
Random 3-SAT and BDDs:
The Plot Thickens Further

Alfonso San Miguel Aguirre1� and Moshe Y. Vardi2��

1 Dept. of Computer Science
Instituto Tecnologico Autonomo de Mexico
Rio Hondo 1, 01000 Mexico City, Mexico

2 Department of Computer Science
Rice University

6100 S. Main St MS 132
Houston TX 77005-1892,USA

Abstract. This paper contains an experimental study of the impact of the con-
struction strategy of reduced, ordered binary decision diagrams (ROBDDs) on
the average-case computational complexity of random 3-SAT, using the CUDD
package. We study the variation of median running times for a large collection of
random 3-SAT problems as a function of the density as well as the order (number of
variables) of the instances. We used ROBDD-based pure SAT-solving algorithms,
which we obtained by an aggressive application of existential quantification, aug-
mented by several heuristic optimizations. Our main finding is that our algorithms
display an “easy-hard-less-hard” pattern that is quite similar to that observed ear-
lier for search-based solvers. When we start with low-density instances and then
increase the density, we go from a region of polynomial running time, to a region
of exponential running time, where the exponent first increases and then decreases
as a function of the density. The locations of both transitions, from polynomial to
exponential and from increasing to decreasing exponent, are algorithm dependent.
In particular, the running time peak is quite independent from the crossover density
of 4.26 (where the probability of satisfiability declines precipitously); it occurs
at density 3.8 for one algorithm and at density 2.3 for for another, demonstrating
that the correlation between the crossover density and computational hardness is
algorithm dependent.

1 Introduction

The last decade has seen an intense focus on the complexity of randomly generated
combinatorial problems. This interest was stimulated by the discovery of a fascinat-
ing connection between the density of combinatorial problems and their computational
complexity, see [11,31]. A problem that has received a lot of attention in this area is
the 3-satisfiability problem (3-SAT), which is a paradigmatic combinatorial problem,

� Part of this work was done while this author was on sabbatical at Rice University, funded in
part by CONACyT grant 145502.

�� Work partially supported by NSF grants IIS-9908435, IIS-9978135, CCR-9988322, and EIA-
0086264, and by a grant from the Intel Corporation.

T. Walsh (Ed.): CP 2001, LNCS 2239, pp. 121–136, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

122 A. San Miguel Aguirre and M.Y. Vardi

and also important for its own sake. An instance of 3-SAT consists of a conjunction of
clauses, each one a disjunction of three literals. The goal is to find a truth assignment
that satisfies all clauses. The density of a 3-SAT instance is the ratio of the number of
clauses to the number of Boolean variables (we refer to the latter number as the order
of the instance). Clearly, a low density suggests that the instance is under-constrained,
and therefore is likely to be satisfiable, while a high density suggests that the instance
is over-constrained and is unlikely to be satisfiable. Experimental research [15,31] has
shown that for ratio below (roughly) 4.26, the probability of satisfiability goes to 1 as
the order increases, while for ratio above 4.26 the probability goes to 0. At 4.26, the
probability of satisfiability is 0.5. We call this density the crossover density. Formally
establishing the crossover density is known to be quite difficult, and is the subject of
continuing research, cf. [18,17,1].

The experiments in [15,31], which applied algorithms based on the so-called Davis-
Logemann-Loveland method (abbr., DLL method) (a depth-first search with unit prop-
agation [16]), also show that the density of a 3-SAT instance is intimately related to its
computational complexity. Intuitively, it seems that under-constrained instances are easy
to solve, as a satisfying assignment can be found fast, and over-constrained instances
are also easy to solve, as all branches of the search terminate quickly. Indeed, the data
displayed in [15,31] show how the running time increases with increasing density until
the crossover density and then declines with increasing density, with a marked running-
time peak essentially at the crossover density. What we see at the crossover density is
in essence a phase transition, viz., a marked qualitative change in the structural proper-
ties of the problem. This pattern of behavior with a running-time peak at the crossover
density is called the easy-hard-easy pattern and is the subject of extensive research, cf.
[30].

In [13] it was pointed out that this picture is quite simplistic for various reasons.
First, it is not clear where the boundaries between the “easy”, “hard”, and “easy” re-
gions are. Second, the terms “easy” and “hard” do not carry any rigorous meaning. The
computational complexity of a problem is typically studied on an infinite collection of
instances, and is specified as a function of problem size or order. The easy-hard-easy
pattern, however, is observed when the order is fixed while the density varies, but once
the order is fixed, there are only finitely many possible instances. For that reason, the-
oretical analyses of the random 3-SAT problem focus on collections of fixed-density
instances, rather than on collections of fixed-order instances.1 Third, in the context of a
concrete application, e.g., bounded model checking [4], it is typically the order that tends
to grow while the density stays fixed, for example, as we search for longer and longer
counterexamples in bounded model checking. Thus, the easy-hard-easy pattern tells us
little about the complexity of 3-SAT in such settings. Until recently, however, there was
little experimental work that studies how the running time of a SAT solver varies as a
function of the order for fixed-density instances. Finally, the experiments reported in
[31,15] are focused solely on DLL-based algorithms. While these are indeed the most
popular algorithms for the satisfiability problem, one cannot jump to conclusions about

1 For example, it is known that in the high-density region, above density 5.2, the DLL method is
provably exponential [12]; see also [3].

Random 3-SAT and BDDs: The Plot Thickens Further 123

the inherent and practical complexity of random 3-SAT based solely on experiments
using these algorithms.

The goal of the research reported in [13] was to determine how the average-case
complexity of random 3-SAT, understood as a function of the order for fixed density
instances, depends on the density for a variety of SAT solvers. Is there a phase transition
in which the complexity shifts from polynomial to exponential? Is such a transition
dependent or independent of the solver? To explore these questions, Coarfa et el. [13]
set out to obtain a good coverage of an initial quadrangle of the two-dimensional d × n
quadrant, where d is the density and n is the order, exploring the range 0 ≤ d ≤ 15
using three different SAT solvers, embodying different underlying algorithms: GRASP,
which is based on the DLL method [27], the CPLEX MIP Solver, which is a commercial
optimizer for integer-programming problems, and CUDD2, which implements functions
to manipulate Reduced Ordered Binary Decision Diagrams (ROBDDs), providing an
efficient representation for Boolean functions [7].3

The findings in [13] show that for GRASP and CPLEX the easy-hard-easy pattern
is better described as an easy-hard-less-hard pattern, where, as is the standard usage
in computational complexity theory, “easy” means polynomial time and “hard” means
exponential time. When we start with low-density instances and then increase the density,
we go from a region of polynomial running time to a region of exponential running
time, where the exponent first increases and then decreases as a function of the density.
Thus, one observes at least two phase transitions as the density is increased: a transition
at about density 3.8 from polynomial to exponential running time and a transition at
about density 4.26 (the crossover density) from an increasing exponent to a decreasing
exponent.4 The region between 3.8 and 4.26 is also characterized by the prevalence of
very hard instances, the so called “heavy-tail phenomenon”, cf. [23,28,30].

A very different picture emerged in [13] for CUDD (described in Section 3). Here
the algorithm is exponential (in both time and space) for densities between 0.5 and 15.
There is, however, no running-time peak near the crossover density and no heavy-tail
phenomenon was observed.A peak, however, is observed in the size of the final ROBDDs
constructed by the algorithm at about density 2, indicating a phase transition at about
this density. At a very low density (0.1), a polynomial (cubic) behavior is observed,
which suggests that another phase transition is “lurking” between densities 0.1 and 0.5.
Thus, unlike earlier predictions (cf. [26]), phase-transition phenomena related to random
3-SAT are not solver independent.

Our interest in studying ROBDD-based algorithms is motivated by the fact that
ROBDDs have proven to be very effective in the context of hardware verification [9,25]
and they are very different from standard search-based SAT solving methods. Uribe and
Stickel [35] compared ROBDDs with the DLL method for SAT solving, concluding that
the methods are incomparable, and that ROBDDs dominate the DLL method on many
examples. Recent work by Groote and Zantema formally proved the incomparability of

2 http://bessie.colorado.edu/∼fabio/CUDD
3 We use ROBDDs to represent Boolean functions. This is different than the usage in [10] of

(zero-suppressed) ROBDDs to represent compactly sets of clauses.
4 The polynomial to exponential phase transition, preceding the crossover point, was discovered

independently by Cocco and Monasson [14].

124 A. San Miguel Aguirre and M.Y. Vardi

ROBDDs and resolution (which is the proof system underlying the DLL method) [22].
The comparison in [13] between GRASP and CPLEX, on one hand, and CUDD, on the
other hand, is, however, somewhat unenlightening. Unlike GRASP and CPLEX, CUDD
does not search for a single satisfying truth assignment. Rather, it constructs a compact
symbolic representation of the set of all satisfying truth assignments and then checks
whether this set is nonempty. (Note, however, that for extremely sparse formula, the
ROBDD-based algorithm is polynomial in spite of the fact that we have exponentially
many satisfying truth assignments, due to the compactness of the representation.) In this
paper we study the behavior of pure ROBDD-based SAT solvers. A pure SAT solver has
to simply decide for a given propositional formula whether or not it is satisfiable; unlike
search-based SAT solvers, it need not return a satisfying truth assignment.5 The key
step in constructing an ROBDD-based pure SAT solver is an aggressive application of
existential quantification. (We describe the algorithm later on.) Once we have the basic
algorithm, we can apply several heuristic optimizations, resulting in rather dramatic
improvement in running time.

Our aim, however, is not to directly compare the performance of the different algo-
rithms in order to see which one has the “best” performance, but rather to understand
their behavior in the d × n quadrant in order to make qualitative observations on how
the complexity of random 3-SAT is viewed from different algorithmic perspectives. It is
important to note that the algorithms we used do not explicitly refer to the density of the
input instances. Thus, a qualitative change in the behavior of the algorithm, as a result
of changing the density, indicates a genuine structural change in the SAT instances from
the perspective of the algorithm.

Our main finding is that the optimized ROBDD-based pure SAT-solving algorithms
display easy-hard-less-hard pattern that is quite similar to that observed for GRASP and
CPLEX in [13]. When we start with low-density instances and then increase the density,
we go from a region of polynomial running time, to a region of exponential running
time, where the exponent first increases and then decreases as a function of the density.
Thus, one again observes at least two phase transitions as the density is increased: a
transition from polynomial to exponential running time, accompanied by a heavy-tail
phenomenon, and a transition from an increasing exponent to a decreasing exponent.
Surprisingly, however, the location of both phase transitions is algorithm dependent.
Unlike what has been observed so far in numerous papers, the transition from increasing
to decreasing exponent, which corresponds to the running-time peak as one increase the
density for a fixed order, does not occur at the crossover density of density 4.26. For one
algorithm this transition occurs at density 3.8 and for the other at density 2.3.

Our findings provide further experimental evidence for the following two hypotheses.
First, the running-time peak can change with the choice of solver not only in a minor
way, as noted in [28], but in quite a major way, moving quite dramatically from the
crossover density. This demonstrates that the correlation between the crossover density
and computational hardness is algorithm-dependent, challenging the widely-held belief
that the “hard problems” are always located at the crossover density [11]. Second, as

5 Note, however, that by successively assigning truth values to the variables we can use a pure
SAT solver to find a satisfying truth assignment, increasing the running time only by a linear
multiplicative factor. This means that SAT enjoyes self-reducibility [2].

Random 3-SAT and BDDs: The Plot Thickens Further 125

observed in [13], the density-order quadrant contains several phase transitions; in fact,
the region between density 0 and density 4.26 seems to be rife with phase transitions,
which are also solver dependent. In essence, each solver provides us with a different tool
with which to study the complexity of random 3-SAT. This is analogous to astronomers
observing the sky using telescopes that operate at different wave lengths. While our
results are purely empirical, as the lack of success with formally proving a sharp thresh-
old at the crossover density indicates (cf. [18,17,1]), providing rigorous proof for our
qualitative observations may be a rather difficult task.

2 Experimental Setup

Our experimental setup is identical to that of [15,31,13]. We generate dn clauses, each
by picking three distinct variables at random and choosing their polarity uniformly. For
each studied point in the d × n quadrant we generate at least 100 random instances and
apply a solver. Our experiments were run on Sun Ultra 1 machines, with a 167MHZ
UltraSPARC processor and 256MB RAM. The CUDD package has been used through
the GLU C–interface [34], a set of low-level utilities to access BDD packages. It is well
known that the size of the ROBDD for a given function depends on the variable order
chosen for that function. We have used automatic dynamic reordering during the tests
with the default method for automatic reordering of CUDD (except in Section 6, where
we used a certain fixed order).

As in [31], we chose to focus on median running time rather than mean running time.
The difficulty of completing the runs on very hard instances makes it less practical to
measure the mean. Furthermore, the median and the mean are typically quite close to
each other, except for the regions that display heavy-tail phenomena, where the median
and the mean diverge dramatically [20,30,13]. It would be interesting to analyze our data
at percentiles other than the 50th percentile (the median) (cf. [30]), though a meaningful
analysis for high percentiles would require many more sample points than we have in
our experiments.

For the statistical analysis and plotting of data, we used MATLAB 6, which is an inte-
grated technical computing environment that combines numeric computation, advanced
graphics and visualization, and a high-level programming language. The MATLAB
functions we used for statistical analysis were:

– polyfit, for computing the best fit to a set of data using polynomial regression, and
– corrcoef, for computing r2, the square of correlation (r2 is the fraction of the variance

of one variable that is explained by regression on the other variable).

For all the results reported in this paper, r2 exceeded 0.98. This establishes high confi-
dence in the validity of the fit of the curve to the data points.

3 Random 3-SAT and CUDD

In this section we review the results of [13] regarding Random 3-SAT and CUDD. CUDD
[32] is a package that provides functions for the manipulation of Boolean functions, based

6 http://www.mathworks.com

126 A. San Miguel Aguirre and M.Y. Vardi

on the reduced, ordered, binary decision diagram (ROBDD) representation [7]. A binary
decision diagram (BDD) is a rooted directed acyclic graph that has only two terminal
nodes labeled 0 and 1. Every non-terminal node is labeled with a Boolean variable and
has two outgoing edges labeled 0 and 1. An ordered binary decision diagram (OBDD)
is a BDD with the constraint that the input variables are ordered and every path in the
OBDD visits the variables in ascending order. An ROBDD is an OBDD where every
node represents a distinct logic function. The support set of an ROBDD is the set of
variables labeling its internal nodes.

CUDD constructs a compact representation of the set of satisfying truth assignments.
The input formula ϕ is a conjunction c1 ∧ . . . ∧ cm of 3-clauses, where m = dn. Our
algorithm constructs an ROBDD Ai for each clause ci. (Note that Ai has to represent
only the seven satisfying truth assignments of ci.) An ROBDD for the set of satisfying
truth assignment is then constructed incrementally; B1 is A1, while Bi+1 is the result
of apply(Bi, Ai,∧), where apply(A, B, ◦) is the result of applying a Boolean operator
◦ to two ROBDDs A and B. Finally, the resulting ROBDD Bm is compared against the
predefined constant 0 (the empty ROBDD) in order to find if an instance is (un)satisfiable.
We call this the BDD algorithm.

The goal of the experiments was to evaluate CUDD’s performance on an initial
quadrangle of the d × n quadrant. Densities 0.1, 0.5, and 1 to 15 were explored in
[13]. In Figure 1 the median running time is shown on a logarithmic (base 2) scale.
Note the absence of a peak; the running-time curve flattens roughly at density 2. The
explanation for the lack of running-time peak is that the running time of ROBDD-based
algorithms is determined mostly by the size of the manipulated ROBDDs. Our algorithm
involves m = dn conjunction operations between the possibly large ROBDD Bi and
the small ROBDD Ai. Thus, the running time of our algorithm is determined by the
largest intermediate ROBDD Bi constructed. As shown in [13], the peak in ROBDD
size is attained after processing about 2n clauses, which explains the flattening of the
running-time plot at density 2, and suggests that a phase transition in terms of ROBDD
size occurs at about this density.

The median running time was analyzed as a function of the order for fixed-density
instances. At densities 0.5 and above, the median running time of CUDD is exponential
in the order, i.e., it behaves as 2αn. In contrast, at density 0.1 the running time is cubic.
This is explained by the fact that ROBDDs can represent very large sets quite compactly,
which is why the method is quite effective for very low-densities instances, where the
number of satisfying truth assignments is very large. Unlike what is observed for search-
based algorithms, the BDD algorithms does not exhibit a heavy-tail phenomenon.

4 Existential Quantification of Variables

CUDD enables us to apply existential quantification to an ROBDD B:

(∃x)B = apply(B|x←1, B|x←0,∨),

where B|x←c restricts B to truth assignments that assign the value c to the variable x.
Note that quantifying x existentially eliminates it from the support set of B. We now see
how we can take advantage of existential quantification.

Random 3-SAT and BDDs: The Plot Thickens Further 127

0

5

10

15

10

20

30

40

50
−10

−5

0

5

10

density d

Running time using CUDD

order n

m
e

d
ia

n
 r

u
n

n
in

g
 t

im
e

 (
in

 s
e

c
s
)

−
 l
o

g
a

ri
th

m
ic

 s
c
a

le

Fig. 1. BDD – 3-D Plot of median running time

The satisfiability problem is to determine whether a given formula c1 ∧ . . . ∧ cm is
satisfiable. In other words, the problem is to determine whether the existential formula
(∃x1) . . . (∃xn)(c1 ∧ . . . ∧ cm) is true. Since checking whether the final ROBDD Bm

is equal to 0 can be done by CUDD in constant time, it makes little sense, however, to
apply existential quantification to Bm. Suppose, however, that a variable xj does not
occur in the clauses ci+1, . . . , cm. Then the existential formula can be rewritten as

(∃x1) . . . (∃xj−1)(∃xj+1) . . . (∃xn)((∃xj)(c1 ∧ . . . ∧ ci) ∧ (ci+1 ∧ . . . ∧ cm)).

This means that after constructing the ROBDD Bi, we can existentially quantify xj

before conjuncting Bi with Ai+1, . . . , Am.
This suggests the following modification of our algorithm: after constructing the

ROBDD Bi, quantify existentially variables that do not occur in the clauses ci+1, . . . , cm.
In this case we say that the variable x has been quantified out. The computational
advantage of quantifying out stems from the fact that reducing the size of the support set
of an ROBDD typically (though not necessarily) results in a reduction of its size; that
is, the size of (∃x)B is typically smaller than that of B. This method is call the early
quantification method, and proposed first in the context of symbolic model checking
[8]. Early quantification was applied to SAT solving in [21] (under the name of hiding
functions) and tried on random 3-SAT instances, but without a systematic study of
the complexity of random 3-SAT. Our implementation adds the slight improvement of
stopping the construction as soon as we construct a Bi that is equal to 0; this is called early
termination. We will call this algorithm, i.e., early quantification with early termination,
BDD(Q).

Figure 2 (left) shows the median running time of BDD(Q) on a logarithmic (base 2)
scale. The median running time has decreased with respect to the BDD algorithm. At
order 46, for densities less than or equal to two we got an order of magnitude improvement
(10X) in running time. For greater densities, the improvement is only between 5% to
15%.

128 A. San Miguel Aguirre and M.Y. Vardi

0
1

2
3

4
5

6

20

25

30

35

40

45

50
−8

−6

−4

−2

0

2

4

6

8

10

density

Median running time of CUDD with quantification

input size 0 5 10 15
0

50

100

150

200

250

300

350

Fig. 2. BDD(Q) – (left) 3-D Plot of median running time, and (right) median running time as a
function of the density for order 46

The overall shape of the running-time surface is somewhat similar to that observed
in Section 3; the running time increases with density and then seems to flatten. The
flattening, however, occurs at about density 4, rather than density 2. Note that once we
have processed i = 4.3n clauses, the conjunction c1∧. . .∧ci is with very high probability
unsatisfiable, which means that Bi is with high probability equal to 0. Thus, BDD(Q)
typically terminates by the time 5n clauses have been processed, which explains the
flattening of the run-time surface for densities over 5. In Figure 2 (right) median running
times are shown as a function of the density, for order 46.

An interesting difference between the BDD and BDD(Q) algorithms is that the tran-
sition from polynomial to exponential has shifted to the right. Our results indicate a
quadratic-time behavior at density 0.5—see Figure 3 (left)—while at densities 1 and
above the median running time is exponential in the order, see Figure 3 (right) for me-
dian running times for instances of density 1, on a logarithmic (base 2) scale. It should
also be noted that BDD(Q) also does not exhibit a heavy-tail phenomenon.

5 Reordering the Clauses

BDD(Q) processes the clauses of the input formula in a linear fashion. Since the main
point of early quantification is to quantify variables out as early as possible, reordering
the clauses may enable us to do more aggressive early quantification. That is, instead of
processing the clauses in the order c1, . . . , cm, we can apply a permutation π and process
the clauses in the order cπ(1), . . . , cπ(m). The permutation π should be chosen so as to
minimize the number of variables in the support sets of the intermediates ROBDDs.
This observation was first made in the context of symbolic model checking, cf. [8,19,24,
5]. Unfortunately, finding an optimal permutation π is by itself a difficult optimization

Random 3-SAT and BDDs: The Plot Thickens Further 129

0 500 1000 1500
0

20

40

60

80

100

120

140

160

40 60 80 100 120 140 160 180
−2

0

2

4

6

8

10
Median running time of CUDD (secs) for density 1, log 2 scale using quantification

Fig. 3. BDD(Q) – (left) median running time for density 0.5 as a function of the order of the
instances; a quadratic function fits these points better than an exponential function, and (right)
median running time for density 1 (log scale)

problem, motivating a greedy approach: searching at each step for the clause that would
result in the maximum number of variables to be quantified out.

Our proposed algorithm searches for a clause with the maximum number of variables
with only one occurrence in the remaining clauses. If more than one clause is a possible
candidate then a second criterion is applied; from the candidate clauses, the algorithm
looks for one that shares least variables with the remaining clauses. (This is as opposed
to [19], where the algorithm looks for a candidate that shares most variables with the
remaining clauses. We have tried this latter heuristic, and the results are not as good as
using our heuristic.) The rationale of our heuristic is trying to quantify out variables as
soon as possible. We will call this algorithm BDD(Q,R).

Figure 4 shows median running time using our algorithm. The median running time
has decreased quite dramatically with respect to the BDD algorithm. The improvements
are most dramatic at low and high densities. For example, for order 46, for density 1
we get a 30X improvement (i.e., the running time of BDD(Q,R) is about 0.03 times
that of that of BDD) and for densities 9 and above we get a 100X improvement, while
for density 4 we get a 6X improvement. Most interestingly, the shape of the running-
time surface is now similar to the shape of the running-time surface for search-based
algorithms (GRASP and CPLEX) in [13].

Unlike what we saw in [13], where the running-time peak roughly occurs at the
crossover density, running-time peak for BDD(Q,R) seems to occur at about density 3.8.
In Figure 5, we plot the median running time in the “hard” zone, for 40 and 46 variables,
respectively, with 1000 experiments per point. It is interesting to note that density 3.8
is where the transition from polynomial to exponential running time for search-based
solvers was observed in [13].

Another interesting development is a further shift to the right of the transition from
polynomial to exponential median running time.At density 1 our data indicate a quadratic

130 A. San Miguel Aguirre and M.Y. Vardi

0

5

10

15

20

30

40

50

60
−10

−5

0

5

10

15

density

Median running time of CUDD using early quantification (log2 scale)

input size

Fig. 4. BDD(Q,R) – 3-D Plot of median running time

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5
5.5

6

6.5

7

7.5

8

8.5

9

9.5
Median running time in the critical region for 40 variables

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5
25

30

35

40

45

50

55

60
Median running time in the critical region for 46 variables

Fig. 5. BDD(Q,R) – median running time in the hard region, for order 40 (left) and 46 (right)

running time. See Figure 6 (left) for median running times for instances of density 1, with
200 instances per point. For densities 1.5 and above the running time is exponential. See
Figure 6 (right) for median running times for instances of density 1.5 on a logarithmic
(base 2) scale. Thus, the transition occurs between densities 1 and 1.5. Recall that, in
contrast, the transition for the BDD algorithm occurs between densities 0.1 and 0.5,
while for BDD(Q) it occurs between densities 0.5 and 1. Thus, the improvement in the
algorithm is not merely quantitative, it is also qualitative, as it expands the region in
which the algorithm is feasible.

As with GRASP and CPLEX [13], the transition from polynomial to exponential
behavior of BDD(Q,R) is accompanied by a “heavy-tail phenomenon”, which is a preva-

Random 3-SAT and BDDs: The Plot Thickens Further 131

0 500 1000 1500 2000 2500 3000 3500 4000
−10

0

10

20

30

40

50

60

70
Median running time of CUDD (secs) for density 1 using early quantification

60 80 100 120 140 160 180 200 220
−4

−2

0

2

4

6

8
Median running time of BDD(Q,R) (secs) for density 1.5, log 2

Fig. 6. BDD(Q,R) – (left) median running time for density 1 as a function of the order of the
instances; a quadratic function fits these points better than an exponential function, and (right)
median running time for density 1.5 (log scale)

lence of outliers, i.e., instances on which the actual running time is at least an order of
magnitude (10X) larger than the median running time, as well as a divergence of the
mean and the median. See Figure 7, where we plot the mean to median ratio and the
proportion of outliers as a function of the density. Thus, in spite of the incomparability
of search-based solvers and ROBDD-based solvers [35,22], we see a significant simi-
larity between the qualitative results in [13] and here. For both GRASP, CPLEX, and
BDD(Q,R). For low densities, the algorithms are polynomial. As the density increases,
we see a transition from polynomial to exponential behavior, accompanied by a heavy-
tail phenomenon. As the density increases further, the exponent first increases and then
decreases. BDD(Q,R) differs, however, in the location of the running-time peak, which
is roughly at the crossover density for GRASP and CPLEX, and markedly to its left for
BDD(Q,R).

A further improvement of early quantification and reordering was proposed in the
context of symbolic model checking in [29]. In this approach, the clauses are not pro-
cessed one at a time, but several clauses are first clustered together without being pro-
cessed. Once the size (number of clauses) of a cluster C attains a pre-established bound,
then we first apply conjunction to all the ROBDDs of the clauses in the C to obtain an
ROBDD BC and we then combine BC with the ROBDD Bi (which corresponds to all
the clauses processed earlier) and apply early quantification. Obviously, setting higher
limits in the cluster size leads to fewer clusters, but a larger cluster C results in a larger
OBDD BC . To quote [29]: “as the size of the clusters is raised, the number of iterations
is reduced, while the BDD sizes of the formula increase. In the beginning, the reduction
in the number of iterations offsets the increase in BDD sizes. Hence initially, runtime
is reduced as the cluster size increases. But later, the BDD computation time starts to
dominate and the running time increases”.

132 A. San Miguel Aguirre and M.Y. Vardi

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
0

2

4

6

8

m
e
a
n
/m

e
d
ia

n
 r

u
n
n
in

g
 t
im

e
 (

d
a
s
h
e
d
 l
in

e
)

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
0

0.05

0.1

0.15

0.2

p
ro

p
o
rt

io
n
 o

f
o
u
tl
ie

rs
 (

s
o
lid

 l
in

e
)

density

mean/meadian running time and proportion of outliers for 150 vars

Fig. 7. BDD(Q,R) – ratio of mean to median running time and proportion of outliers

We implemented clustering on top of BDD(Q,R) (that is, we order the clauses as in
BDD(Q,R) before clustering).We will call this algorithm BDD(Q,R,C). Experimentation
showed that the best results are obtained when cluster size is set to the “magic number”
20. We found out that BDD(Q,R,C) performs badly at low densities, but yields an im-
provement of 10%-30% for densities above 3. The qualitative behavior of BDD(Q,R,C)
is, however, quite similar to that of BDD(Q,R): we observe a transition from polynomial
to exponential, accompanied by a heavy-tail phenomenon, between densities 1.0 and
1.5, and the exponent then rises and declines, peaking at about density 3.8.

6 Variable Ordering

The previous ROBDD-based methods focused on the processing of the input clauses,
while at the same time letting CUDD handle the critical issue of variable ordering (includ-
ing dynamic reordering). Inspired by work of Bouquet [6], we studied an ROBDD-based
algorithm using variable ordering based on a graph representation of the input formula.
As we shall see, by using knowledge about the structure of the input formula, we can
obtain dramatic improvement in running time.

The graph associated with a CNF formula ϕ =
∧

i ci is Gϕ = (V, E), where V is
the set of variables in ϕ and an edge {xi, xj} is in E if there exists a clause ck such that
xi and xj occur in ck. To extract variable order from Gϕ. Bouquet uses the “maximum
cardinality search” (MCS) of [33]. Let n be the number of vertices of Gϕ. MCS numbers
the vertices from 1 to n in the following way: As the next vertex to number, select the
vertex adjacent to the largest number of previously numbered vertices, breaking ties
arbitrarily. It is this variable ordering that we now provide to CUDD (turning off dynamic
reordering).

Bouquet then uses the variable order to cluster the clauses. Let the rank of a clause
c = {l1, l2, l3} be rank(c) = max (order(x1), order(x2), order(x3)), where xi is the

Random 3-SAT and BDDs: The Plot Thickens Further 133

variable of the literal li. The clusters are the equivalent classes of the relation ∼ defined
by: c ∼ c′ iff rank(c) = rank(c′). For each cluster Cj = {cj1 , . . . , cjk

}, we then
construct an ROBDD ACj

by applying conjunction to the ROBDDs Aj1 , . . . , Ajk
. The

rank of a cluster is the rank of its clauses (by definition, all the clauses in a cluster have
the same rank).

In [6], the final ROBDD is constructed by applying conjunction to the ROBDDs
ACj ’s of the clusters. We have combined Bouquet’s method with the method of early
quantification. We process the clusters in ascending rank order and quantify variables
out as early as possible. We observed that early quantification plays an important role
in the low densities, where satisfying truth assignments abound. We denote the com-
bined method by BDD(B,Q,C). For densities 2 or above, BDD(B,Q,C) is significantly
faster than BDD(Q,R,C). At order 46 we saw improvement between 5X and 10X (for
lower densities BDD(B,Q,C) is about 30% slower). More interestingly, the shape of the
running-time surface is quite different for BDD(B,Q,C). Figure 8 shows the median run-
ning time of BDD(B,Q,C) on a logarithmic (base 2) scale. As we can see, the interesting
region has moved to the left. The running-time peak now seems to occur at about density
2.3. Figure 8 shows median running times for order 60.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

30

35

40

45

50

55

60
−2

−1

0

1

2

3

4

5

6

7

density

Median running time of BDD(B,Q,C) (log2 scale)

input size
0 5 10 15

−2

−1

0

1

2

3

4

5

6

7
BDD(B,Q,C) − Median Running Time, 60 variables (log 2 scale)

density

Fig. 8. BDD(B,Q,C) – (left) 3-D Plot of median running time, and (right) median running times
as a function of the density for order 60

We again see a transition from polynomial to exponential behavior before the
running-time peak, between densities 0.2 and 1 (to the left of the analogous transi-
tion for BDD(Q,R)). For very low densities (0.2 or below) our data indicate a cubic
running time. See Figure 9 (left) for median running times for instances of density 0.2.
For densities 1 and above the median running time of BDD(B,Q,C) is exponential (but
see remark below). See Figure 9 (right) for median running time for instances of density
1 on a logarithmic (base 2) scale. The transition from polynomial to exponential behavior
is again accompanied by a heavy-tail phenomenon. The pattern of that phenomenon is

134 A. San Miguel Aguirre and M.Y. Vardi

significantly more complex than that observed for BDD(Q,R) and we have not yet been
able to characterize it.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1

2

3

4

5

6

7

8
Median running time of BDD(B,Q,C) (secs) for density 0.2

70 75 80 85 90 95 100 105 110 115
−1

0

1

2

3

4

5

6

7
Median running time of BDD(B,Q,C) (secs) for density 1, log 2

Fig. 9. BDD(B,Q,C) – (left) median running time for density 0.2 as a function of the order of the
instances; a quadratic function fits these points better than an exponential function, and (right)
median running time for density 1 (log scale)

Remark: Note that the running time decreased quite dramatically with increasing den-
sities above 2.3. Is it possible that at high enough density we see again polynomial
behavior? Our data is inconclusive. For example, at density 20 our data fit cubic and
exponential curves almost equally well. This issue requires further investigation.

7 Discussion

In this paper we studied the complexity of random 3-SAT experimentally using ROBBD-
based pure SAT solvers. Our main finding is that these solvers display easy-hard-less-
hard pattern that is quite similar to that observed for search-based solvers in [13]. When
we start with low-density instances and then increase the density, we go from a region of
polynomial running time, to a region of exponential running time, where the exponent
first increases and then decreases as a function of the density. The location of both
transitions, from polynomial to exponential and from increasing to decreasing exponent,
are algorithm dependent. In particular, the running time peak is quite independent than
the crossover density, challenging the widely-held belief that the “hard problems” are
always located near the crossover density [11].

These findings should be contrasted with those of [13], which revealed a marked dif-
ference between solvers like GRASP and CPLEX, which are search based and display
interesting similarities in the shapes of the median running time surface despite their
different underlying algorithmic techniques, and ROBDD-based solvers, like CUDD,

Random 3-SAT and BDDs: The Plot Thickens Further 135

which are based on compactly representing all satisfying truth assignments. By devel-
oping here ROBDD-based pure SAT solvers, we showed that certain qualitative features
of the complexity of random 3-SAT do seem to be algorithm independent. Explaining
these common features is a challenging research problem.

References

1. D. Achlioptas. Setting two variables at a time yields a new lower bound for random 3-SAT.
In Proc. 32th ACM Symp. on Theory of Computing, pages 28–37, 2000.

2. J. Balcazar. Self-reducibility. Journal of Computer and System Sciences, 41(3):367–388,
1990.

3. P. Beame, R. M. Karp, T. Pitassi, and M. E. Saks. On the complexity of unsatisfiability proofs
for random k-CNF formulas. In Proc. 30th ACM Symp. on Theory of Computing, pages
561–571, 1998.

4. A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic model checking using
SAT procedures instead of BDDs. In Proc. 36th Conf. on Design Automation, pages 317–320,
1999.

5. M. Block, C. Gröpl, H. Preuß, H. L. Proömel, and A. Srivastav. Efficient ordering of state
variables and transition relation partitions in symbolic model checking. Technical report,
Institute of Informatics, Humboldt University of Berlin, 1997.

6. F. Bouquet. Gestion de la dynamicité et énumération d’implicants premiers: une approche
fondée sur les Diagrammes de Décision Binaire. PhD thesis, Université de Provence, France,
1999.

7. R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Trans. on
Computers, 35(8):677–691, 1986.

8. J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking with partitioned
transition relations. In Proc. IFIP TC10/WG 10.5 Int’l Conf. on Very Large Scale Integration,
Edinburgh, Scotland (VLSI’91), pages 49–58, 1991.

9. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model check-
ing: 1020 states and beyond. Information and Computation, 98(2):142–170, June 1992.

10. P. Chatalic and L. Simon. The old Davis-Putnam procedure meets ZBDDs. In D. McAllester,
editor, 17th Int’l Conf. on Automated Deduction (CADE’17), volume 1831 of Lecture Notes
in Artificial Intelligence, pages 449–454, 2000.

11. P. Cheeseman, B. Kanefsky, and W. M. Taylor. Where the really hard problems are. In
Proc. 12th Int’l Joint Conf. on Artificial Intelligence (IJCAI ’91), pages 331–337, 1991.

12. V. Chvátal and E. Szemerédi. Many hard examples for resolution. J. of the ACM, 35(4):759–
768, 1988.

13. C. Coarfa, D.D. Demopolous, A. San Miguel Aguirre, D. Subramanian, and M.Y. Vardi.
Random 3-SAT: The plot thickens. In R. Dechter, editor, Proc. Principles and Practice of
Constraint Programming (CP’2000), Lecture Notes in Computer Science 1894, pages 143–
159, 2000.

14. S. Cocco and R. Monasson. Trajectories in phase diagrams, growth processes and computa-
tional complexity: how search algorithms solve the 3-Satisfiability problem. Phys. Rev. Lett.,
86:1654–1657, 2001.

15. J. M. Crawford and L. D. Auton. Experimental results on the crossover point in random
3-SAT. Artificial Intelligence, 81(1-2):31–57, 1996.

16. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving. Comm.
of the ACM, 5:394–397, 1962.

136 A. San Miguel Aguirre and M.Y. Vardi

17. O. Dubois,Y. Boufkhad, and J. Mandler. Typical random 3-SAT formulae and the satisfiability
threshold. In Proc. 11th Annual ACM-SIAM Symp. on Discrete Algorithms, pages 126–127,
2000.

18. E. Friedgut. Necessary and sufficient conditions for sharp threshold of graph properties and
the k-SAT problem. J. Amer. Math. Soc., 12:1017–1054, 1999.

19. D. Geist and H. Beer. Efficient model checking by automated ordering of transition relation
partitions. In Proc. 6th Int’l Conf. on Computer Aided Verification (CAV ’94), pages 299–310,
1994.

20. I. P. Gent and T. Walsh. Easy problems are sometimes hard. Artificial Intelligence, 70(1-
2):335–345, 1994.

21. J. F. Groote. Hiding propositional constants in BDDs. Formal Methods in System Design,
8:91–96, 1996.

22. J.F. Groote and H. Zantema. Resolution and binary decision diagrams cannot simulate each
other polynomially. Technical report, Department of Computer Science, Utrecht University,
2000. Technical Report UU-CS-2000-14.

23. T. Hogg and C. P. Williams. The hardest constraint problems: A double phase transition.
Artificial Intelligence, 69(1-2):359–377, 1994.

24. R. Hojati, S. C. Krishnan, and R. K. Brayton. Early quantification and partitioned transition
relations. In Proc. 1996 Int’l Conf. on Computer Design, pages 12–19, 1996.

25. S. Jha, Y. Lu, M. Minea, and E.M. Clarke. Equivalence checking using abstract BDDs. In
Proc. Int’l Conf. on Computer Design (ICCD’97), pages 332–337, 1997.

26. T. Larrabee andY. Tsuji. Evidence for a satisfiability threshold for random 3CNF formulas. In
Working Notes of AAAI 1993 Spring Symposium: AI and NP-Hard Problems, pages 112–118,
1993.

27. J. P. Marques Silva and K. A. Sakallah. GRASP–A search algorithm for propositional satis-
fiability. IEEE Trans. on Computers, 48(5):506–521, 1999.

28. D. G. Mitchell and H. J. Levesque. Some pitfalls for experimenters with random SAT.
Artificial Intelligence, 81(1-2):111–125, 1996.

29. R. K. Ranjan, A. A. Aziz, R. K. Brayton, B. Plessier, and C. Pixley. Efficient formal de-
sign verification: Data structure + algorithms. Technical report, University of California at
Berkeley, 1994. Tech. Rep. UCB/ERL M94/100.

30. B. Selman and S. Kirkpatrick. Critical behavior in the computational cost of satisfiability
testing. Artificial Intelligence, 81(1-2):273–295, 1996.

31. B. Selman, D. G. Mitchell, and H. J. Levesque. Generating hard satisfiability problems.
Artificial Intelligence, 81(1-2):17–29, 1996.

32. F. Somenzi. CUDD: CU Decision Diagram package. release 2.3.0., 1998. Dept. of Electrical
and Computer Engineering. University of Colorado at Boulder.

33. R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to tests chordiality of graphs,
tests acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. on
Computing, 13(3):566–579, 1984.

34. The VIS Group. VIS: A system for verification and synthesis. In Proc. 8th Int’l Conf. on
Computer Aided Verification (CAV ’96), pages 428–432, 1996. LNCS 1102. Ed. by R. Alur
and T. Henziger.

35. T. E. Uribe and M. E. Stickel. Ordered binary decision diagrams and the Davis-Putnam
procedure. In First Int’l Conf. on Constraints in Computational Logics, volume 845 of Lecture
Notes in Computer Science, pages 34–49, Munich, September 1994. Springer-Verlag.

	Introduction
	Experimental Setup
	Random 3-SAT and CUDD
	Existential Quantification of Variables
	Reordering the Clauses
	Variable Ordering
	Discussion

