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Abstract

We present and analyze two simple algorithms for find-
ing satisfying assignments of � -CNFs (Boolean formu-
lae in conjunctive normal form with at most � liter-
als per clause). The first is a randomized algorithm
which, with probability approaching 1, finds a satisfy-
ing assignment of a satisfiable � -CNF formula � in time�����
	�� � � ������������ . The second algorithm is determinis-
tic, and its running time approaches

���������	��
for large

�
and � . The randomized algorithm is the best known al-
gorithm for ����� ; the deterministic algorithm is the best
known deterministic algorithm for ��� � . We also show
an ! ���#"$�$%&(' �)� lower bound on the size of depth 3 circuits
of AND and OR gates computing the parity function. This
bound is tight up to a constant factor. The key idea used
in these upper and lower bounds is what we call the Satis-
fiability Coding Lemma. This basic lemma shows how to
encode satisfying solutions of a � -CNF succinctly.

1 Introduction

The problem of finding a satisfying assignment of a
Boolean formula in � -CNF (conjunctive normal form
with at most � literals per clause) has been long studied,
and the corresponding decision problem for �+*,� was
one of the first problems shown to be NP-complete [2, 5].
The problem of proving lower bounds on the size of con-
stant depth (in particular, depth 3) circuits of unbounded
fan-in AND and OR gates has also received considerable
attention [1, 4, 7]. In this paper, we present a structural
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property, the Satisfiability Coding Lemma, of the set of
satisfying assignments of � –CNF and apply this property
to provide some solutions to both these problems.

There has been considerable progress in the study
of the computational limitations of polynomial size and
bounded depth circuits of unbounded fan-in AND and OR
gates ( /1032 ). The techniques [3, 8, 12] used for show-
ing lower bounds on the size of bounded depth circuits
establish that functions computed by such small size cir-
cuits have some useful (for lower bounds) property. For
example, it has been shown that such functions are con-
stant on a sufficiently large dimensional subcube and also
can be well approximated by low degree polynomials ei-
ther over the reals or an appropriately chosen finite field.
Thus, any function which does not have these properties
cannot be computed by an /1042 circuit. Frequently, the
function considered is parity (that is, the output is one if
the number of true input variables is, say, even) because
it is extremal with respect to the properties mentioned
above; the parity function is not constant even on any one–
dimensional subcube and a good approximation of parity
in the field of reals or in any field except GF(2) requires al-
most linear degree. However, such useful techniques still
have not resulted in the determination of the exact com-
plexity of computing the parity function. More specifi-
cally, in the case of depth–3 circuits, the best known gen-
eral technique (the Switching Lemma [3]) yields a lower
bound of ! �5�67' � � for 8:9<;&=�> . Håstad, Jukna and Pudlák
[4] improved this lower bound to ! �? 2A@ B "DC ' �)� by using a
top-down argument. On the other hand, the best known
upper bound for computing parity is

���E�F"$�$%& ' �)�
which

is obtained by partitioning the variables into groups of
size G ��H "%JILK�M � , computing the parity of each group of
variables, and then computing the parity of those results.
In this paper, using the Satisfiability Coding Lemma, we
show that computing parity using depth 3 circuits requires
! ���#"$�D%� ' �)� gates matching the upper bound.
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As for the problem of finding a satisfying assignment
of a � –CNF, there have been a variety of algorithms and
analyses. We focus our attention on those algorithms
which have a provable worst–case running time better
than the

 �
steps required for exhaustive search, where

�
is the number of variables. A straightforward improve-
ment is obtained by selecting a smallest length clause
and branching on all but one of the assignments to the
variables in that clause, omitting the one assignment that
makes the clause false. Monien and Speckenmeyer [6]
analyzed this algorithm carefully by arguing that such as-
signments either produce a clause of shorter length or are
autark. An assignment to a set of variables is autark if all
the clauses that contain the variables are satisfied by the
assignment. Their analysis gives a worst–case running
time
���$� � � ���� �������
	��7� where � is a � –CNF and  � is the

largest real root of the equation  �� H   �&� "� � ;���� .
For example, this gives a bound of

���? 2A@ B�� %��$� � for 3–
CNF and an

���5 2 @ C�� � � � bound for 4–CNF. For the case
���,� , better algorithms have been established: Schier-
meyer [10] employs more involved heuristics to obtain
an algorithm with

���? 2A@ B���� �)� worst–case running time
for finding a satisfying assignment for 3–CNF. This was
improved to

���5 2A@ B�� 	��)� by Zhang [14]. More recently,
Schiermeyer [11] claimed an improved algorithm with
worst–case running time

���? 2A@ � C�	�� � for 3–CNF. In this
paper, we present some obvious and simple algorithms
for finding a satisfying solution of a � –CNF and analyze
their worst–case running time using Satisfiability Cod-
ing Lemma. The first of these algorithms is probabilistic
and, with high probability, finds a satisfying assignment
of a satisfiable � –CNF in time

����� � � ���� "��
"D�����D� . We also
present a deterministic algorithm whose worst–case run-
ning time approaches

���$� � � ���� " � "$��	����$� for large values
of
�

and � . Our randomized algorithm is the best known
algorithm for � * � . Our deterministic algorithm is better
than the known deterministic algorithms for � *�� .

Our main technique, the Satisfiability Coding Lemma,
is motivated by a simple question: How many isolated so-
lutions can a � –CNF have? An isolated solution is a sat-
isfying assignment whose distance one neighbors in the
Boolean cube (assignments which differ in exactly one
variable) are not satisfying assignments. In other words,
if any bit of an isolated solution is flipped, the formula is
no longer satisfied. We also say that an input accepted by
a circuit is isolated if any input at distance one from it is

not accepted by the circuit. It is straightforward to see that
a good upper bound on the number of isolated solutions
would be helpful in proving tight lower bounds for com-
puting parity using depth–3 circuits. If parity is computed
by a small size depth–3 circuit with an OR gate at the top,
then one of its depth–2 subcircuits (a CNF) must have a
large number of isolated solutions. Håstad's Switching
Lemma implies an

���5�� " � 6 �������)�
bound (with 8 9 ; ) on

the number of isolated solutions of a � –CNF. In fact, our
Satisfiability Coding Lemma is inspired by Razborov's
proof [9] of a variant of Håstad's Switching Lemma. Us-
ing the Satisfiability Coding Lemma, we prove that a � –
CNF can have at most

 � "��
"D�������
isolated solutions, which

is in fact the best possible bound. In addition, by care-
fully counting the contributions of bottom level gates with
larger fan–ins, we prove that computing parity by depth–
3 circuits requires ! �E� "$�D%� ' �)� gates, obtaining a lower
bound that matches the upper bound extremely closely.

The Satisfiability Coding Lemma essentially says that
isolated solutions of � -CNFs have short descriptions.
More precisely, we prove that the set of isolated satis-
fying assignments of a � –CNF can be encoded with an
average message length of

�E��H � = � � bits. This lemma
is useful not only in obtaining upper bounds on the num-
ber of isolated satisfying assignments of a � –CNF but in
efficiently finding an isolated satisfying assignment if one
exists. If an isolated satisfying assignment exists, then it is
sufficient to search the smaller space of short descriptions
for one which encodes a satisfying assignment. To han-
dle the general case, we generalize the concept of isolated
satisfying assignment to include nearly isolated satisfying
assignments, and show that such solutions have short de-
scriptions as well. From this, we can show that any satisfi-
able � –CNF has either a nearly isolated solution or many
satisfying assignments, and thus in each case we can find
a satisfying solution quickly either by searching through
the space of short descriptions or by randomly guessing a
solution.

The remainder of the paper is organized as follows:
In section 2, we prove the Satisfiability Coding Lemma
and its corollaries. In section 3, we prove the tight lower
bound for computing parity using depth–3 circuits of
AND and OR gates. In section 4, we present our algo-
rithms for finding a satisfying assignment of a � –CNF and
analyze their running time.



2 Satisfiability Coding Lemma

We introduce some notation. A boolean formula � ������� " 0 � is a � –CNF if each clause 0 � is a disjunction of
at most � literals. For � in �
	�� �� ;�� � , we say that �
is an isolated point of � in the direction � if flipping the����� bit of � produces a point not in � . We say that � is a�
-isolated point of � if it has exactly

����H � �
neighbors

in � . We will sometimes use the alternative notation � � � �
to denote the number of neighbors of ����� which are
not in � . If � is

�
–isolated, we will simply call it an iso-

lated point of � . We say that � is an isolated solution of
a formula � in the direction � if � satisfies the formula
and is an isolated point of the set of all satisfying assign-
ments of � in the direction � . Other notions of isolation
are extended similarly to general formulas and circuits.

Let � be a � -CNF. The key observation is that if � is an
isolated solution of � in the direction � , then there exists
a clause 0 ����� � � such that exactly one of its literals is true
under the assignment � and that true literal corresponds to
the variable � . Otherwise, flipping the ����� bit of � would
produce an assignment which still satisfies all the clauses
of � . Such a clause is called critical for the variable � at
the solution � . Since a critical clause has only one true
literal, a clause cannot be critical for two different vari-
ables at the same solution. If � is an isolated solution of
� , then there exist

�
distinct critical clauses at � , one for

each direction.

We make use of the existence of critical clauses for
�
–

isolated solutions in obtaining short descriptions. Let �
be a permutation of the set �(;�  ! " ! # � � of variables. We
define an encoding function $&% to encode the satisfying
assignments of the � –CNF � . Let �'�(���) ;�� � be a satis-
fying solution of � . Permute the bits of � according to � .
For each � , delete the �*��� bit of the permuted string if there
is a critical clause 0 ����� % � � � � for the variable � � � � at � such
that the variable � � � � occurs after all the other variables
in the critical clause 0 �+��� % � � � � according to the ordering � .$,% � � � is the resulting string. Observe that the sequence$,% � � � of bits corresponds to the sequence of values of a
subset of variables under the satisfying assignment � pre-
sented according to the ordering � .

Given - �.$ % � � � , we uncover the bits of � one at a
time in the order given by � using the following decoding
algorithm:

� "0/ � �
for � � ;1! ! " 2 �

if � � has a clause of length one consisting of
the variable � � � � ,
then we set the variable � � � � to make the clause true.
else we set the variable � � � � to be the

next unused bit of - .
Let � �+3 " be the formula obtained by substituting

the value of the variable � � � � in � � .

We first show the correctness of the algorithm.

Lemma 1 If � is a satisfying assignment of the formula
� and - ��$ % � � � is given as input to the decoding algo-
rithm, then, 45�6 ;879�:7 � , the �*��� bit uncovered by the
algorithm is the value of variable � � � � in the satisfying
assignment � .

Proof: For
� *<; , assume that for ;;7<�=7 � , the �>��� bit

uncovered by the decoding algorithm is the value of the
variable � � � � in the assignment � . Also assume that at the
beginning of the �*��� iteration of the algorithm, the unused
bits of - correspond to variables whose ranks according to� are greater than or equal to � . We prove that the

� � � ; �6? �
bit uncovered by the algorithm is indeed the value of the
variable � � � � ; � in the assignment � . We also prove that
at the end of the

� � � ; � ? � iteration the unused bits of -
corresponds to variables whose ranks according to � are
higher than

� � � ; � .
Assume that the condition in the if clause is true. Then

the value of the variable � � � � ; � is forced, since �A@ 3 " has
a length one clause in the variable � � � � ; � . By induction
hypothesis, the partial assignment to the variables � � � � for
;B7C�D7 �

can be extended to the satisfying assignment� . Thus the bit assigned by the algorithm must coincide
with the value of the variable � � � � ; � in the assignment � .
Furthermore, it must be the case that the bit corresponding
to the variable � � � � ; � is deleted from the assignment �
by the encoding algorithm in producing - . This is due
to the fact that the clause in the original formula � that
gave rise to the length one clause in the variable � � � � ; �
in the formula �E@ 3 " is a critical clause for the variable� � � � ; � and that all other variables in that clause occur
before the variable � � � � ; � in the ordering � . Therefore,
from induction hypothesis, we can conclude that all the



unused bits of - must correspond to variables whose ranks
are higher than

� � � ; � in the ordering � .
If, on the other hand, �E@ 3 " has no length one clause in

the variable � � � � ; � , then there is no critical clause for
the variable � � � � ; � at � such that the variable � � � � ; �
has the highest rank with respect to � among the variables
that appear in the critical clause. This implies that the bit
corresponding to the variable � � � � ; � is not deleted from
the assignment � to produce the string - by $ % . Since all
the unused bits of - at the beginning of the

� � � ; � ? � it-
eration of the decoding algorithm correspond to variables
whose ranks are greater than or equal to

� � � ; � , and since
the bits of - correspond to the values of the variables or-
dered by � , the next unused bit in - must correspond to
the variable � � � � ; � . Since this bit is assigned to the vari-
able � � � � ; � , all the remaining unused bits correspond to
variables whose rank according to � is higher than

� � � ; � .
This completes the proof of the lemma.

We next prove the Satisfiability Coding Lemma and its
corollaries.

Satisfiability Coding Lemma: If � is a
�
–isolated sat-

isfying assignment of a � –CNF � , then then its average
(over all permutations � ) description length under the en-
coding $ % is at most

� H � = � .
Proof: Since � is

�
–isolated, it has

�
variables with

critical clauses. Let � be a random permutation of the
variables. For each variable with a critical clause at � , the
probability that the variable appears as the last variable
among all the variables in its critical clause is at least ;&=��
since no clause of � has more than � literals. Hence the
corresponding bit in � will be deleted in the encoding $ %
with probability at least ;�= � . Hence, the expected number
of bits deleted in the encoding of � is at least

� =�� which
yields a description for � of length at most

��H � = � .
We now prove an upper bound on the number of iso-

lated solutions of a � –CNF. We need the following fact
regarding the average length of an encoding.

Fact 1 If $ / � � ���) ;�� � is a prefix free encoding (one–
to–one function) with average code length

�
, then

� � � 7��
.

Proof: Let
� � denote the length of $ � � � for �
�9� .

Then
� ��� �	��
 � � = � � � . Since $ is one–to–one and prefix

free, we have that � ����
 ����� 7 ; . Thus,

� H I K�M � � � � ��	��

;� � �
� � � H I K�M � � � �

� H ��	��

;� � �
� I K�M  ����� � I K�M � � � �

� H ��	��

;� � � ILK�M

�$� � �  ���� �

* H ILK�M � �����

 ��� � �

* �� 
The penultimate inequality follows from the concavity of
the logarithm function. Hence,

� � � 7 �� .
Lemma 2 Any � –CNF � can accept at most

����������
iso-

lated solutions.

Proof: By the Satisfiability Coding Lemma, the aver-
age description length (under the encoding $ ) of an iso-
lated solution (that is, an

�
–isolated solution) of � is at

most
� H � = � . This is also true when the average is taken

over all isolated solutions and all permutations. Hence,
there exists a permutation � such that the average descrip-
tion length under the coding $ % is at most

� H � = � . Ob-
serve that the proof of Lemma 1 shows that the set encod-
ings produced by $ % is prefix free. Hence, from Fact 1,
the number of isolated solutions cannot exceed

(���������
.

This bound is indeed the best possible. Let
�

be a mul-
tiple of � . Group the variables into

� = � disjoint groups
of � variables each. Let � � be the � –CNF accepting the
parity function of the � variables in group � . Consider the
� –CNF obtained by taking the conjunction of the � � . All
the satisfying assignments of this � –CNF have the same
parity and thus are isolated. Moreover, the � –CNF has
exactly

���� �����
satisfying assignments.

3 Lower Bound for Depth–3 Cir-
cuits

In this section, we prove a tight lower bound on the num-
ber of gates required by a depth–3 circuit to compute par-
ity. We introduce some additional notation:



Let � be an isolated solution of a CNF � . For each � , fix
a shortest critical clause 0 ����� � � for the variable � at � . Note
that all these clauses are distinct. We define the length of
a clause as the number of literals it contains. Let � � � � �
be the number of critical clauses at � of length

�
. Observe

that � �� � " � � � � � � � . To account for the contribution
of clauses of various lengths, we define the weight, � � � � ,
of � as � � � � � � ���� " ;&= � 0 ����� � � � � � �� � " � � � � � = � . We
show that as a consequence of the Satisfiability Coding
Lemma that the number of isolated solutions of � with
weight greater than or equal to � is at most

(�����
.

Lemma 3 If � is a CNF, then the number of its isolated
solutions with weight greater or equal to � is at most �����

.

Proof: We show that the average description length of
an isolated solution of weight � or greater is at most

�:H �
under the encoding $ . Let � be an isolated solution of
weight � � � � *�� . Since the bit in � corresponding to
variable � is deleted with probability at least ;&= � 0 ����� � � � in
computing the encoding $&% for a random � , the expected
number of bits deleted is at least � ��+� " ;�= � 0 ����� � � � *�� .
Hence, there exists a permutation � such that the average
(over all isolated solutions of weight greater or equal to
� ) of the description lengths under the encoding $ % is at
most

� H � . Therefore, the number of isolated solutions
is at most

������
.

We are now ready to prove our lower bound.

Theorem 1 ! ���#"$�$%& ' �)� gates are required for any
depth–3 circuit computing parity.

Proof: We will only consider � � circuits, circuits
which can be expressed as an OR of CNFs. Since the
complement of a parity function is also a parity function,
the proof applies to 	 � circuits as well. Let � be the set of
inputs accepted by the circuit. By definition, � is the set of
inputs with an even number of 1's and

� � � � (��� " . Since
the top gate is an OR, for each � � � , there exists a CNF
(a depth–2 subcircuit), say � � , which accepts � . More-
over � is an isolated solution of � � . We define the weight
of � with respect to the CNF � � . We will classify the in-
puts in � based on their weight. Let � � G � � � ILK�M � � =�� .
Let � " be the set of inputs in � whose weight is greater
than or equal to � . Let � 	 be the set of inputs in � whose

weight is less than � . Observe that
� � " � � � � 	 � � ���� " .

Since no CNF can accept more than
������

isolated solu-
tions whose weight is at least � , we get that the number
of CNFs in the circuit is at least

� � " � 
�(��� .
We will now argue that many clauses are needed to

accept low weight isolated solutions. Since a clause of
length

�
can only be critical for at most

� (����
pairs

� �A�� �
of solution � and direction � , there must be at least

�
� � � " �����
�� � �

� � � = � �  ����� � � ��	��
��
�
� � � " � �

� � � = � �  ����� �

� ��	��
��
�  ��� �� � � "

� � � � ��
��
�

clauses (that is, level one OR gates) to account for all
the
� � 	 � isolated solutions of weight less than � . Let � � � �� � " ��� �+� �� 	

�
� denote the inner summation, and de-

fine � � � � �� � " � ��� �+� �� . Now,
 � * 
� � =�� � by the con-

vexity of the function
�� = � and the fact � �� � " � � � � � ��

. From the constraint � �� � " � � � � � = � ��� � � � 9�� ,
we obtain

� � � � � �� � " � � � � � � * � 	 =�� by applying
the Cauchy-Schwartz-Buniakowski inequality. Since the
function

	� = � is monotone for
� *  , we get that the in-

ner sum
 � *��  ����� = � for sufficiently large

�
. Thus,

the the number of level one OR gates must be at least� � 	 � � ����
3 �����

.
Thus the total number of gates is at least

� � " � 
�(��� �� � 	 � � ����
3 �����

. Minimizing this expression subject to the
constraint

� � " � � � � 	 � �  ��� " , we get the desired lower
bound.

4 k-SAT Algorithm

The Satisfiability Coding Lemma can also be used to find
satisfying assignments of � –CNF formulae in less than �

steps. Suppose the � –CNF formula � has some so-
lution which is isolated or nearly-isolated. By the Satis-
fiability Coding Lemma, with respect to many permuta-
tions � , such a solution has an encoding of short length.
By searching this space of encodings for one which en-
codes a satisfying assignment, we would be assured of
finding a satisfying assignment if one exists. If no solu-
tion is isolated or nearly-isolated, we may not be able to



guarantee the existence of such short encodings. How-
ever, in such a case, if there is any satisfying solution,
there must be many of them thus the chance of the ran-
domly guessing one of them is higher. In this section,
we present a randomized algorithm which (with proba-
bility approaching 1) finds a satisfying assignment of a
� -CNF in

����� 	(� � � ������������ steps, as well as a somewhat
less efficient deterministic algorithm which uses similar
techniques. These results are summarized in the follow-
ing table:

Previous New New
(det.) (random.) (det.)

� � �  2 @ � C$	�� [11]
 2A@ B$B �$�  2 @ C ��B �

� � �  2 @ C�� � � [6]
 2A@ � �$2 �  2 @ � " �$�

� � �  2 @ � %���� [6]
 2A@ C 2�2 �  2 @ � � "7�

� ���  2 @ � � � � [6]
 2A@ C����$�  2 @ � % "7�

4.1 Randomized Algorithm

The randomized algorithm we analyze here is extremely
simple:

Algorithm A
repeat

�
	A����������
times

while there exists an unassigned variable
select an unassigned variable - at random
if there is a clause of length one

involving - or �-
then set - to make that clause true
else set - to true or false at random

if the formula is satisfied, then output
the assignment

Before we analyze the probability that this algorithm
succeeds in finding a satisfying assignment, we first es-
tablish a lemma which we will need in the analysis. This
lemma relates the density of a set and the isolation of the
members of the set.

Lemma 4 Let � 	����) ;�� � , � nonempty, and for � � � ,
define � � � � as the number of distance one neighbors of� that are not in � . Define value

� � � � �� �+� � � � . Then� �	��
 value
� � � * ; .

Proof:
The proof is by induction on

�
. If
� � � , it is trivially

true. If
� � � , consider the two subcubes �

���
"�
( � ����A; )

generated by fixing the value of the last coordinate. Let� � � ����� ��� "�
. If the � � are nonempty, the induction hy-

pothesis guarantees that the sum of the values of elements
in each � � is at least 1 when � � are considered as subsets
of the

�E� H ; � –dimensional cube. If one of the � � is empty,
then the other one is nonempty and moreover when it is
viewed as a subset of the

�
–dimensional cube the value of� � � � increases by one for each of its elements. Thus the

sum of the values remains greater than or equal to one. If
both � � are nonempty, then the sum of the values of the
elements in each � � is at least ;�=  when � � are consid-
ered as subsets of the

�
–dimensional cube. Thus the total

value is at least one as desired.
With this lemma, we now show that the algorithm de-

scribed above finds satisfying assignments of � -CNFs
quickly.

Theorem 2 Algorithm A runs in time
�����#	�� � � ������������

and finds a satisfying assignment of a satisfiable � -CNF
� with probability approaching 1.

Proof:
Suppose that � is satisfiable, and that � is a

�
–isolated

solution of � for some
� � �(;�! " ! 2 � � . For each of the

�
directions in which � is isolated, fix a critical clause. We
obtain a lower bound for the probability that � is output
by Algorithm A during an iteration of the repeat loop.

Consider one iteration of the repeat loop. Let � be
the random permutation determined by the order in which
variables are assigned in the while loop. Let 	 " be the
event that for at least

� =�� critical clauses, the critical vari-
ables occur last among the variables in the critical clause
with respect to the random permutation � . Let 	 	 be the
event that the values assigned to the variables in while
loop agree with the assignment � . We use the probability
of the event 	 "�
 	 	 as a lower bound on the probability
that the algorithm outputs � .

Since � is a
�
–isolated solution, the average number

(over all permutations) of critical variables which appear
last among the variables in their critical clauses is at least� =�� . Since the maximum number of critical variables is

�
,

it follows that for at least a ;�= � –fraction of permutations,
the number of such critical variables is at least

� =�� . Thus
the probability of 	 " is at least ;�= � .



Assuming 	 " , we lower bound the probability for 	 	 .
It is clear that if the random assignments made in the else
branch agree with the satisfying assignment � , then the
assignments made in the then branch must agree as well.
Since 	 " holds, the else branch is taken at most

� H � =��
times. Thus the probability that 	 	 holds given 	 " is at
least
�� � 3 @ ��� , and the probability that the

�
–isolated sat-

isfying assignment � is output by the algorithm is at least�� � 3 @ ��� = � .
The probability that the algorithm generates some sat-

isfying solution can then be obtained by summing over
all satisfying assignments. Let � be the set of satisfying
assignments of � .

�����

����� � is output by the algorithm�

* �����

;�  ���

3
� �+� �E���

� ;�  ���
3 ����� �����


 ����� 3 � ��� � �E���

* ;�  ���
3 ����� �����


 ��� 3 � �+� �

* ;�  ���
3 �����

where the last inequality follows from lemma 4. By re-
peating the while loop

� 	  ��� �����
times, we find a satisfy-

ing assignment with probability approaching 1.

There is a simple � –CNF on which the expected num-
ber of times the algorithm executes this loop is

(��� �����
.

Experiments suggest, however, that on random � –CNF
the algorithm runs much faster.

In order to obtain a deterministic algorithm, we first ob-
serve that the problem of finding a good ordering of vari-
ables requires only limited independence. Specifically, to
conclude that the average number of bits saved in the en-
coding of a

�
–isolated solution of a � -CNF is at least

� = � ,
it is sufficient that each of the � variables in a clause is
equally likely to occur last with respect to a random or-
dering. However, it is not clear how to come up with an
efficient algorithm for selecting a satisfying assignment
deterministically when there are a large number of satis-
fying assignments none of which are sufficiently isolated.

We now present a somewhat less efficient deterministic
algorithm for finding a satisfying assignment.

We will construct a small space � of permutations of��;�  " ! ! # � � with the following property: for any set � of
up to � variables, any variable - in � , and for a randomly
chosen permutation from � , the probability that - appears
last among the variables in � is at least ;&= � � ��H ;&= � . The
following construction of such a family was suggested to
us by Russell Impagliazzo.

Let � � ��;1  " ! " #	� � , where � is a prime power
larger than

� �
. Let ��
 be a probability space over which� � –wise independent random variables each taking val-

ues in � are defined. Using known techniques, such a
probability space ��
 can be constructed such that

� ��
 � 7����� ��� �
. Let � be a set of at most � variables. If all the

values assigned to the variables in � are distinct, then the
assignment induces an ordering of the variables in � . As-
suming the variables in � take distinct values, � –wise in-
dependence guarantees that all orderings of the variables
in � have the same probability. In particular, each vari-
able in � occurs last among the variables in � with prob-
ability ;&= � � � .

Let � 	 � 
 correspond to the event that all the
�

vari-
ables take distinct values. Each element of � can be inter-
preted as a permutation of ��;1  �����# � � which is given by
the ordering of the variables by their values. Since � *  ,
it follows that the probability of � is at least ; H ;&= � .
It also follows that over the space � , for any set � of at
most � variables and a variable in � , the probability that
the variable occurs last is at least ;�= � � ��H ;&= � . Thus �
has the desired property.

Our deterministic algorithm will make use of two ideas.
First, observe that either there is a satisfying assignment
which has few ones, or any minimal solution has many
ones, where minimality is defined with respect to the
number of ones in the assignment. This dichotomy is use-
ful because a minimal solution must be isolated in all the
directions where a variable has the value one. The second
observation is that by using permutations from the fam-
ily � rather than truly random permutations to order the
variables, a

�
–isolated solution can still be encoded using

at most
� H � = � � ; bits. The following deterministic al-

gorithm incorporates these ideas. Let the parameter � be
such that � 7��'7 ;�=  and � satisfies

� ; H��� � ��� � � � ,
where � � � � is the binary entropy function.



Algorithm B
for all inputs � with at most � � ones

if the formula is satisfied by � , then output �
for all permutations � in � ,

and for all strings � of
� � ; H ��= � � � ; bits

/* apply the decoding algorithm $ �
"% to � */
for i=1 to n

let - be the � th variable according to �
if there is a clause of length one involving - or �-
then set - to make that clause true
else set - equal to the next unused bit from �

if the formula is satisfied, then output the assignment

Theorem 3 Algorithm B finds a satisfying assignment of
a satisfiable � –CNF � in

����� � � � ���  � � � time.

Proof:
The first for loop of the algorithm checks whether any

input with at most � � ones is a satisfying assignment of � .
If there is such a satisfying assignment, then the algorithm
succeeds. Otherwise, any minimal satisfying assignment
of � must be at least � � –isolated, since a minimal solu-
tion must be isolated in any direction where the value of a
variable is one.

Fix such a nearly–isolated solution � , and fix � � critical
clauses for � . If � is chosen randomly from � , then for
each of the � � critical clauses at � , the probability that
the critical variable occurs last among the variables of the
clause is at least ;�= � H ;&= � . Thus the expected number of
times this event occurs is at least � � =�� H ��= � , and there is
some � in � which achieves at least the expectation. With
respect to that � , there is an encoding of � using at most� � ; H ��= � � � ; bits. As � runs over all strings of that
length, this encoding will be encountered and decoded to
produce � .

The time taken to check all solutions with at most � �
ones is

� � � �� � � ��� . If no solution is found, then at most����� �����
different permutations are examined, and each

permutation requires at most
���$� � � (��� " � � �����

3 " �
steps for

a total of
����� � � � ���� ��� " � � �����

3 "A�
. To optimize the algo-

rithm, choose � to minimize the sum of these terms.

The approximate values in the exponent of this run-
ning time for small � were given earlier in the table. For
large values of both

�
and � , the running time approaches ��������	��

.

5 Conclusion

An obvious open problem is to find a deterministic algo-
rithm for � –Sat that runs in time

���
poly
��� �$(�����������

. It
seems that additional insight into the structure of large
sets accepted by � –CNFs is necessary.

Our Satisfiability Coding Lemma gives information
only about the number of length

�
minterms of a � –CNF,

while the Switching Lemma gives information about the
lengths of minterms after a restriction is applied. It seems
likely that one can prove a stronger version of the Switch-
ing Lemma if one has good bounds on the number of other
minterms.

In an insightful remark, Valiant [13] commented that
the pursuit to understand the reasons for the inherent com-
putational difficulty of problems has two complementary
facets, the positive one of finding fast algorithms and
the negative one of proving lower bounds on the inher-
ent complexity. In fact, our question regarding the num-
ber of isolated points of a � –CNF led us to the discovery
of the Satisfiability Coding Lemma which not only gives
precise lower bounds on parity but yields somewhat un-
expected insight into the satisfiability problem. It seems
that progress can be made in both directions if one can
further relate the syntactic properties of the formula to the
structure of its solution space.
Acknowledgments: The authors would like to thank Rus-
sell Impagliazzo, Sam Buss, and Vojtech Rödl for helpful
discussions.
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