Computing Pure Strategy Nash Equilibria in
Compact Symmetric Games

Christopher Thomas Ryan,
Albert Xin Jiang, Kevin Leyton-Brown

University of British Columbia, Vancouver, Canada

18

Computing Pure Strategy Nash Equilibria (PSNE)

/18

Computing Pure Strategy Nash Equilibria (PSNE)

» Computational questions: How hard is it to decide if a game
has a PSNE? How hard is it to find one? etc.

18

Computing Pure Strategy Nash Equilibria (PSNE)

» Computational questions: How hard is it to decide if a game
has a PSNE? How hard is it to find one? etc.

» Answer: depends on the input.
» Polynomial time when input is in normal form.

> size exponential in the number of players

N

18

Computing Pure Strategy Nash Equilibria (PSNE)

» Computational questions: How hard is it to decide if a game
has a PSNE? How hard is it to find one? etc.

» Answer: depends on the input.
» Polynomial time when input is in normal form.

> size exponential in the number of players

» Potentially difficult (NP-complete, PLS-complete) when input
is “compact”.
» Congestion games [Fabrikant, Papadimitriou & Talwar, 2004;
leong et al., 2005]
> Graphical games [Gottlob, Greco & Scarcello 2005]
> Action graph games [Jiang & Leyton-Brown, 2007;
Daskalakis, Schoenebeck, Valiant & Valiant 2009]

Symmetric Games

» We focus on

» Symmetric games: all players are identical and
indistinguishable.

» Fixed number of actions m, varying number of players n.

» Utilities are integers.

18

Symmetric Games

» We focus on

» Symmetric games: all players are identical and
indistinguishable.

» Fixed number of actions m, varying number of players n.

» Utilities are integers.

» Define configuration:
x=(x;:a€A)

where x, is the number of players playing action a.

3/18

Symmetric Games

» We focus on
» Symmetric games: all players are identical and
indistinguishable.
» Fixed number of actions m, varying number of players n.
» Utilities are integers.

» Define configuration:
x=(x;:a€A)

where x, is the number of players playing action a.

» Sufficient to specify utility function u,(x) for each action a
and each configuration x.

> There are (""" 1) = ©(n™1) distinct configurations.

3/18

Symmetric Games
» We focus on
» Symmetric games: all players are identical and
indistinguishable.

» Fixed number of actions m, varying number of players n.
» Utilities are integers.

» Define configuration:

x=(x;:a€A)

where x, is the number of players playing action a.

» Sufficient to specify utility function u,(x) for each action a
and each configuration x.
> There are (""" 1) = ©(n™1) distinct configurations.
> In previous studies [e.g. Brandt, Fischer & Holzer, 2009;

Roughgarden & Papadimitriou, 2005], utility values are given
explicitly.

18

Symmetric Games

» We focus on

» Symmetric games: all players are identical and
indistinguishable.

» Fixed number of actions m, varying number of players n.
» Utilities are integers.

» Define configuration:

x=(x;:a€A)

where x, is the number of players playing action a.

» Sufficient to specify utility function u,(x) for each action a
and each configuration x.

> There are (""" 1) = ©(n™1) distinct configurations.

> In previous studies [e.g. Brandt, Fischer & Holzer, 2009;
Roughgarden & Papadimitriou, 2005], utility values are given
explicitly.

» Compute PSNE in poly time by enumerating configurations

18

More compact representations of u,

» We focus on compact representations of u,: those requiring
only poly(log n) bits.

18

More compact representations of u,

» We focus on compact representations of u,: those requiring
only poly(log n) bits.
» Sanity check:
» Specifying input: need only mlog n bits.
» Specifying output: can map utilities to {17 2,..., (”;”:1)}

while preserving PSNE, thus need only O(log n) bits.

18

More compact representations of u,

» We focus on compact representations of u,: those requiring
only poly(log n) bits.
» Sanity check:
» Specifying input: need only mlog n bits.
» Specifying output: can map utilities to {17 2,..., (”;’:1)}

while preserving PSNE, thus need only O(log n) bits.

» Computing PSNE: with such a compact representation, is it
even in NP?

18

More compact representations of u,

» We focus on compact representations of u,: those requiring
only poly(log n) bits.
» Sanity check:
» Specifying input: need only mlog n bits.
» Specifying output: can map utilities to {17 2,..., (”;’:1)}

while preserving PSNE, thus need only O(log n) bits.

» Computing PSNE: with such a compact representation, is it
even in NP?

» To check if x is in N, the set of of PSNE configurations, only
need to check for each pair of actions a and a’, whether there
is a profitable deviation from playing a to playing a’.

» Checking whether x € N is in P (thus computing PSNE in NP)
if the utility functions can be evaluated in poly time.

18

Circuit Symmetric Games

» How hard can it get?
» Represent each u, by a Boolean circuit
» general method for representing utility functions; complexity

for other circuit-based models studied in e.g. [Schoenebeck &
Vadhan, 2006]

» Compact when number of gates is poly(log n)

18

Circuit Symmetric Games

» How hard can it get?
» Represent each u, by a Boolean circuit
» general method for representing utility functions; complexity
for other circuit-based models studied in e.g. [Schoenebeck &
Vadhan, 2006]

» Compact when number of gates is poly(log n)
Theorem (Circuit symmetric games)

» When utilities are represented by Boolean circuits, and m > 3,
deciding if a PSNE exists is NP-complete.

» When m = 2, there exists at least one PSNE and a sample
PSNE can be found in poly time.

> existence of PSNE for the m = 2 case was proved by [Cheng, Reeves,
Vorobeychik & Wellman 2004]; also follows from the fact that such a

game is a potential game.

Piecewise-linear symmetric games

» We can do better by considering a natural subclass:
piecewise-linear functions.

18

Piecewise-linear symmetric games

» We can do better by considering a natural subclass:
piecewise-linear functions.

Theorem (Informal version)

When utilities are expressed as piecewise-linear functions, there

exist polynomial time algorithms to decide if a PSNE exists and
find a sample equilibrium.

6

18

PWL symmetric game

/18

PWL symmetric game

» Domain of utility functions:
configurations

D{xEZm:Zxan,xz[)} X3

acA

X2

X1

18

PWL symmetric game

» Domain of utility functions:
configurations

D{erm:Zxan,xzﬁ

acA

}

18

PWL symmetric game

» Domain of utility functions:
configurations

D{erm:Zxan,xzo
acA

» Piecewise linear utilities: For
each a € A:

D= [(P.,nZ")

PaijPa

}

18

PWL symmetric game

» Domain of utility functions:
configurations

D{erm:Zxan,xzﬁ

acA

» Piecewise linear utilities: For
each a € A:

D= [(P.,nZ")

PaijPa

» Over each cell P,; NZ™ there
is an affine function
fi(x) = aaj - x+ Baj.

}

f2i(x)

‘ P

18

PWL symmetric game

» Domain of utility functions:
configurations

D{erm:Zxan,xzﬁ

acA

» Piecewise linear utilities: For
each a € A:

D= [(P.,nZ")

PaijPa

» Over each cell P,; NZ™ there
is an affine function
fi(x) = aaj - x+ Baj.

» Piecing them together:
us(x) = £,j(x) for x € P.;NZ"

» Compact when number of
pieces |P,| is poly(log n).

} u,(x)

/ﬂ\\

18

Theorem (Formal version)

Consider a symmetric game with PWL utilities
given by the following input:

» the binary encoding of the number n of
players;

> for each a € A, the utility function u,(x)
represented as the binary encoding of the us(x)
inequality description of each P,; and
affine functions f;.

Theorem (Formal version)

Consider a symmetric game with PWL utilities
given by the following input:

» the binary encoding of the number n of
players;

> for each a € A, the utility function u,(x)
represented as the binary encoding of the us(x)
inequality description of each P,; and
affine functions f;.

Then, when the number of actions m is fixed,
and even when the number of pieces are
poly(log n), there exists

1. a polynomial-time algorithm to compute %\\
the number of PSNE : :

2. a polynomial-time algorithm to find a
sample PSNE

3. a polynomial-space, polynomial-delay
enumeration algorithm to enumerate all
PSNE.

Tool of analysis
» Encode the set of PSNE by a rational generating function.
» Leverage theory from encoding sets of polytopal lattice points.

» previously applied in combinatorics, optimization, compiler
design [e.g. De Loera et al. 2007]

18

Tool of analysis
» Encode the set of PSNE by a rational generating function.

» Leverage theory from encoding sets of polytopal lattice points.

» previously applied in combinatorics, optimization, compiler
design [e.g. De Loera et al. 2007]

X3

n

>

X2

X1

18

Generating function encoding

» Given S C Z" we represent the points as a generating

function:
g(S,w) = ZWI Wy W
aes

10/18

Generating function encoding

» Given S C Z" we represent the points as a generating

function:
g(5,w) = E witws? e
aes
> w; are complex variables

» Point (2, —3) is encoded as monomial ww; 3.

10/18

Generating function encoding

» Given S C Z" we represent the points as a generating

function:
g(5,w) = E witws? e
acs
> w; are complex variables

» Point (2, —3) is encoded as monomial ww; 3.

» S=1{0,1,...,1000}

10/18

Generating function encoding

» Given S C Z" we represent the points as a generating

function:
g(S,w) = g witwy? - win
acs
> w; are complex variables

» Point (2, —3) is encoded as monomial ww; 3.

» S=4{0,1,...,1000}
> g(S,w) =14+ w+ w?+ -+ w00

10/18

Generating function encoding

» Given S C Z" we represent the points as a generating

function:
g(S,w) = g witwy? - win
acs
> w; are complex variables

» Point (2, —3) is encoded as monomial ww; 3.

» S=4{0,1,...,1000}
> g(S,w) =14+ w+ w?+ -+ w00

1 w1001

> g(Sw) =1, — 1

10/18

Barvinok's result (1994)

Theorem

Let P be a rational convex polytope, i.e. P = {x € R™ : Ax < b}.
There is a polynomial time algorithm which computes a short

rational generating function:
wY

(1 — wa)(1 — wd2)... (1 — wdm)’

g(PNZ™w)=>)

Jjed

of the lattice points inside P when the dimension m is fixed. The
number of terms in the sum is polynomially bounded and

i € {_17 1}

11/18

A Tale of Two Representations

Lattice points: S

12/18

A Tale of Two Representations

Inequality
representation:

{x: Ax<b, xe€Z"}

Data: A, b

Lattice points: S

12/18

A Tale of Two Representations

Inequality
representation:

{x: Ax<b, xe€Z"}

Data: A, b

Lattice points: S

Gen. Function
Representation:

Z i

jed Hk 1(17W)

Data: ¢j, djx

12/18

Accessing the points in a generating function encoding

13/18

Accessing the points in a generating function encoding

» Count the number of integer points in S in polynomial time.
[Barvinok, 1994]

13/18

Accessing the points in a generating function encoding

» Count the number of integer points in S in polynomial time.
[Barvinok, 1994]

» S=1{0,1,...,1000}

13/18

Accessing the points in a generating function encoding

» Count the number of integer points in S in polynomial time.
[Barvinok, 1994]

» $={0,1,...,1000}
» g(S,w)=14w+w?+ . 4 w000
Count: substitute w = 1, get g(S,1) = 1001.

13/18

Accessing the points in a generating function encoding

» Count the number of integer points in S in polynomial time.
[Barvinok, 1994]

» $={0,1,...,1000}
» g(S,w)=14w+w?+ . 4 w000
Count: substitute w = 1, get g(S,1) = 1001.

Sw)=-L _ »*
> g(’W)_l—w 1—w "
Count: take limit as w — 1, get lim,, 1 g(S, w) = 1001.

13/18

Accessing the points in a generating function encoding

» Count the number of integer points in S in polynomial time.
[Barvinok, 1994]

» $={0,1,...,1000}
» g(S,w)=14w+w?+ . 4 w000
Count: substitute w = 1, get g(S,1) = 1001.

Sw)=-L _ »*
> g(’W)_l—w 1—w "
Count: take limit as w — 1, get lim,, 1 g(S, w) = 1001.

» Enumerate the elements of S: There exists a polynomial-delay
enumeration algorithm which outputs the elements of S. [De
Loera et al. 2007]

13/18

More ways to encode (Barvinok-Woods, 2003)

14 /18

More ways to encode (Barvinok-Woods, 2003)

Boolean combinations:

8

51

14 /18

More ways to encode (Barvinok-Woods, 2003)

Boolean combinations:

14 /18

More ways to encode (Barvinok-Woods, 2003)

Boolean combinations: Disjoint unions:

g(S51U S, w) =g(S1,w) + g(S2, w)

14 /18

Key insight into proof: Express PSNE via polytopes

» Want to encode N, the set of
PSNE configurations

XxEN < Vac A:(xa=0) OR (Va' € A, us(x) > uy(x+e, —es))

» D is the set of configurations and

candidate equilibria: &
D:{er’":Zxa:n,XZO}
acA

X1

15/18

Key insight into proof: Express PSNE via polytopes

» Want to encode N, the set of
PSNE configurations

XxEN < Vac A:(xa=0) OR (Va' € A, us(x) > uy(x+e, —es))

» D is the set of configurations and
candidate equilibria:

D:{er’":Zxa:n,XZO}

acA

» D, » those configurations where it
is profitable for a player playing
action a to deviate.

X2

X1

15/18

Key insight into proof: Express PSNE via polytopes

» Want to encode N, the set of
PSNE configurations

XxEN < Vac A:(xa=0) OR (Va' € A, us(x) > uy(x+e, —es))

» D is the set of configurations and
candidate equilibria:

D:{er’":Zxa:n,xzﬂ}

acA

X2

» D, » those configurations where it
is profitable for a player playing
action a to deviate. x

N=D\ |J D.~

a,a’eA

15/18

Expressing D, »

xeD:x;>1,x¢e Py,
D,. = H—J L—H X' =x+ey—e, € Py
Pa’jGPa Pa’,j’epa’ f:;,J(X) S f:a/,j/(xl) —]_

16/18

Expressing D, »

xeD:x;>1,x€P,j,
D,. = H—J L—H X' =x+ey —e, € Py
Pa,jGPa Pale/GPa/ f:;,J(X) S f:a/,j/(xl) —]_

» Polynomial number of disjoint unions

» Once the pieces P, and P j: fixed, can formulate profitable
deviation as a set of linear constraints

16/18

Expressing D, »

xeD:x;>1,x€P,j,
D,. = H—J L—H X' =x+ey —e, € Py
Pa,jGPa Pale/GPa/ f:;,J(X) S f:a/,j/(xl) —]_

» Polynomial number of disjoint unions

» Once the pieces P, and P j: fixed, can formulate profitable
deviation as a set of linear constraints

» x, > 1. at least one player chose a

16

18

Expressing D, »

xeD:x;>1,x€P,j,
D,. = H—J L—H X' =x+ey —e, € Py
Pa,jGPa Pale/GPa/ f:;,J(X) S f:a/,j/(xl) —]_

» Polynomial number of disjoint unions

» Once the pieces P, and P j: fixed, can formulate profitable
deviation as a set of linear constraints
» x, > 1. at least one player chose a
» X' = x+ e, — e, result of deviating from a to &’

16

18

Expressing D, »

xeD:x;>1,x€P,j,
D,. = H—J L—H X' =x+ey —e, € Py
Pa,jGPa Pale/GPa/ f:;,J(X) S f:a/,j/(xl) —]_

» Polynomial number of disjoint unions
» Once the pieces P, and P j: fixed, can formulate profitable
deviation as a set of linear constraints
» x, > 1. at least one player chose a
» X' = x+ e, — e, result of deviating from a to &’
» f,j(x) < fir y(x) — 1: since utilities are integers, equivalent to
faj(x) < farjr(X')

16

18

Expressing D, »

xeD:x;>1,x€P,j,
D,. = H—J L—H X' =x+ey —e, € Py
Pa,jGPa Pale/GPa/ f:;,J(X) S f:a/,j/(xl) —]_

» Polynomial number of disjoint unions
» Once the pieces P, and P j: fixed, can formulate profitable
deviation as a set of linear constraints
» x, > 1. at least one player chose a
» X' = x+ e, — e, result of deviating from a to &’
» f,j(x) < fir y(x) — 1: since utilities are integers, equivalent to
faj(x) < far jr (X')
» Therefore N can be expressed as a short rational generating
function

16

18

Expressing D, »

xeD:x;>1,x€P,j,
D,. = H—J L—H X' =x+ey —e, € Py
Pa,jGPa Pale/GPa/ f:;,J(X) S f:a/,j/(xl) —]_

» Polynomial number of disjoint unions
» Once the pieces P, and P j: fixed, can formulate profitable
deviation as a set of linear constraints
» x, > 1. at least one player chose a
» X' = x+ e, — e, result of deviating from a to &’
» f,j(x) < fir y(x) — 1: since utilities are integers, equivalent to
faj(x) < far jr (X')
» Therefore N can be expressed as a short rational generating
function

» Can check existence of PSNE via counting operation; find a
sample PSNE via enumeration operation.

16

18

Other results

» Find a PSNE that approximately optimizes the sum of the
utilities (FPTAS).

» Encode the PSNEs of a parameterized family of symmetric
games with utility pieces:

fa,j(x’ p) = aa,j - X+ Ba,j ‘P,

where p is a fixed dimensional integer vector of parameters
inside a polytope.

Other results

» Find a PSNE that approximately optimizes the sum of the
utilities (FPTAS).

» Encode the PSNEs of a parameterized family of symmetric
games with utility pieces:

fa,j(x’ p) = aa,j - X+ Ba,j ‘P,

where p is a fixed dimensional integer vector of parameters
inside a polytope.
» Answer questions about PSNEs of the family of games without
solving each game
» e.g. finding parameter p that optimizes some objective.

Conclusion

» computing PSNE for symmetric games with fixed number of
actions, focusing on compact representations of utility:
poly(log n) bits

» circuit symmetric games: NP-complete when at least 3 actions

» symmetric games with piecewise-linear utility:
polynomial-time algorithms
» encode set of PSNE as a rational generating function

Thanks!

18/18

