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Abstract. Empirical hardness models are a recent approach for study-
ing NP-hard problems. They predict the runtime of an instance using
efficiently computable features. Previous research in the SAT domain
has shown that better prediction accuracy and simpler models can be
obtained when models are trained separately on satisfiable and unsatisfi-
able instances. We extend this method by first training separate hardness
models for each class. The probability that a novel instance belongs to
each class is then computed by a classifier. Finally, a hierarchical hard-
ness model is built using a linear combination of each class’s model. To
our best knowledge, this research is the first approach that uses a hi-
erarchical model to study a problem’s empirical hardness. We describe
and analyze classifiers and hardness models for four well-known distri-
butions of SAT instances and nine high-performance solvers. We show
that surprisingly accurate classifications can be achieved very efficiently.
Compared to unconditional models, our experiments show that hierar-
chical hardness models tend to have higher runtime prediction accuracy.
Furthermore, the classifier’s confidence correlated with prediction error,
giving a useful per-instance estimate of prediction error.

1 Introduction

ForNP-hard problems such as SAT, even the best known algorithms have worst-
case running times that increase exponentially as the problem size increases. In
practice, however, many large instances of NP-hard problems still can be solved
within a reasonable amount of time. In order to understand this phenomenon,
much effort has been invested in understanding the “empirical hardness” of such
problems[14, 16]. One recent approach uses linear basis function regression to
obtain models of the time an algorithm will require to solve a given SAT instance
[16]. These empirical hardness models can be used to obtain insight into the
factors responsible for an algorithm’s performance, or to induce distributions of
problem instances that are challenging for a given algorithm. They can also be
leveraged to select among several different algorithms for solving a given problem
instance [12, 13]. Empirical hardness models have also proven very useful for
combinatorial auctions [14], an prominent NP-hard optimization problem. In
Section 2, we introduce some background knowledge about empirical hardness
models as well as our experiment setup.

Considering the SAT problem in particular, previous work has suggested
that very different models are needed to make accurate runtime predictions for



satisfiable and unsatisfiable problem instances [16]. Furthermore, models for each
type of instance are simpler and more accurate than models that must handle
both types. This suggests that it might be possible to build better empirical
hardness models by first using a classifier to predict whether an instance is
satisfiable. In this work, we investigate this idea. We consider a variety of both
structured and unstructured SAT instances, and several state-of-the-art SAT
solvers. This experimental setup is described in Section 2.2.

In Section 3 we study the feasibility of predicting the satisfiability of a novel
SAT instance from a known distribution, using Sparse Multinomial Logistic Re-
gression (SMLR) [10] as our classifier. Our experimental results are very promis-
ing: For the distribution we found to be easiest, the prediction accuracy was
greater than 98% (uniform random 3-SAT instances with variable constrained-
ness); for the trickiest problems we encountered (SAT-encoded graph coloring
problems on small-world graphs), accuracy was still greater than 73%.

Armed with a reasonably accurate (but imperfect) classifier, in Section 4
we consider the construction of hierarchical hardness models in order to make
runtime predictions. Specifically, we trained empirical hardness models using
quadratic basis-function regression for both satisfiable and unsatisfiable training
instances. On test data we evaluated both models, and weighted each model’s
prediction by the classifier’s predicted probability that the given model is the
right one to use. We found that using such hierarchical models improved over-
all prediction accuracy. Furthermore, the classifier’s confidence correlated with
prediction accuracy, giving useful per-instance evidence about the quality of the
runtime prediction.

2 Background

One goal of using empirical hardness models is to predict the runtime of an
algorithm based on some polytime-computable features. A wide variety of dif-
ferent regression techniques can be used for this purpose. In this research, we use
the same ridge linear regression method that has previously proven to be very
successful for runtime prediction on uniform random SAT and combinational
auctions [16, 14].

2.1 Empirical Hardness Models

In order to predict the runtime of an algorithm A on a distribution D of problem
instances, we run algorithm A for a number of instances drawn from D and
compute for each instance i a set of features xi = [xi,1, . . . , xi,k]. We then fit
a function f(x) that, given the features xi of an instance i, approximates A’s
runtime on i, ri. Unfortunately, our set of features typically includes members
which are either unpredictive or highly correlated. Therefore, we reduce the set
of features by performing feature selection (e.g., forward selection, backward
selection). Finally, we perform a basis function expansion of our feature set:
φi = φ(xi) = [φ1(xi), . . . , φD(xi)]. Our basis functions can include arbitrarily



complex functions of all features xi of an instance, or can simply return the raw
features themselves.

We then use ridge regression to fit the free parameters w of the linear func-
tion fw(xn) = wT φ(xn). We compute w = (δI + ΦT Φ)−1ΦT r, where δ is
a small regularization constant that prevents arbitrary big free parameters in
w and increases numerical stability. Given a new, unseen instance j, a run-
time prediction can be obtained by computing its features xj and evaluating
fw(xj) = wT φ(xj).

2.2 Experimental Setup

For the experiments conducted throughout this study, we carefully selected two
distributions of unstructured SAT instances and two distribution of structured
SAT instances:

– rand3-var: uniform-random 3-SAT with 400 variables and clauses-to-variables-
ratio randomly selected from [3.26, 5.26]. We generated 20,000 instances with
a satisfiable/unsatisfiable ratio of 50/50.

– rand3-fix: uniform-random 3-SAT with 400 variables from the solubility
phase transition (clauses-to-variables-ratio 4.26) [1, 17]. We generated 20,000
instances with a satisfiable/unsatisfiable ratio of 50.7/49.3.

– QCP: random quasi-group completion (the task of determining whether the re-
maining entries of a partial Latin square can be filled in to obtain a complete
Latin square[7]). Using a range of parameter settings, we generated 30,620
SAT-encoded instances with a satisfiable/unsatisfiable ratio of 58.7/41.3.

– SW-GCP: graph-coloring on small-world graphs [6]. Using a range of param-
eter settings, we generated SAT-encoded 20,000 instances with a satisfi-
able/unsatisfiable ratio of 55.9/44.1.

The latter two types of SAT-distributions have been widely used as a model
of hard SAT instances with interesting structure; we used the same instance
generators and SAT encodings as the respective original studies. We randomly
split each data set used in this paper into training, validation and testing sets at
a ratio of 70:15:15. All parameter tuning was performed with a validation set;
test sets were used only to generate the final results reported in this paper.

For each instance, we computed the 84 features described by Nudelman et
al. [16]. These features can be classified into nine categories: problem size,
variable-clause graph, variable graph, clause graph, balance features,
proximity to Horn formulae, LP-based, DPLL search space, and local search
space. We used only raw features as basis functions for classification because
even simple basis function expansions exceeded the 2GB of memory available
to us. For regression, we used raw features as well as quadratic basis functions
for better runtime prediction accuracy. We evaluated the accuracy of runtime
prediction by root mean squared error (RMSE). In order to reduce the number
of redundant features, we used forward selection and kept the model with the
smallest cross-validation error. (This was done independently for each of the
learned hardness models.)



For uniform random 3-SAT instances, we ran four solvers which perform well
on these distributions: kcnfs[2], oksolver[11], march dl[8], and satz[15]. For
structured SAT instances, we ran six solvers which perform well on these distri-
butions: oksolver, zchaff[20], sato[19], satelite[3], minisat[4], and satzoo[4].

Note that in the 2005 SAT Solver Competition, satelite won gold medals
for the Industrial and Handmade SAT+UNSAT categories; minisat and zchaff
won silver and bronze, respectively, for Industrial SAT+UNSAT; and kcnfs
and march dl won gold and silver, respectively, in the Random SAT+UNSAT
complete solvers category. All our experiments were performed using a compute
cluster consisting of 50 nodes with dual Intel Xeon 3.2GHz CPU with 2MB cache
and 2GB RAM each, running Suse Linux 9.1. All runs of any solver that exceeded
1 CPU hour were terminated prematurely and included into our database of
experimental results with a runtime of 1 CPU hour; this timeout occurred in
less than 3% of all runs.

3 Using Classification to Estimate Algorithm Output

From previous research [16], we know that for uniform-random 3-SAT instances,
much simpler and more accurate empirical hardness models can be learned when
all instances are either satisfiable or unsatisfiable. If we had an oracle that could
determine the satisfiability of an unsolved test instance, we could use such mod-
els to predict its runtime; in the following, we will refer to such an oracle-based
scheme as a “magic” model. We can infer from the results of Nudelman et al.
[16] that on uniform-random 3-SAT, magic models could achieve much higher
prediction accuracies than unconditional models, i.e., models trained on the com-
bined distribution of satisfiable and unsatisfiable instances that do not require
any oracle-based knowledge.

From our experiments, we found that this phenomenon extends to solvers
and distributions not studied previously. Figure 1 shows the difference between
using magic models and unconditional models on structured SAT instances (dis-
tribution: QCP, solver: satelite). The magic models were trained on satisfiable
instances and unsatisfiable instances separately. In this case we observed almost
perfect predictions of runtime for unsatisfiable instances (Figure 1, right). Un-
conditional models, however, were trained on a mixture of two types of instances.
Figure 1, left, shows that the runtime prediction for unsatisfiable instances made
by unconditional models can exhibit both less accuracy and more bias. (Through-
out the figures in this paper, we use ‘◦’ to represent unsatisfiable instances and
‘•’ to represent satisfiable instances.)

Even though using the right type of model can result in a higher prediction
accuracy, we found that there is a big penalty for using the wrong type of model
to predict the runtime of an instance. We define models trained on satisfiable
(unsatisfiable) instances only as Msat (Munsat). Figure 2 left shows that if we
used Msat to predict the runtime of an unsatisfiable instance, the prediction
error could be very large. The large bias in the inaccurate predictions indicates
that models trained on different types of instances are completely different.

We observed similar phenomena for all other data sets and all other solvers.
Detailed information is shown in Table 1. These results suggest that magic mod-
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Fig. 1. Comparison of unconditional model (left, RMSE=0.436) and magic model
(right, RMSE=0.295). Distribution: QCP, solver: satelite.
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Scatterplot for using UNSAT model

Fig. 2. Actual vs predicted runtime using Msat to predict sat+unsat instances (left,
RMSE=1.185) and Munsat to predict sat+unsat instances (right, RMSE=0.682). Dis-
tribution: QCP, solver: satelite.

els always perform better (in terms of a smaller RMSE) than unconditional
models. The very large predication errors in Table 1 for Msat and Munsat in-
dicate that these models are very different. In particular, the RMSE for using
models trained on unsatisfiable instances to predict runtime of mixture instances
was as high as 29.790(distribution: QCP, solver: oksolver). This indicates that
the models trained on unsatisfiable instances fail to make accurate predictions
for satisfiable instances.

It is thus clear that approximating the performance of magic models offers the
possibility of performance gains for empirical hardness models. However, we can
also see that using the wrong model (if a satisfiable instance is incorrectly labeled
as unsatisfiable or vice versa) could result in a large reduction in performance.
The key problem is therefore to find a reasonably accurate, yet computationally
efficient way of distinguishing between satisfiable and unsatisfiable instances. In
the following, we investigate the use of classification techniques from machine
learning for solving this problem.



RMSE for rand3-var models RMSE for rand3-fix models
Solvers sat. unsat. unconditional magic sat. unsat. unconditional magic

satz 4.532 3.361 0.389 0.343 0.461 0.831 0.422 0.388
march dl 8.727 3.275 0.466 0.309 0.592 1.083 0.545 0.502
kcnfs 5.131 3.159 0.413 0.311 0.538 0.978 0.497 0.452

oksolver 7.284 3.952 0.558 0.382 0.663 1.166 0.597 0.547

RMSE for QCP models RMSE for SW-GCP models
Solvers sat. unsat. unconditional magic sat. unsat. unconditional magic

zchaff 2.031 0.955 0.634 0.446 1.222 1.219 1.014 0.820
minisat 1.631 0.909 0.621 0.434 1.296 1.315 1.052 0.846
satzoo 1.318 7.224 0.450 0.347 0.692 0.784 0.581 0.441
satelite 1.185 0.682 0.436 0.295 1.190 1.219 0.943 0.752

sato 1.692 9.969 0.688 0.539 1.792 2.014 1.399 0.976
oksolver 1.315 29.790 0.701 0.600 1.467 1.941 1.132 0.739

Table 1. Accuracy of hardness models for various solvers and instance distributions.

3.1 Classifying SAT Instances with SMLR

The goal of a classification algorithm is to leverage a set of n training samples
in order to design a classifier that is capable of distinguishing between m classes
on the basis of an input vector of length d. As above, this input vector should
be understood as comprising d basis functions computed from a set of observed
features.

Sparse Multinomial Logistic Regression (SMLR) [10] is a recently developed
sparse classification algorithm and can be counted among the state-of-the-art
techniques in supervised learning. Like relevance vector machines (RVMs) [18]
and sparse probit regression (SPR) [5], it learns classifiers that incorporate
weighted sums of basis functions. Its use of sparsity-promoting priors encourages
weight estimates to be either significantly large or exactly zero. This technique
controls the capacity of the learned classifier by minimizing the number of ba-
sis functions used, and thereby tends to result in better generalization. SMLR
learns a sparse multi-class classifier that scales favorably in both the number
of training samples and the feature dimensionality, which is important for our
problems since we have tens of thousands of samples per data set. We also eval-
uated different classifiers, such as support vector machines (SVMs) [9]; however,
we found that SMLR achieved better classification accuracy.

We applied SMLR to build a classifier to distinguish satisfiable and unsat-
isfiable SAT instances, using as basis functions the same set of raw features as
for the previously described hardness models. The main difference between the
training data used for regression and classification lies in the fact that the former
uses runtimes of a given solver, while the latter uses class labels (sat and unsat).
Also, for classification we only used the raw features as basis functions. The out-
puts of the classifier are the probabilities for an input instance to belong to the
two classes. Obviously, all the probabilities sum to 1, and we label the instance
with the class that has the highest probability. We define the classification scores
as (P (Csat|x)× 2)− 1. Hence, for instances that are predicated completely con-



Classification Accuracy
Dataset sat. unsat. overall

rand3sat-var 0.9791 0.9891 0.9840
rand3sat-fix 0.8480 0.8814 0.8647

QCP 0.9801 0.9324 0.9597
SW-GCP 0.7516 0.7110 0.7340

rand3−var rand3−fix        QCP         SW−GCP
0

0.2

0.4
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1
sat.
unsat.
all

Fig. 3. Classification accuracy for different data sets

fidently as satisfiable or unsatisfiable, the classification scores would be equal to
1 or -1, respectively, while in cases where the classifier is very uncertain about
the class of an instance, it gives a classification score close to 0.

Our experimental results are very encouraging. For rand3-var and QCP, clas-
sification accuracies are very high. The classifier was usually very confident about
the satisfiability of an instance, even though its prediction depended only on
computationally inexpensive features. The rand3-fix and SW-GCP distributions
were harder for our classifier, but overall accuracy was never lower than 73%,
which is substantially better than random guessing. We evaluated the quality of
the classification by two factors: overall classification error and the fraction of
instances with very high classification accuracy. Detailed information is shown
in Figures 3, 4 and 5.

Note that for the rand3-var data set, the overall classification error is only
1.6%. Only using clauses-variables-ratio (bigger or less than 4.26) as a basis for
predicting the satisfiability of an instance yields an error of 3.7%; hence, SMLR
reduces the error to less than half. On the QCP data set, SMLR, achieved an
overall classification accuracy of about 96.0%. Detailed classification results for
these two data sets are shown in Figure 4.

In addition to the very high overall accuracy of classifications, there is a
big fraction of instances with a very high classification score. Furthermore, we
observed are strong relationships between classification scores and classification
accuracies. We observed that the more confident the classifier is (absolute value
of classification score close to 1), the more accurate the classification will be.
This observation will later be exploited, as we construct hierarchical empirical
hardness models. Note that there are some instances with classification scores
closes to 0, but with a high classification accuracy. However, the number of such
instances is very small. Indeed, the smallest bins in the histograms in the lower
left and right parts of Figure 4 correspond to 0.13% and 0.43% of the total
instances respectively.

On the rand3sat-fix and SW-GCP distributions, our SMLR classifiers reach
accuracies of about 86% and 73%, respectively (see Figure 3). Based on our
efforts to construct unconditional empirical hardness models for SW-GCP, we have
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Fig. 4. The classification accuracies vs classification scores (top) and the fractions of
instances vs classifier scores (bottom). Left: rand3-var, right: QCP.
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Fig. 5. The classification accuracies vs classification scores (top) and the fractions of
instances vs classifier scores (bottom). Left: rand3-fix, right: SW-GCP.

found evidence that our features are less predictive on this distribution, which
we believe to be the main reason for the lower accuracy of our classifier on the
SW-GCP instance set. Figure 5 shows that the fraction of instances with high
classification scores is smaller for these distributions than for rand3-var and
QCP, indicating that the classifiers are uncertain about far more of the instances.
However, even for SW-GCP we still see a strong relationship between classification
score and classification accuracy on test data.

One interesting finding is that our classifier is also able to achieve very high
accuracy with a very small number of features. For example on QCP data, SMLR
achieves an accuracy of 93% with only 5 features. The five most important
features for classification on all four data sets are shown in Table 2. Interestingly,
local search based features turned out to be very important for classification in
all four data sets. (For more detailed descriptions of the features, see [16].)

Overall, our experiments show that a classifier may be used to make sur-
prisingly accurate polytime-predictions about the satisfiability of SAT instance.



Data sets rand3-var rand3-fix

gsat BestCV Mean saps BestSolution CoeffVariance
Five saps BestStep CoeffVariance gsat BestSolution Mean

features lobjois mean depth over vars saps BestCV Mean
VCG VAR max lobjois mean depth over vars

saps BestSolution Mean gsat BestCV Mean

Accuracy using
5 features 98.4% 86.5%

Accuracy using
all features 98.4% 86.5%

Data sets QCP SW-GCP

lobjois log num nodes over vars vars reduced depth
Five saps BestSolution Mean gsat BestCV Mean

features saps BestCV Mean nvars
vars clauses ratio VCG VAR min

saps BestStep CoeffVariance saps BestStep Mean

Accuracy using
5 features 93.0% 73.2%

Accuracy using
all features 96.0% 73.4%

Table 2. Five most important features (from most to least important) for clas-
sification selected by backward selection.

Of course, given the NP -hardness of SAT, we cannot expect this to be true in
general, but it certainly holds for the widely studied instance distributions used
here. This finding may be useful in its own right. For example, researchers inter-
ested in evaluating incomplete SAT algorithms on large numbers of satisfiable
instances drawn from a distribution which produces both satisfiable and unsatis-
fiable instances could use a complete search algorithm to label a relatively small
training set, and then use the classifier to filter instances.

We are interested in combining classifiers with empirical hardness models. In
this case, all of the features must be computed for the hardness model anyway,
so the additional computational effort required to evaluate the classifier’s pre-
diction for a novel instance is very low. In the next section we evaluate whether
combining these models can lead to an improvement in the accuracy of runtime
predictions.

4 Hierarchical Hardness Models

Generally, based on a classifier that is used for partitioning instances into m
sets, a hierarchical hardness models for a given instance distribution and solver
can be constructed as follows.

Step 1: The classifier is trained on a set of training instances and subsequently
tested on validation and ultimately test data. For every instance in the validation
and test set, P (Ci|x), the (predicted) probability of an instance belonging to class
Ci (i ∈ [1, ...,m]) is recorded.



Step 2: m empirical hardness models Mi (i ∈ [1, ..., m]) are trained using the
portion of the training data which consists of instances that belong to each class
Ci. Each of the resulting models Mi is used to predict the runtime for every
instance in the test set, and the responses ri (i ∈ [1, ...,m]) are recorded. Note
that the RMSE for using one model Mi to predict the runtime of all instances
may be big, since Mi is only trained on instances of class Ci.

Step 3: For each instance, the probability distribution of the predicted run-
time is P (r|x) =

∑m
i=1 P (r|x,Ci) · P (Ci|x). Here, P (r|x,Ci) is the probability

distribution of predicted runtime if we know the instance belonging to class Ci.
For linear regression, P (r|x, Ci) = N (r|f(x,wi), β−1

i ). P (Ci|x) is the probability
of the instance belonging to class Ci given observed features x. Hence, P (r|x) is
a mixture of linear regression models. Therefore, the expected value of runtime
prediction using the hierarchical hardness model is as follows:

E(r) =
∫

r · P (r|x)dr

=
∫

r ·
m∑

i=1

P (r|x,Ci) · P (Ci|x)dr

=
m∑

i=1

ri · P (Ci|x)

Hence, we can compute the predicted response by using the linear combina-
tion of ri (i ∈ [1, ...,m]) computed in Step 2 weighted by the class membership
probabilities P (Ci|x) obtained from the classifier from Step 1. The higher the
probability of an instance belonging to class Ci, the more weight the prediction
ri will have. In particular, if the classifier is 100% confident that an instance
belongs to a single class Ci, then the expected response using the hierarchical
hardness model is the response of using the Mi model only.

4.1 Hierarchical Hardness Models for SAT

Applying this method for constructing hierarchical hardness models to our SAT
domain, we have two candidate classes for each instance (m = 2): satisfiable
and unsatisfiable. The responses of using hierarchical hardness models consist
of linear combinations of responses using Msat and Munsat, namely r = rsat ·
P (Csat|x) + runsat · P (Cunsat|x). The performances of unconditional models,
magic models, and our hierarchical models are shown in Table 3.

For rand3-var, the accuracy of classification was very high. We therefore
know almost for certain whether an instance is satisfiable (classification error
was only 1.6%). Our experiments confirmed that hierarchical hardness models
can achieve almost the same runtime prediction accuracy as the magic model
(RMSE 0.343 for solver satz). Figure 6 shows that using the hierarchical hard-
ness model to predict runtime is much better than using the unconditional model.
For example, note that on unsatisfiable instances, the prediction plot for the un-
conditional model bends, indicating bias in the predictions.



RMSE (rand3-var models) RMSE (rand3-fix models)
Solvers magic uncond. hier. magic uncond. hier.

satz 0.343 0.389(88%) 0.343(100%) 0.388 0.422(92%) 0.416(93%)
march dl 0.309 0.466(66%) 0.311(99%) 0.502 0.545(92%) 0.534(94%)
kcnfs 0.311 0.413(75%) 0.311(100%) 0.452 0.497(91%) 0.487(93%)

oksolver 0.382 0.558(68%) 0.385(99%) 0.547 0.597(92%) 0.591(93%)

RMSE (QCP models) RMSE (SW-GCP models)∗

Solvers magic uncond. hier. magic uncond. hier.

zchaff 0.446 0.634(70%) 0.559(80%) 0.820 1.014(81%) 1.008(81%)
minisat 0.434 0.621(70%) 0.547(79%) 0.846 1.052(80%) 1.072(80%)
satzoo 0.347 0.450(77%) 0.400(87%) 0.441 0.581(76%) 0.587(75%)

satelite 0.295 0.436(68%) 0.373(79%) 0.752 0.943(80%) 0.967(78%)
sato 0.539 0.688(78%) 0.614(88%) 0.976 1.399(70%) 1.409(69%)

oksolver 0.600 0.701(86%) 0.647(93%) 0.739 1.132(65%) 1.175(63%)

Table 3. Comparison of magic, unconditional and hierarchical hardness models. The
second number of each entry is the ratio of the model’s RMSE to the magic model’s
RMSE. (* The runtime prediction error is very big even using magic model.)
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Fig. 6. Actual vs predicted runtime plots for solver: satz, data set: rand3-var. Left:
unconditional model, RMSE=0.389; right: hierarchical hardness model, RMSE=0.343.

Now we turn to the rand3-fix dataset. Results for all four solvers were
qualitatively similar on this distribution; here we discuss satz. Using the hierar-
chical hardness model to predict the runtime has RMSE 0.416. Compared to the
unconditional model(RMSE=0.422), the performance of the hierarchical model
was a little bit closer to the ideal magic model (RMSE=0.388). Since the uncon-
ditional model already achieved performance similar to the magical models for
this data set, we did not find huge improvement in terms of RMSE moving from
unconditional models to hierarchical models. A more intuitive view is shown in
Figure 7. The big sparse cloud for the unsatisfiable instances in the scatter plot
of the unconditional model becomes tighter and closer to the ideal prediction
(y = x) in the scatter plot of the hierarchical model. Further investigation con-
firms that those instances in Figure 7 (Right) which are far away from the ideal
prediction line (y = x) have a low classification confidence. This phenomenon
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Fig. 7. Actual vs predicted runtime plots for solver: satz, data set: rand3-fix. Left:
unconditional model, RMSE=0.422; right: hierarchical hardness model, RMSE=0.416.
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Scatterplot for using hierarchical hardness model 

Fig. 8. Actual vs predicted runtime plots for solver: satelite, data set:
QCP. Left:unconditional model RMSE=0.436, Right:hierarchical hardness model
RMSE=0.373

suggests that some relationship exists between classification score and prediction
accuracy; we investigate this relationship at the end of this section.

For structured instance set QCP, we observed similar prediction accuracy im-
provements by using a hierarchical model. Since the classification accuracy for
QCP is higher than the classification accuracy for rand3-fix, we expected big-
ger improvements when using the hierarchical hardness model compared to the
rand3-fix case. The experimental results confirmed our hypothesis (Figure 8).
For the solver satelite, the RMSE for using the unconditional model is 0.436.
However, the RMSE for using the hierarchical model is 0.373, which is much
closer to that of the magic model (RMSE=0.295).

The data set SW-GCP generally caused some difficulties (see Figure 9). We
found that both unconditional and hierarchical models have fairly large predic-
tion error (RMSE about 1.0; since we used log runtime, this means that runtime
predictions were off by about an order of magnitude on average). As discussed
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Fig. 9. Actual vs predicted runtime plots for solver: zchaff, data set:
SW-GCP. Left:unconditional model RMSE=1.014, Right:hierarchical hardness model
RMSE=1.008

earlier, our relative difficulty in making accurate predictions on this dataset indi-
cates that our features are less informative here than on the other three datasets.
It was not surprising that the weight combination of two bad models did not
provide us with a good model, especially considering that the classifications
themselves were also less accurate than for the other distributions (the overall
classification error for SW-GCP was 26.6%).

There was a strong relationship between the classifier’s confidence and regres-
sion runtime prediction accuracy. In particular, a more confident classification
was indicative of a more accurate runtime prediction. This relationship is illus-
trated in Figure 10 for the satelite solver on QCP data. When the classifiers
are very confident about the satisfiability of the instances, the prediction errors
(Figure 10 Left) and RMSE (Figure 10, right) is smaller.1

Another interesting discovery from our experiments is that those features
important to classification are also important for ridge regression. For instance,
only using the three features which were most important for classification on
QCP data, we achieved runtime prediction performance within 10% of full model
accuracy for satelite (in terms of RMSE on the validation data).

5 Conclusion and Future work

We have shown that there are big differences between models trained only on
satisfiable and unsatisfiable instances, not only for uniform random 3-SAT prob-
lems (as was previously shown) but also for structured SAT problems such as
1 The reader may feel that the classification error actually seems quite large at clas-

sification scores of -1 and 1 in Figure 10 (left side). However, this is a situation in
which scatterplots are misleading. Remember that there are tens of thousands of
points in this plot; as it turns out, most of the points are stacked on top of each
other near (-1,0) and (1,0). We know this from examining the raw data; however, it
can also be inferred from the shape of the curve in the right pane of Figure 10.
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Fig. 10. Classification score vs. runtime prediction error per instance (Left); relation
between classification score and RMSE (Right). Data set: QCP, solver: satelite

QCP and SW-GCP. Furthermore, these models have higher prediction accuracy
than the unconditional model.

A classifier can be used to distinguish between satisfiable and unsatisfiable
instances; in our experiments we achieved accuracies between 73% and 98%.
Such a classifier can also be used to build a hierarchical hardness model. In
cases where we achieved high classification accuracy, a hierarchical model al-
ways offered substantial improvements over an unconditional model. When the
classifier was less accurate, our hierarchical models did not offer a substantial
improvement over the unconditional model; however, hierarchical models were
never significantly worse. It should be noted that our hierarchical models come at
virtually no additional computational cost, as they depend on the same features
also used for the individual regression models.

In future work, we intend to investigate new features to improve both classi-
fication and regression accuracy on SW-GCP. We will also investigate other clas-
sification techniques besides SMLR and SVM.
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