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Possible World Semantics

Probability is a formal measure of uncertainty.

A random variable is a variable that is randomly assigned one
of a number of different values.

The domain of a variable X, written dom(X), is the set of
values X can take.

A possible world specifies an assignment of one value to each
random variable.

w |= X = x means variable X is assigned value x in world w.

Let Ω be the set of all possible worlds.

Define a nonnegative measure µ(w) to each world w so that
the measures of the possible worlds sum to 1.

The probability of proposition f is defined by:

P (f) =
∑
w|=f

µ(w).
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Probability Distributions

Definition (probability distribution)

A probability distribution P on a random variable X is a function
dom(X)→ [0, 1] such that

x 7→ P (X = x).

When dom(X) is infinite we need a probability density
function.
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Joint Distribution

When there are multiple random variables, their joint distribution
is a probability distribution over the variables’ Cartesian product

E.g., P (X,Y, Z) means P (〈X,Y, Z〉).

Think of a joint distribution over n variables as an
n-dimensional table

Each entry, indexed by X1 = x1, . . . , Xn = xn, corresponds to
P (X1 = x1 ∧ . . . ∧Xn = xn).

The sum of entries across the whole table is 1.
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Joint Distribution Example

Consider the following example, describing what a given day might
be like in Vancouver.

we have two random variables:

weather, with domain {Sunny, Cloudy};
temperature, with domain {Hot, Mild, Cold}.

Then we have the joint distribution
P (weather, temperature) given as follows:

weather

temperature
Hot Mild Cold

Sunny 0.10 0.20 0.10
Cloudy 0.05 0.35 0.20
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Marginalization

Given the joint distribution, we can compute distributions over
smaller sets of variables through marginalization:

E.g., P (X,Y ) =
∑

z∈dom(Z) P (X,Y, Z = z).

This corresponds to summing out a dimension in the table.

The new table still sums to 1.

Reasoning Under Uncertainty: Conditional Probability CPSC 322 – Uncertainty 2, Slide 8



Recap Probability Distributions Conditional Probability Bayes’ Theorem

Marginalization Example

weather

temperature
Hot Mild Cold

Sunny 0.10 0.20 0.10
Cloudy 0.05 0.35 0.20

If we marginalize out weather, we get

Hot Mild Cold
P (temperature) = 0.15 0.55 0.30

If we marginalize out temperature, we get

Sunny Cloudy
P (weather) = 0.40 0.60
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Conditioning

Probabilistic conditioning specifies how to revise beliefs based
on new information.

You build a probabilistic model taking all background
information into account. This gives the prior probability.

All other information must be conditioned on.

If evidence e is all of the information obtained subsequently,
the conditional probability P (h|e) of h given e is the posterior
probability of h.
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Semantics of Conditional Probability

Evidence e rules out possible worlds incompatible with e.

We can represent this using a new measure, µe, over possible
worlds

µe(ω) =
{ 1

P (e) × µ(ω) if ω |= e

0 if ω 6|= e

Definition

The conditional probability of formula h given evidence e is

P (h|e) =
∑
ω|=h

µe(w)

=
P (h ∧ e)
P (e)
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Conditional Probability Example

weather

temperature
Hot Mild Cold

Sunny 0.10 0.20 0.10
Cloudy 0.05 0.35 0.20

If we condition on weather = Sunny, we get

Hot Mild Cold
P (temperature|Weather = Sunny) = 0.25 0.50 0.25

Conditioning on temperature, we get P (weather|temperature):

weather

temperature
Hot Mild Cold

Sunny 0.67 0.36 0.33
Cloudy 0.33 0.64 0.67

Note that each column now sums to one.
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Chain Rule

Definition (Chain Rule)

P (f1 ∧ f2 ∧ . . . ∧ fn)
= P (fn|f1 ∧ · · · ∧ fn−1)× P (f1 ∧ · · · ∧ fn−1)
= P (fn|f1 ∧ · · · ∧ fn−1)× P (fn−1|f1 ∧ · · · ∧ fn−2)×

P (f1 ∧ · · · ∧ fn−2)
= P (fn|f1 ∧ · · · ∧ fn−1)× P (fn−1|f1 ∧ · · · ∧ fn−2)
× · · · × P (f3|f1 ∧ f2)× P (f2|f1)× P (f1)

=
n∏

i=1

P (fi|f1 ∧ · · · ∧ fi−1)

E.g., P (weather, temperature) =
P (weather|temperature) · P (temperature).
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Bayes’ theorem

The chain rule and commutativity of conjunction (h ∧ e is
equivalent to e ∧ h) gives us:

P (h ∧ e) = P (h|e)× P (e)
= P (e|h)× P (h).

If P (e) 6= 0, you can divide the right hand sides by P (e), giving us
Bayes’ theorem.

Definition (Bayes’ theorem)

P (h|e) =
P (e|h)× P (h)

P (e)
.
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Why is Bayes’ theorem interesting?

Often you have causal knowledge:

P (symptom | disease)
P (light is off | status of switches and switch positions)
P (alarm | fire)

P (image looks like | a tree is in front of a car)

...and you want to do evidential reasoning:

P (disease | symptom)
P (status of switches | light is off and switch positions)
P (fire | alarm).

P (a tree is in front of a car | image looks like )
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