

Evaluation of a Role-Based Approach for Customizing a
Complex Development Environment

Leah Findlater
1

Joanna McGrenere
1

David Modjeska
2

1Department of Computer Science
University of British Columbia, Canada

{lkf, joanna}@cs.ubc.ca

2Interactive Media Lab
University of Toronto, Canada

modjeska@acm.org

ABSTRACT

Coarse-grained approaches to customization allow the user
to enable or disable groups of features at once, rather than
individual features. While this may reduce the complexity
of customization and encourage more users to customize,
the research challenges of designing such approaches have
not been fully explored. To address this limitation, we
conducted an interview study with 14 professional software
developers who use an integrated development environment
that provides a role-based, coarse-grained approach to
customization. We identify challenges of designing coarse-
grained customization models, including issues of
functionality partitioning, presentation, and individual
differences. These findings highlight potentially critical
design choices, and provide direction for future work.

Author Keywords

Role-based interface, adaptable and adaptive interfaces,
customization, interview study.

ACM Classification Keywords

H.5.2 User Interfaces: Evaluation/methodology, graphical
user interfaces.

INTRODUCTION

Complex software applications often provide more features
than are used even by expert individual users [5,8]. To
manage this complexity, customization methods to reduce
functionality have been proposed by several researchers,
either for regular usage or for a limited training period.
Evaluations have been limited in number and scope, but
have shown that reduced-functionality applications can
make novice users faster, more accurate and more satisfied
[1], and that they can be preferred by a large proportion of
intermediate and advanced users [7]. Despite these
advances, evaluations have focused on the benefits of such
designs, while drawbacks have largely been ignored.

In particular, research on coarse-grained approaches to
reducing functionality, such as layered interfaces [10], has
been limited to relatively simple applications or
customization models [2,3,9,10]. A coarse-grained
approach allows large groups of features to be enabled or
disabled at once; in contrast, a fine-grained approach
enables or disables individual features, as is done with
Microsoft Office 2003’s adaptive menus, or with multiple
interfaces [7]. Since lack of time and difficulty are among
the factors that inhibit customization [6], coarse-grained
approaches have the potential to provide the benefits of
customization while reducing the burden on the user.
However, due to the lack of evaluation of such approaches,
we do not fully understand their effectiveness.

The role-based customization model found in IBM Rational
Application Developer 6.0 (RAD) is an example of a
coarse-grained approach for a complex, feature-rich
application. This approach, shown in Figure 1, allows the
user to select from a set of user roles, such as Java

Developer and Web Developer, and only functionality
associated with those roles is enabled in the user interface.
Although CSCW applications have on occasion provided
user roles to support collaboration, the research literature
does not contain examples of using roles to filter
functionality in complex user interfaces. An additional
difference is that RAD’s customization model offers
flexibility through multiple levels of granularity, unlike the
restrictive definitions of roles that have been found to be
problematic in CSCW [4,11].

To address the limitations discussed above, we conducted
an interview study with 14 users of RAD. The findings
highlight challenges of coarse-grained approaches,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2008, April 5–10, 2008, Florence, Italy.
Copyright 2008 ACM 978-1-60558-011-1/08/04…$5.00

Figure 1. Screenshot of RAD’s mechanism to change user role.

A short description is presented for each role on mouseover.

including partitioning of features, presentation, and
individual differences. These issues should be considered
by designers of reduced-functionality systems, and offer
potentially fruitful areas for further research.

IBM RATIONAL APPLICATION DEVELOPER

RAD extends and inherits all user interface components
from Eclipse, a popular IDE (http://www.eclipse.org). Shown
in Figure 2, the key components of RAD are as follows:

Workspaces hold one or more development projects. Users
can create more than one workspace, but can only work in a
single workspace at a time. Customization changes are only
persistent within a workspace.

Perspectives group functionality by task (e.g., Debug

Perspective). The user controls which menu and toolbar
items as well as views on the code appear in a perspective,
and can also control switching between perspectives. There
is often functionality overlap between perspectives.

Capabilities are groups of features that correspond to user
tasks on a higher level than perspectives. The features
associated with a capability can range from entire
perspectives to individual menu and toolbar items within a
perspective. When a capability is disabled, the features
associated with it are no longer visible. For example,
enabling the Java Development capability enables features
for creating and testing Java projects, such as a Java-
specific text editor, and a menu item to create a new class.

Roles are groups of capabilities that are potentially
overlapping. RAD provides 11 roles on a Welcome screen
when the user creates a new workspace. By default, 2 roles
are enabled (Java Developer and Web Developer), but the
user can disable these and/or enable additional roles. When
the user enables a role, this enables the set of capabilities
associated with that role; in turn, the specific interface
elements associated with those capabilities are made
available in the interface. For example, enabling the Tester
role will enable 3 capabilities: Core Testing Support,
Probekit, and Profiling and Logging.

Roles determine a base set of functionality to include in the
interface, and, as the user works, additional functionality
can be exposed or hidden by manipulating capabilities. This
can be done both manually, through a user preference
dialog that lists all available capabilities, or automatically,
through trigger points in the interface. Trigger points offer a
small amount of adaptive prompting in an otherwise
adaptable (user-controlled) customization model: for

example, when creating a new project the user can choose
to “show all” types of possible projects; if the new project
is associated with a disabled capability, the system will
prompt the user to enable that capability.

INTERVIEW METHODOLOGY

Each interview was 1 hour long, with 32 semi-structured
questions to understand use of roles and capabilities, and
overall customization practice. At the end of the interview
there was a debriefing and unstructured discussion period
on managing user interface complexity. All interviews were
conducted by the same researcher and were recorded,
transcribed and coded for analysis. Since the interviews
were exploratory, we did not set hypotheses beforehand.
Instead, we used an open coding technique to develop
categories of data [12]. This iterative process allowed us to
identify emergent themes, and confirmed some of the focus
areas of our investigation. We separated pure usability
issues from what we consider to be the more generalizable
benefits and challenges of reducing functionality. Almost
all questions were open ended and participants were
encouraged to speak freely, so the number of people who
mentioned a point should be considered a minimum.

Through developer mailing lists and word of mouth, we
recruited and interviewed 14 professional software
developers (11 male, 3 female). They had between 2 and 30
years of software development experience (M = 11, SD = 9)
and reported spending over 30 hours per week using an
Eclipse-based development platform (SD = 13). Experience
with RAD varied, ranging from less than a month for 3
participants to 12 months for another participant (M = 4.1,
SD = 3.2). This was representative of the user base, since
RAD had only been released 6 months before we conducted
the study; the participant with 12 months of experience had
initially used a pre-release version. Participants reported
using RAD to develop a variety of applications, including:
Web (7 participants), J2EE (4 participants), Java or plug-ins
for Eclipse (6 participants), and database (1 participant).
Three participants used Eclipse as their primary IDE, rather
than RAD, and some questions were not asked of these
users (noted when applicable in the next section).

FINDINGS

We first briefly discuss overall customization practice to
provide context for the findings on roles and capabilities.

Overall Customization Practice

RAD provides 11 perspectives by default, though users can
increase this by saving custom perspectives and installing
additional plug-ins. On average, participants made use of 4
to 5 perspectives. Most participants (11) had multiple
workspaces, with the median being 2 to 3 workspaces. All
participants generally made at least minor customization
changes to each workspace, including opening and closing
different views on the code, changing the layouts of
perspectives, and changing code formatting preferences, but
none of the participants customized their menus and

Figure 2. Customization mechanisms in RAD. Specific settings

at each level are associated with a workspace.

Roles

Capabilities

Perspectives, editors,
views, menu and

toolbar items

Coarse-grained filtering

Fine-grained filtering

toolbars individually. A reset feature is provided for
perspectives, and 6 participants reported occasional use of
this feature when they had changed their perspective
significantly. Users can also create new perspectives by
first customizing a perspective, then saving it under a new
name. Only 1 participant used this feature.

Challenges in Reducing Functionality

As expected based on our participants’ varied exposure to
RAD, we found that people had different degrees of
understanding about how roles and capabilities technically
worked. While almost all participants (12) were aware of
capabilities, only 8 of the 11 participants who did not use
Eclipse as their main development platform were aware of
roles, and only 6 of those knew how to change them.
Interpretation of results should be made in this context.

The majority of participants (8) explicitly stated they liked
roles or capabilities in principle, that is, their potential to
reduce features in the interface. When asked if they would
remove roles and/or capabilities from the interface, only 1
participant suggested removing both. While this positive
response should motivate further work on roles and
capabilities, several issues affected the user experience and
these can be broadly grouped with respect to partitioning of
functionality, presentation, and individual differences.

Partitioning functionality

Groups of features in a customization model should be
relatively independent, cohesive, and meaningful to users.
We identified several challenges related to this.

Fine-grained capabilities, were more popular than coarse-

grained roles because they better matched perceived needs.
While roles and capabilities both offer high-level feature
grouping for customization, they do so at different levels of
granularity. Participants generally chose to enable and
disable the finer-grained capabilities rather than enabling
roles. Part of the reason was that they felt the variation in
tasks performed by users nominally in the same work role
made it difficult to define roles. We asked all but the 3
participants who used Eclipse as their main IDE which
roles they would categorize themselves under, and we
compared this to the roles which were actually enabled in
the workspace they had accessible during or after the
interview. All but 2 people identified with several more
roles than were enabled in their workspaces.

Trigger points and capabilities were useful because they

allowed the user to enable features as needed rather than

predicting needs in advance. Five of the 6 participants who
knew how to change roles generally left the default roles
when they created a new workspace even though 3 of them
had changed their roles at some point in an earlier
workspace. They found it easier to enable functionality
automatically through trigger points or by manually
enabling capabilities, and 3 of those participants considered
roles to be irrelevant because instead, they could simply
change their capabilities. For example, P8 said:

“I know for the GUI itself, it’s not very intuitive, saying

‘This is what I’m going to do’ up front.” (P8)

Only 1 participant used roles as his primary method of
enabling functionality. This was not necessarily because the
role matched his work practice better than it did for other
participants: he stated he had chosen this specific role
(Advanced J2EE) because it appeared to be the most
comprehensive. Thus, it made it easy to enable a large set
of features with a single click.

Partitioning based on task was more effective than on

expertise. Our analysis also suggests that the criteria by
which roles are defined impacts the effectiveness of the
customization model. All 11 of the roles in RAD group
functionality in a task-oriented manner; for example, the
Java Developer role is associated with functionality that is
likely to be needed by that type of developer. However, 4 of
the roles were also distinguished by expertise level: Web

Developer Typical versus Web Developer Advanced and
Enterprise Java versus J2EE Developer. The former role in
each of these pairings represents only a subset of the
functionality of the latter. Eight participants expressed
concern over the difficulty of distinguishing between the
expertise-oriented roles. For example, when asked to
identify which roles he fits under, P7 said:

“The main ones would be Enterprise Java and Modeling,

and I guess the Advanced J2EE. Although I have no idea

why there’s Enterprise Java and Advanced J2EE. I

almost think it would be better to just have one.” (P7)

Although partitioning by expertise has been shown to be
effective for novice users [1], our findings suggest that it
may not be as effective for differentiating between the tasks
of more experienced users (intermediate vs. expert users).

Presentation

Effective communication of a complex customization
model to the user is non-trivial.

Capabilities more closely matched concrete tasks, so were

easier to interpret. Many participants (8) found it difficult
to map from a name or short description of a role or
capability to actual features in the interface, thus making it
difficult to know how to effectively customize their
interface. For example, P1 expressed this frustration:

“If I need something but if I don’t know which capability

I need to [enable], how can I use that?” (P1)

While some of this may be attributable to issues with
partitioning functionality, it also highlights the challenge of
effectively communicating the customization model to the
user when the model is complex, such as RAD’s, and
contains multiple levels of granularity. It will be interesting
to explore whether communicating the underlying mapping
of roles to features more effectively increases their adoption
relative to capabilities.

Designers need to promote the ability to discover unknown

or unused features while still filtering what is presented to

the user. More than half the participants (8) were concerned

about hiding functionality and not being able to find
features when some roles or capabilities were disabled, a
finding similar to previous work with word processor users
[8]. Because of this concern, 4 participants mentioned that
they generally enabled all functionality to ensure that they
would be able to find what they needed. Although this may
be due to individual differences (see below), it defeats the
purpose of having roles and capabilities in the first place.
The concern over hiding features stemmed from both: (1)
the need to locate functions of which the user is already
aware, and (2) the ease with which users can learn about
and use new features in the user interface.

Changing requirements concerns users. Our participants
identified three situations in which they would be
concerned about only having a filtered set of the features in
the interface: when their role evolved, such as from a
developer to a manager; when they temporarily needed a set
of features associated with another role; and when they
wanted to engage in exploratory behaviour of the interface
for a short period of time.

Individual differences

Finally, we found that different participants had different
reactions to reducing functionality in the user interface.
Some felt overwhelmed by having many features while
others were not bothered by extra functionality and
preferred not to filter any features. As such, we need to
cater to both feature-keen and feature-shy users [8], and to
increase system trust, especially for those users who may be
reluctant to customize even when a reduced-functionality
interface could be more efficient. Four participants
immediately enabled all functionality when creating a new
workspace. To illustrate this, when asked which of the roles
she would want enabled, P5’s response was: “Every single
one of them!” This behaviour supports the inclusion of a
toggle mechanism, such as that provided in the multiple
interfaces approach [7], to provide quick access to the full
functionality set for this type of user.

Summary of Design Implications

Participants preferred to use finer-grained capabilities to
roles, for several reasons that can inform future designs: (1)
capabilities more closely matched the tasks a user
performed, while roles were broader, not necessarily
matching an individual user’s tasks; (2) capabilities were
more concrete, so it was easier to interpret the mapping
from capabilities to individual features; and (3) capabilities
could be easily enabled on an as-needed basis. Grouping of
features based on advanced expertise levels was also less
effective than grouping by task. As well, although most
users wanted to filter features in their interface, it is
important to consider how easily unknown or unused
features can be discovered. Finally, for those users who do
not want to filter any features, an easy toggle mechanism
enabling the full functionality set should be provided.

CONCLUSION

An interview study has allowed us to identify several open
issues in designing coarse-grained customization
mechanisms. Our findings suggest that finer-grained, task-
oriented groupings of features (i.e., capabilities) may be
more effective than role-based groupings. The design
implications are especially applicable for role-based and
layered interfaces. The challenges we have identified with
respect to partitioning of functionality, presentation, and
individual differences highlight potentially critical design
choices, and should guide further research in the area.

ACKNOWLEDGMENTS

We thank Jen Hawkins, Jin Li, Lawrence Mandel, and
Arthur Ryman of the IBM Toronto Lab for their help in
running this study. We also thank IBM Centers for
Advanced Studies and NSERC for funding.

Note. IBM and Rational are registered trademarks of International
Business Machines Corporation in the United States, other countries,
or both. Java is a trademark of Sun Microsystems, Inc. in the United
States, other countries, or both. Other company, product or service
names may be trademarks or service marks of others.

REFERENCES

1. Carroll, J. M., and Carrithers, C. Training wheels in a user
interface. CACM, 27(1984):8, 800–806.

2. Christiernin, G.L., Lindahl, F., and Torgersson, O.
Designing a multi-layered image viewer. Proc. NordiCHI

’04, (2004), 181–184.

3. Findlater, L., and McGrenere, J. Evaluating reduced-
functionality interfaces according to feature findability
and awareness. Proc. IFIP Interact 2007, (2007), 592-
605.

4. Greenberg, S. Personalizable groupware: Accommodating
individual roles and group differences. Proc. ECSCW,
(1991), 17-31.

5. Linton, F., Joy, D., Schaefer, H.-P., and Charron, A. Owl:
A recommender system for organization-wide learning.
Educational Technology & Society, 3(2000):1, 62-76.

6. Mackay, W. E. Triggers and barriers to customizing
software. Proc. CHI ‘91, (1991), 153-160.

7. McGrenere, J., Baecker, R., and Booth, K. An evaluation
of a multiple interface design solution for bloated software.
Proc. CHI 2002, (2002), 163-170.

8. McGrenere, J., and Moore, G. Are we all in the same
“bloat”? Proc. Graphics Interface, (2000), 187-196.

9. Plaisant, C., Kang, H., and Shneiderman, B. Helping users
get started with visual interfaces: Multi-layered interfaces,
integrated initial guidance and video demonstrations. Proc.

HCI International, (2003), 790-794.

10. Shneiderman, B. Promoting universal usability with multi-
layer interface design. Proc. CUU 2003, (2003), 1-8.

11. Smith, R. B., Hixon, R., Horan, B. Supporting flexible
roles in a shared space. Proc. CSCW, (1998), 197-206.

12. Strauss, A., and Corbin, J. Basics of qualitative research:
Grounded theory procedures and techniques. Sage,
Newbury Park, CA, USA, 1990.

