time. Communications of the ACM, 11(6):449-451, June
1968.

[9] Waldspurger, C. A. et al. Spawn: A Distributed
Computational Economy. IEEE Trans. Software
Engineering 18: 103-117, 1992.

[10] WE Walsh and MP Wellman. Decentralized supply
chain formation: A market protocol and competitive
equilibrium analysis. Journal of Artificial Intelligence
Research, 19:513–567, 2003.

[11] William E. Walsh and Michael P. Wellman. A market
protocol for decentralized task allocation. In Third
International Conference on Multi-Agent Systems, 325-
332, 1998.

[12] MP Wellman, WE Walsh, PR Wurman, and JK
MacKie-Mason. Auction Protocols for Decentralized
Scheduling. Games and Economic Behavior 35:271-303,
2001.

