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Lecture Overview

• Recap: Propositional Definite Clause Logic (PDCL)
- Syntax

- Semantics

• More on PDCL Semantics

• Proof procedures
- Soundness, Completeness, example

- Bottom-up proof procedure

• Pseudocode and example

• Time-permitting: Soundness 

• Time-permitting: Completeness
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Representation and Reasoning System (RRS)

Propositional definite clause logic (PDCL) is one such 
Representation and Reasoning System
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Definition (RRS)
A Representation and Reasoning System (RRS) consists of: 

• syntax: specifies the symbols used, and how they can 
be combined to form legal sentences 

• semantics: specifies the meaning of the symbols
• reasoning theory or proof procedure: a (possibly 

nondeterministic) specification of how an answer can 
be produced.



Example: Electrical Circuit



Propositional Definite Clauses: Syntax
Definition (atom)
An atom is a symbol starting with a lower case letter

Definition (body)
A body is an atom or is of the form b1 ∧ b2 where b1

and b2 are bodies.

Definition (definite clause)
A definite clause is an atom 

or is a rule of the form h ← b where h is an atom 
(“head”) and b is a body. (Read this as ``h if b.'')

Definition (KB)
A knowledge base (KB) is a set of definite clauses

Examples: p1.    live_l1

Examples: p.    ok_w1 ∧ live_w0.     p1 ∧ p2 ∧ p3 ∧ p4

Examples: p.     p1 ← p2 ∧ p3 ∧ p4. 
live_w0 ← live_w1 ∧ up_s2

Example: {p2. p3. p4. p1 ← p2 ∧ p3 ∧ p4. live_l1}



atoms

rules

definite
clauses, 
KB
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Propositional Definite Clauses: Semantics
Semantics allows you to relate the symbols in the logic 
to the domain you're trying to model.

Definition (interpretation)
An interpretation I assigns a truth value to each atom.

Definition (truth values of statements)
• A body b1 ∧ b2 is 

true in I if and only if b1 is true in I and b2 is true in I.
• A rule h ← b is 

false in I if and only if b is true in I and h is false in I.



PDC Semantics: Example
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a1 a2 a1 ∧ a2

I1 F F F
I2 F T F
I3 T F F
I4 T T T

Truth values under different interpretations
F=false, T=true

h b ¬b ¬b ∨ h h ← b
I1 F F T T T
I2 F T F F F
I3 T F T T T
I4 T T F T T

h ← b (“h if b”) is only false 
if b is true and h is false



PDC Semantics: Example for models

p ← q
KB =      q

r  ← s
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Which of the interpretations below are models of KB?

p q r s p ← q q r ← s Model of KB

I1 T T T T T T T
I2 F F F F T F T
I3 T T F F T T T
I4 F T T F F T T
I5 T T F T T T F

Definition (model)
A model of a knowledge base KB is an interpretation in 
which every clause in KB is true.

yes

yes

yes

yes

no

no

no

no

yes no



PDC Semantics: Example for models
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p q r s p ← q q r ← s Model of KB

I1 T T T T T T T yes
I2 F F F F T F T no
I3 T T F F T T T yes
I4 F T T F F T T no
I5 T T F T T T F no

p ← q
KB =      q

r  ← s

Which of the interpretations below are models of KB?

Definition (model)
A model of a knowledge base KB is an interpretation in 
which every clause in KB is true.
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PDCL Semantics: Logical Consequence

Definition (model)
A model of a knowledge base KB is an interpretation in 
which every clause in KB is true.

Definition (logical consequence)
If KB is a set of clauses and g is a conjunction of atoms,
G is a logical consequence of KB, written KB ⊧ g, 
if g is true in every model of KB

• We also say that g logically follows from KB, 
or that KB entails g

• In other words, KB ⊧ g if there is no interpretation in 
which KB is true and g is false



PDCL Semantics: Logical Consequence

Definition (model)
A model of a knowledge base KB is an interpretation in 
which every clause in KB is true.

Definition (logical consequence)
If KB is a set of clauses and g is a conjunction of atoms,
G is a logical consequence of KB, written KB ⊧ g, 
if g is true in every model of KB

p ← q
KB =      q

r  ← s
Which of the following are true?

KB ⊧ p KB ⊧ q KB ⊧ r KB ⊧ s



PDCL Semantics: Logical Consequence

Definition (model)
A model of a knowledge base KB is an interpretation in 
which every clause in KB is true.

Definition (logical consequence)
If KB is a set of clauses and g is a conjunction of atoms,
G is a logical consequence of KB, written KB ⊧ g, 
if g is true in every model of KB

p ← q
KB =      q

r  ← s

If KB is true, then q is true. Thus KB ⊧ q.
If KB is true then both q and p ← q are true, 
so p is true (“p if q”). Thus KB ⊧ p.

There is a model where r is false, likewise for s
(but there is no model where s is true and r is false)



Motivation for Proof Procedure

• We want a proof procedure that can find all and only the 
logical consequences of a knowledge base

• Why?
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User’s View of Semantics

1. Choose a task domain: intended interpretation.
2. Associate an atom with each proposition you want to 

represent.
3. Tell the system clauses that are true in the intended 

interpretation: axiomatizing the domain.
4. Ask questions about the intended interpretation.

– If KB ⊧ g, then g must be true in the intended interpretation.
– The user can interpret the answer using their intended 

interpretation of the symbols.
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Computer’s view of semantics

• The computer doesn't have access to the intended 
interpretation.
– All it knows is the knowledge base.

• The computer can determine if a formula is a logical 
consequence of KB.
– If KB ⊧ g then g must be true in the intended interpretation.
– Otherwise, there is a model of KB in which g is false. 

This could be the intended interpretation.
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Role of semantics
In user's mind:
• l2_broken: light l2 is 

broken
• sw3_up: switch is up
• power: there is power in

the building
• unlit_l2: light l2 isn't lit
• lit_l1: light l1 is lit

In computer:
• l2_broken ← sw3_up ∧

power ∧ unlit_l2.
• sw3_up.
• power ← lit_l1.

• unlit_l2.
• lit_l1.
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Conclusion: l2_broken
- The computer doesn’t know the meaning of the symbols
- The user can interpret the symbols using their meaning
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Proofs
• A proof is a mechanically derivable demonstration that a 

formula logically follows from a knowledge base.
• Given a proof procedure P, KB ⊦P g means g can be 

derived from knowledge base KB with the proof procedure.
• Recall KB ⊧ g means g is true in all models of KB.

• Example: simple proof procedure S
– Enumerate all interpretations
– For each interpretation I, check whether all clauses in KB hold

• If all clauses are true, I is a model
• KB ⊦S g if g holds in all such models
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Soundness of a proof procedure

• Soundness of some proof procedure P: need to prove that 

• Example: simple proof procedure S
– For each interpretation I, check whether all clauses in KB hold

• If all clauses are true, I is a model
• KB ⊦S g if g holds in all such models

• The simple proof procedure S is sound:
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Definition (soundness)
A proof procedure P is sound if KB ⊦P g implies KB ⊧ g.

If g can be derived by the procedure (KB ⊦P g)
then g is true in all models of KB (KB ⊧ g)

sound: everything it derives follows logically from KB 
(i.e. is true in every model)

If KB ⊦S g, then it is true in all models, i.e. KB ⊧ g



Completeness of a proof procedure

• Completeness of some proof procedure P: need to prove that 

• Example: simple proof procedure S
– For each interpretation I, check whether all clauses in KB hold

• If all clauses are true, I is a model
• KB ⊦S g if g holds in all such models

• The simple proof procedure S is complete:
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If g is true in all models of KB (KB ⊧ g)
then g is derived by the procedure (KB ⊦P g)

If KB ⊧ g , i.e. g is true in all models, then KB ⊦S g

Definition (completeness)
A proof procedure P is complete if KB ⊧ g implies KB ⊦P g.

complete: everything that logically follows from KB is derived



Another example for a proof procedure
• Unsound proof procedure U:

– U derives every atom: for any g, KB ⊦U g

• Proof procedure U is complete:

• Proof procedure U is not sound:
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If KB ⊧ g, then KB ⊦S g (because KB ⊦U g for any g)

Proof by counterexample: KB = {a ← b.}
KB ⊦U a, but not KB ⊧ a 
(a is false in some model, e.g. a=false, b=false)



Problem of the simplistic proof procedure

• Simple proof procedure: enumerate all interpretations
– For each interpretation, check whether all clauses in KB hold

• If all clauses hold, the interpretation is a model
• KB ⊦ g if g holds in all such models

• What’s the problem with this approach?

26

Space complexity Time complexity Not sound Not complete



Problem of the simplistic proof procedure

• Enumerate all interpretations
– For each interpretation, check whether all clauses 

of the knowledge base hold
– If all clauses hold, the interpretation is a model

• Very much like the generate-and-test approach for CSPs

• Sound and complete, but there are a lot of interpretations
– For n propositions, there are 2n interpretations

27
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Bottom-up proof procedure

• One rule of derivation, a generalized form of modus ponens:
– If “h ← b1 ∧ … ∧ bm" is a clause in the knowledge base, 

and each bi has been derived, then h can be derived.

• This rule also covers the case when m = 0.
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Bottom-up proof procedure

C := {};
repeat

select clause h ← b1 ∧… ∧ bm in KB 
such that bi ∈ C for all i, and h ∉ C;

C := C ∪ {h}
until no more clauses can be selected.

KB ⊦ g if g ∈ C at the end of this procedure.
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C := {};
repeat

select clause h ← b1 ∧… ∧ bm in KB 
such that bi ∈ C for all i, and h ∉ C;

C := C ∪ {h}
until no more clauses can be selected.

Bottom-up proof procedure: example
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a ← b ∧ c
a ← e ∧ f
b ← f ∧ k
c ← e
d ← k
e.
f ← j ∧ e
f ← c
j ← c

{}



C := {};
repeat

select clause h ← b1 ∧… ∧ bm in KB 
such that bi ∈ C for all i, and h ∉ C;

C := C ∪ {h}
until no more clauses can be selected.

Bottom-up proof procedure: example
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a ← b ∧ c
a ← e ∧ f
b ← f ∧ k
c ← e
d ← k
e.
f ← j ∧ e
f ← c
j ← c

{}
{e}
{c,e}
{c,e,f}
{c,e,f,j}
{a,c,e,f,j}

Done.
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Soundness of bottom-up proof procedure BU

C := {};
repeat

select clause h ← b1 ∧… ∧ bm in KB 
such that bi ∈ C for all i, and h ∉ C;

C := C ∪ {h}
until no more clauses can be selected.

For soundness of bottom-up proof procedure BU: prove
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Definition (soundness)
A proof procedure P is sound if KB ⊦P g implies KB ⊧ g.

sound: everything it derives follows logically from KB 
(i.e. is true in every model)

If g ∈ C at the end of BU procedure, 
then g is true in all models of KB (KB ⊧ g)



Soundness of bottom-up proof procedure BU
C := {};
repeat

select clause h ← b1 ∧… ∧ bm in KB 
such that bi ∈ C for all i, and h ∉ C;

C := C ∪ {h}
until no more clauses can be selected.

For soundness of bottom-up proof procedure BU: prove

By contradiction: Suppose there is a g such that KB ⊦ g but not KB ⊧ g.
– Let h be first atom added to C that's not true in every model of KB

• In particular, suppose I is a model of KB in which h isn't true.
– There must be a clause in KB of form h ← b1 ∧… ∧ bm

– Each bi is true in I. h is false in I. So this clause is false in I.
– Thus, I is not a model of KB. Contradiction: thus no such g exists

If g ∈ C at the end of BU procedure, 
then g is true in all models of KB (KB ⊧ g)
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Minimal Model
• Observe that the C generated at the end of the bottom-up 

algorithm is a fixed point
– Further applications of our rule of derivation will not change C!

• Lemma: MM is a model of KB. 
– Proof by contradiction. Assume that MM is not a model of KB. 

• Then there must exist some clause of the form h ← b1 ∧… ∧ bm in KB 
(with m ≥ 0) which is false in MM.

• This can only occur when h is false and each bi is true in MM.
• Since each bi belonged to C, we would have added h to C as well.
• But MM is a fixed point, so nothing else gets added. Contradiction!
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Definition (minimal model)
The minimal model MM is the interpretation in which 
every element of BU’s fixed point C is true and every 
other atom is false. 



Completeness of bottom-up procedure

For completeness of BU, we need to prove:

Direct proof based on Lemma about minimal model:

• Suppose KB ⊧ g. Then g is true in all models of KB.
• Thus g is true in the minimal model.
• Thus g is generated by the bottom up algorithm.
• Thus KB ⊦BU g.
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Definition (completeness)
A proof procedure is complete if KB ⊧ g implies KB ⊦ g.

If g is true in all models of KB (KB ⊧ g)
then g is derived by the BU procedure (KB ⊦BU g)

complete: everything that logically follows from KB is derived



Learning Goals Up To Here

• PDCL syntax & semantics
- Verify whether a logical statement belongs to the language of 

propositional definite clauses
- Verify whether an interpretation is a model of a PDCL KB. 
- Verify when a conjunction of atoms is a logical consequence of a 

knowledge bases

• Bottom-up proof procedure
• Define/read/write/trace/debug the Bottom Up (BU) proof procedure
• Prove that the BU proof procedure is sound and complete 
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