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ABSTRACT
SCTP (Stream Control Transmission Protocol) is a recently
standardized transport level protocol with several features
that better support the communication requirements of par-
allel applications; these features are not present in tradi-
tional TCP (Transmission Control Protocol). These features
make SCTP a good candidate as a transport level protocol
for MPI (Message Passing Interface). MPI is a message
passing middleware that is widely used to parallelize scien-
tific and compute intensive applications. TCP is often used
as the transport protocol for MPI in both local area and
wide area networks. Prior to this work, SCTP has not been
used for MPI.

We compared and evaluated the benefits of using SCTP in-
stead of TCP as the underlying transport protocol for MPI.
We re-designed LAM-MPI, a public domain version of MPI,
to use SCTP. We describe the advantages and disadvantages
of using SCTP, the necessary modifications to the MPI mid-
dleware to use SCTP, and the performance of SCTP as com-
pared to the stock implementation that uses TCP.

1. INTRODUCTION
TCP is widely used as the underlying transport protocol
in the implementation of parallel programs that use MPI.
It was available in the first public domain versions of MPI
(LAM [10] and MPICH [29]) for the execution of programs
in local area network environments. More recently the use of
MPI with TCP has been extended to computing grids [17],
wide area networks, the Internet and meta-computing envi-
ronments that link together diverse, geographically distrib-
uted, computing resources. The main advantage to using an
IP-based protocol (i.e., TCP/UDP) for MPI is portability
and ease with which it can be used to execute MPI programs
in diverse network environments.
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One well-known problem with using TCP or UDP for MPI is
the large latencies and difficulty in exploiting all of the avail-
able bandwidth. Although applications sensitive to latency
suffer when run over TCP or UDP, there are latency toler-
ant programs such as those that are embarrassingly parallel,
or almost so, that can use an IP-based transport protocol to
execute in environments like the Internet. In addition, the
dynamics of TCP is an active area of research where there
is interest in better models [5] and tools for instrumenting
and tuning TCP connections [19]. As well, TCP itself con-
tinues to evolve, especially for high performance links, with
research into new variants like TCP Vegas [9, 21]. Finally,
latency hiding techniques and exploiting trade-offs between
bandwidth and latency can further expand the range of MPI
applications that may be suitable to execute over IP in both
local and wide area networks. In the end, the ability for MPI
programs to execute unchanged in almost any environment
is a strong motivation for continued research in IP-based
transport protocol support for MPI.

TCP and UDP have been the two main IP protocols avail-
able for wide-spread use in IP networks. Recently how-
ever, a new transport protocol called SCTP (Stream Control
Transmission Protocol) has been standardized [27]. SCTP
is message oriented like UDP but has TCP-like connection
management, congestion and flow control mechanisms. In
SCTP, there is an ability to define streams that allow multi-
ple independent message subflows inside a single association.
This eliminates the head-of-line blocking that can occur in
TCP-based middleware for MPI. In addition, SCTP associ-
ations and streams closely match the message-ordering se-
mantics of MPI when messages with the same context, tag
and source are used to define a stream (tag) within an as-
sociation (source).

SCTP includes several other mechanisms that make it an
attractive target for MPI in open network environments
where secure connection management and congestion con-
trol are important. It makes it possible to offload some MPI
middleware functionality onto a standardized protocol that
will hopefully become universally available. Although new,
SCTP is currently available for all major operating systems
and is part of the standard Linux kernel distribution.

The contribution of our work is the design and evaluation
of using SCTP for MPI. We have re-designed the LAM-
MPI middleware to take advantage of the features of SCTP.
We describe the overall design, the advantages we found as



well as the disadvantages and limitations of using SCTP.
One novel advantage to using SCTP that we investigated is
the elimination of the head-of-line blocking present in TCP-
based MPI middleware. We evaluated our LAM-SCTP mod-
ule and report the results of several experiments using real
world applications as well as standard benchmark programs
and compare the performance with LAM-TCP. Our experi-
ments show that the SCTP module outperforms TCP under
loss, especially when latency tolerant applications are used.
The advantages of using SCTP are evident even in the case
of a single-stream and single path between endpoints and
the benefits are greater when SCTP’s multistreaming capa-
bility is utilized. The performance of SCTP is comparable
to that of TCP for the benchmark programs and is better in
the case of latency tolerant applications. A second indirect
contribution of our work is with respect to SCTP. Our MPI
middleware makes very aggressive use of SCTP. In using
the NAS benchmarks [6] along with programs of our own
design, we were able to uncover problems in the FreeBSD
implementation of the protocol that led to improvements in
the stack by the SCTP developers.

Overall, the use of SCTP makes for a more resilient imple-
mentation of MPI that avoids many of the problems present
in using TCP, especially in open wide area network environ-
ments such as the Internet. Of course, it doesn’t eliminate
the performance issues of operating in that environment nor
does it eliminate the need for tuning connections. Many of
the same issues remain, however, as mentioned this is an
active area of research in the networking community where
numerous variants of TCP have been proposed. Because of
the similarity between the two, SCTP will be able to take ad-
vantage of improvements to TCP. Although the advantages
of SCTP have been investigated in other contexts, this is
the first use of it for MPI. It is an attractive replacement
for TCP in an open, wide-area network environment, and
adds to the set of IP transport protocols that can be used
for MPI. The release of Open MPI [11], and its ability to
mix and match transport mechanisms, is an ideal target of
our work where an SCTP module can further extend MPI
across networks that require a robust TCP-like connection.

2. OVERVIEW
2.1 SCTP
SCTP is a general purpose unicast transport protocol for
IP network data communications, which has been recently
standardized by the IETF [27]. It was initially introduced as
a means to transport telephony signaling messages in com-
mercial systems, but has since evolved for more general use
to satisfy the needs of applications that require a message-
oriented protocol with all the necessary TCP-like mecha-
nisms. SCTP provides sequencing, flow control, reliability
and full-duplex data transfer like TCP, however, it provides
an enhanced set of capabilities not in TCP that make appli-
cations less susceptible to loss.

Like UDP, SCTP is message oriented and supports the fram-
ing of application data. But like TCP, SCTP is session-
oriented and communicates by establishing an association
between two endpoints. Unlike TCP, in SCTP it is possi-
ble to have multiple logical streams within an association
where each is an independent stream of messages which are
delivered in-order.
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Figure 1: Single Association with Multiple Streams

Figure 1 shows an association between two endpoints with
three streams identified as 0, 1 and 2. User level messages
are broken into data chunks (SCTP sequences data chunks
and not bytes as in TCP) and each chunk is assigned a SNo,
SSN and TSN. The SNo identifies the stream, SSN is used to
sequence messages within the stream, and TSN is used to
sequence the data chunks. Together SNo, SSN, and TSN are
used to assemble messages and guarantee the ordered deliv-
ery of messages within a stream but not between streams.
For example, receiver Y in Figure 1 can deliver Msg2 before
Msg1 should it happen to arrive at Y before Msg1.

In contrast, when a TCP source sends independent messages
to the same receiver at the same time, it has to open multiple
independent TCP connections. It is possible to have multi-
ple streams by having parallel TCP connections and parallel
connections can also improve throughput in congested and
uncongested links. However, in a congested network parallel
connections claim more than their fair share of the band-
width, thereby affecting the cross-traffic. One approach to
making parallel connections TCP-friendly is to couple them
all to a single connection [12]. SCTP does precisely this by
ensuring that all the streams within a single SCTP associ-
ation share a common set of congestion control parameters.
It obtains the benefits of parallel TCP connections while
keeping the protocol TCP-friendly [24].

Another difference between SCTP and TCP is that end-
points in SCTP are multihomed and can be bound to mul-
tiple IP addresses (i.e., interfaces). If a peer is multihomed,
then an SCTP endpoint will select one of the peer’s destina-
tion addresses as a primary address and all other addresses
of the peer become alternate addresses. During normal op-
eration, all data is sent to the primary address, with the
exception of retransmissions, for which one of the active al-
ternate addresses is selected. Congestion control variables



are path specific. When the primary destination address of
an association is determined to be unreachable, the multi-
homing feature can transparently switch data transmission
to an alternate address. SCTP, currently, does not support
simultaneous transfer of data across interfaces, but this will
likely change in future. Researchers at the University of
Delaware are investigating the use of SCTP’s multihoming
feature to provide simultaneous transfer of data between two
endpoints through two or more end-to-end paths [14, 13],
and this functionality may become part of the SCTP proto-
col.

SCTP supports both one-to-one style and one-to-many style
sockets [25]. One-to-one socket corresponds to a single SCTP
association and was developed to allow porting of existing
TCP applications to SCTP with little effort. In the one-to-
many style a single socket can communicate with multiple
SCTP associations similar to a UDP socket that can receive
datagrams from different UDP endpoints.

2.2 MPI middleware
MPI has a rich variety of message passing routines. These
include MPI Send and MPI Recv along with various combi-
nations such as blocking, nonblocking, synchronous, asyn-
chronous, buffered, unbuffered versions of these calls. The
matching of an MPI Send to its MPI Recv is based on three
values inside the message envelope: (i) context, (ii) source/
destination rank and (iii) tag (see Figure 2). Context identi-
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Figure 2: MPI and LAM envelope format

fies a set of processes that can communicate with each other.
Within a context, each process has a unique identification
called rank. A user can specify the type of information be-
ing carried by a message by assigning a tag to it. MPI also
allows the source and/or tag of a message to be a wildcard
in MPI Recv request. For example if MPI ANY SOURCE is used
then that specifies that the process is ready to receive mes-
sages from any sending process. Similarly if MPI ANY TAG is
specified, a message arriving with any tag would be received.

2.2.1 Message Progression Layer
Implementations of the MPI standard typically provide a
request progression module that is responsible for progress-
ing requests from initialization to completion. One of the
main functions of this module is to support asynchronous
and nonblocking message progression in MPI. The request
progression module must maintain state information for all
requests, including how far the request has progressed and
what type of data/event is required for it to reach comple-
tion. We re-designed LAM’s request progression interface
(RPI) layer module for TCP to make use of SCTP. LAM’s
request progression mechanism is representative of the way

requests are handled in other MPI middleware implementa-
tions and, due to its modular design, provided a convenient
platform for us to work in.

2.2.2 Message Delivery Protocol
In LAM, each message body is preceded by an envelope
that is used to match a message. We can broadly classify
the messages in three categories with respect to the way
LAM treats them internally; short messages, which are, by
default, of size 64K bytes or less, long messages which are of
size greater than 64K bytes and synchronous short messages.
Figure 2 shows the format of an envelope in LAM. The flag
field in the envelope indicates what type of message body
follows it.

Short messages are passed using eager-send and the mes-
sage body immediately follows the envelope. If the receiv-
ing process has posted/issued a matching receive buffer the
message is received and copied into the buffer and the re-
quest is marked as done. If no matching receive has been
posted, then this is an unexpected message and it is buffered
by LAM in an internal hash table. Whenever a new request
is posted, it is first checked against all of the buffered unex-
pected messages for a possible match. If a match is found,
then the message is copied in the request receive buffer and
the corresponding buffered message is discarded.

Long messages are handled differently than short messages
and are not sent eagerly, but instead sent using the following
rendezvous scheme: Initially only the envelope of the long
message is sent to the receiver, if the receiver has posted a
matching receive request then it sends back an acknowledg-
ment (ACK) to the sender to indicate that it is ready to
receive the message body. The sender sends back an enve-
lope followed by the long message body in response to the
ACK received. If no matching receive was posted at the time
the initial long envelope was received, it is treated as an un-
expected message. Later when a matching receive request is
posted, it sends back an ACK and the rendezvous proceeds
as above. Use of eager send for long messages is a topic
that has been under research and people have found that an
eager protocol for long messages out-performs a rendezvous
protocol only if a significant number of receives have been
pre-posted [3]. In [31] the authors report that protocols like
eager send can lead to resource exhaustion in large cluster
environments.

Synchronous short messages are also communicated using
eager-send, however, the send is not complete until the sender
receives an ACK from the receiver. The discussion above
about the handling of unexpected messages also applies here.
Collectives in the TCP module of LAM are implemented on
top of point-to-point communication.

2.3 Overview of using SCTP for MPI
SCTP promises to be particularly well-suited for MPI due to
its message-oriented nature and provision of multiple streams
in an association. As shown in Figure 3, there are some
striking similarities between SCTP and MPI. Contexts in an
MPI program identify a set of processes that communicate
with each other, and this grouping of processes can be rep-
resented as a one-to-many socket in SCTP that establishes
associations with that set of processes. SCTP can map each
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Figure 3: Similarities between the message protocol
of MPI and SCTP

association to the unique rank of a process within a context
and thus use an association number to determine the source
of a message arriving on its socket. Each association can
have multiple streams which are independently ordered and
this property directly corresponds with message delivery or-
der semantics in MPI. In MPI, messages sent with different
tag/rank/context to the same receiver are allowed to over-
take each other. This permits direct mapping of streams to
message tags.

This similarity between SCTP and MPI is workable at a
conceptual level, however, there are some implementation is-
sues, to be discussed, that make the socket-context mapping
less practical. Therefore, we preserved the mappings from
associations to ranks and from streams to message tags but
not the one from socket to context in our implementation.
Context creation within an MPI program can be a dynamic
operation and if we map sockets to contexts, this requires
creating a dynamic number of sockets during the program
execution. Not only does this add complexity and additional
bookkeeping to the middleware, there can be an overhead
to managing a large number of sockets. Creation of a lot of
sockets in the middleware counteracts the benefits we can
get from using a single one-to-many SCTP socket that can
send/receive messages from multiple associations. Due to
these reasons, instead of mapping sockets to contexts, the
context and tag pair was used to map messages to streams.
There is, however, an alternative way of dealing with con-
texts and that is to map them to PID (Payload Identifier)
present in the common SCTP header of each packet. The
PID is a 32-bit field that can be used at the application level
to label the contents of an SCTP packet and is ignored by
the SCTP layer. Using the PID field gives us the flexibil-
ity of dynamic context creation in our application without
the need for maintaining a corresponding number of sock-
ets. Also, the PID mapping can be easily incorporated in
our module, with minor modifications.

3. DESIGN AND IMPLEMENTATION
In this section we discuss the design and implementation de-
tails of our SCTP module and also compare it to the LAM-
TCP design. In Sections 3.1 and 3.2 we discuss how multiple
streams are used in our module and the enhanced concur-
rency obtained as a result. In Section 3.3 we discuss resource
management issues in the middleware and provide a compar-
ison with LAM-TCP. Section 3.4 describes race conditions
in our module and the solution adopted to fix them. In Sec-
tion 3.5 we discuss enhanced reliability and fault tolerance

in our module due to the features provided by SCTP. In
Section 3.6 we discuss some limitations of using SCTP.

3.1 Message Demultiplexing
SCTP provides a one-to-many UDP-like style of communica-
tion that allows a single socket descriptor to receive messages
from multiple associations, eliminating the need for main-
taining a large number of socket descriptors. In the case of
LAM’s TCP module there is a one-to-one mapping between
processes and socket descriptors, where every process cre-
ates individual sockets for each of the other processes in the
LAM environment.

In SCTP’s one-to-many style, the mapping between processes
and sockets no longer exists. With one-to-many sockets
there is no way of knowing when a particular association is
ready to be read from or written to. At any time, a process
can receive data sent on any of the associations through its
sole socket descriptor. SCTP’s one-to-many socket API does
not permit reception of messages from a particular associa-
tion, therefore, messages are received by the application in
the order they arrive and only afterwards is the receive in-
formation examined to determine the association it arrived
on.

In our SCTP module, each message goes through two levels
of demultiplexing; first on the association number the mes-
sage arrived on and secondly on the stream number within
that association. These two parameters allow us to invoke
the correct state function for that request, which directs the
incoming message to the proper request receive buffer. If no
matching receive was posted, it is treated like an unexpected
message and buffered.

3.2 Concurrency and SCTP streams
MPI send/receive calls without wildcards define an ordered
stream of messages between two processes. It is also pos-
sible, through the use of wildcards or appropriate tags, to
relax the delivery order of messages. Relaxing the ordering
of messages can be used to make the program more message
driven and independent from network delay and loss. How-
ever, when MPI is implemented on top of TCP, the stream-
oriented semantics of TCP with one connection per process
precludes having unordered message streams from a single
process. This restriction is removed in our implementation
by mapping tags onto SCTP streams, which allows different
tags from the same source to be independently delivered.

3.2.1 Assigning Messages to Streams
As discussed in the previous section, message matching in
MPI is based on the tag, rank and context (TRC) of the
message. MPI semantics require that messages with the
same TRC must be delivered in order, i.e., they may not
overtake each other, whereas MPI messages with different
TRCs are not required to be ordered. In SCTP, the number
of streams is a static parameter (short integer value) that
is set when an association is initially established. For each
association, we use a fixed sized pool of stream numbers,
10 by default, that is used for sending and receiving mes-
sages between the endpoints of that association. Messages
with different TRCs are mapped to different stream num-
bers within an association to permit independent delivery.



Of course, since the number of streams is fixed, the degree
of concurrency achieved depends on the number of streams.

3.2.2 Head-of-Line Blocking
Head-of-line blocking can occur in the LAM TCP module
when messages have the same rank and context but differ-
ent tags. Our assignment of TRC to streams alleviates this
problem by allowing the unordered delivery of these mes-
sages.

It is often the case that MPI applications are loosely syn-
chronized and as a result alternate between computation
and bursts of communication. We believe this characteris-
tic of MPI programs makes them more likely to be affected
by head-of-line blocking in high loss scenarios, which under-
pins our premise that SCTP is better suited as a transport
mechanism for MPI than TCP on WANs.

3.2.3 Example of Head-of-Line Blocking
As an illustration of our SCTP module’s benefits, consider
the two communicating MPI processes P0 and P1 shown in
Figure 4. Process P1 sends two messages Msg-A and Msg-B

P0

MPI_Irecv(P1, tag-A)

MPI_Irecv(P1, tag-B)

MPI_Waitany()

Compute()

MPI_Waitall()

- - -

MPI_Send(Msg-A, P0, tag-A)

MPI_Send(Msg-B, P0, tag-B)

- - -

P1
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Figure 4: Example of multiple streams between two
processes

to P0 in order, using different tags. P0 does not care what
order it receives the messages and, therefore, posts two non-
blocking receives. P0 waits for any of the receive requests to
complete and then carries out some computation. Assume
that part of Msg-A is lost during transmission and has to
be retransmitted while Msg-B arrives safely at the receiver.
In the case of TCP, its connection semantics require that
Msg-B stay in TCP’s receive buffer until the two sides recover
from the loss and the lost parts are retransmitted. Even
though the programmer has specified that the messages can
be received in any order, P0 is forced to receive Msg-A first
and incur increased latency as a result of TCP’s semantics.
In the case of the SCTP module, since different message tags
are mapped to different streams and each stream can deliver
messages independently, Msg-B can be delivered to P0 and
the process can continue executing until Msg-A is required.
SCTP matches the MPI semantics and makes it possible to
take advantage of the concurrency that was specified in the
program. The TCP module offers concurrency at process

level, while our SCTP module adds to this with enhanced
concurrency at the TRC level.

Even when blocking communication takes place between a
pair of processes and there is loss, there are still advantages
to using SCTP. Consider Figure 5 where blocking sends and

P0

MPI_Recv(P1, tag-A)

MPI_Recv(P1, tag-B)

- - -

MPI_Send(Msg-A, P0, tag-A)

MPI_Send(Msg-B, P0, tag-B)

- - -

P1

Figure 5: Example of multiple streams between two
processes using blocking communication

receives are being used with two different tags. In SCTP, if
Msg-A is delayed or lost, and Msg-B arrives at the receiver,
it is treated as an unexpected message and buffered. SCTP,
thus, allows the receive buffer to be emptied and hence does
not slow down the sender due to the flow control mechanism.
In TCP, however, Msg-B will occupy the socket receive buffer
until Msg-A arrives.

3.2.4 Maintaining State
The LAM TCP module maintains state for each process
(mapped to a unique socket) that it reads from or writes
to. Since TCP delivers bytes in strict sequential order and
the TCP module transmits/ receives one message body at a
time per process, there is no need to maintain state informa-
tion for any other messages that may arrive from the same
process since they cannot overtake the message body cur-
rently being read. In our SCTP module, this assumption no
longer holds true since subflows on different stream numbers
are only partially ordered with respect to the entire associa-
tion. We, therefore, maintain state for each stream number
that a message can arrive on from a particular process. We
only need to maintain a finite amount of state information
per association since we limit the possible number of streams
to our pool size. For each stream number, the state holds
information about how much of the message has been read,
what stage of progression the request is in and what needs
to be done next. At the time when an attempt is made to
read an incoming message, we cannot tell in advance from
where the message will arrive and how large it will be, there-
fore, we specify a length equal to the socket receive buffer.
SCTP’s receive function sctp recvmsg, however, takes care
of message framing by returning the next message and not
the number of bytes specified by the size field in the function
call. This frees us from having to look through the receive
buffer to locate the message boundaries.

3.3 Resource Management
LAM’s TCP RPI module uses TCP as its communication
mechanism and employs a socket based interface in a fully
connected environment. It uses a one-to-one connection ori-
ented scheme and maintains N sockets, one for each of the N
processes in its environment. The select system call is used
to poll these sockets to determine their readiness for read-
ing any incoming messages or writing outgoing messages.
Polling of these sockets is necessary because operating sys-
tems like Linux and UNIX do not support asynchronous
communication primitives for sockets. It has been shown
that the time taken for the select system call has a cost



associated with it that grows linearly with the number of
sockets [20]. Socket design was originally based on the as-
sumption that a process initiates a small number of connec-
tions, and it is known that performance is affected if a large
number of sockets are used. Implications of this are signif-
icant in large scaled commodity clusters with thousands of
nodes that are becoming more frequently used. Use of col-
lective communications in MPI applications also strengthens
the argument, since nearly all connections become active at
once when a collective communication starts, and handling
a large number of active connections may result in perfor-
mance degradation.

SCTP’s one-to-many communication style eliminates the
need for maintaining a large number of socket descriptors.
In our implementation each process creates a single one-
to-many SCTP socket for communicating with the other
processes in the environment. An association is established
with each of the other processes using that socket and since
each association has a unique identification, it maps to a
unique process in the environment. We do not use the
select system call to detect events on the socket, instead
an attempt is made to retrieve messages at the socket us-
ing sctp recvmsg, as long as there are any pending receive
requests. In a similar way, if there are any pending send re-
quests, they are written out to the socket using sctp sendmsg.
If the socket returns EAGAIN, signaling that it is not ready
to perform the current read or write operation, the system
attempts to advance other outstanding requests.

The use of one-to-many sockets in SCTP results in a more
scalable and portable implementation since it does not im-
pose a strong requirement on the system to manage a large
number of socket descriptors and the resources for the asso-
ciated buffers [4]. We investigated a process’s limits for the
number of socket descriptors it can manage and the number
of associations it can handle on a single one-to-many socket.
In our setup, a process reached its maximum socket descrip-
tors’ limit much earlier than the limit on maximum number
of associations it can handle. The number of file descriptors
in a system usually has a user limit of 1024 and needs root
privileges to be changed.

3.4 Race Conditions
In the SCTP module it was necessary to change the long
message protocol. This occurred because even though SCTP
is message-based the size of message that can be sent in a
single call to sctp sendmsg function is limited by the send
buffer size. As a result large messages had to broken up
into multiple smaller messages of size less than that of send
buffer. These messages then had to reassembled at the re-
ceiving side.

All pieces of the large message are sent out on the same
stream number to ensure in-ordered delivery. As a refine-
ment to this scheme, we considered interleaving messages
sent on different streams with portions of a message larger
than the send buffer size, at the time it is passed to the
SCTP transport layer. Since reassembly of the large mes-
sage is done at the RPI level, and not at the SCTP level,
this may result in reduced latency for shorter messages on
other streams especially when processes use non-blocking
communication.

While testing our SCTP module we encountered race con-
ditions that occurred due to the rendezvous mechanism of
the long message protocol. Consider the case when two
processes simultaneously exchange long messages using the
same stream number. According to the long message pro-
tocol, both processes send a rendezvous initiating envelope
to the other and wait for an acknowledgment before start-
ing the transmission of the body of the long message (see
Figure 6).

As shown in Figure 6, after P1 receives the ACK for its long

P0 P1

Envelope - Msg1

Partial body - Msg1

ACK - Msg1

Envelope - Msg2

ACK - Msg2 (incorrect)

Remaining body - Msg1

Figure 6: Example of long message race condition

message Msg1, P1 begins transmitting the message. If P1
successfully writes only part of Msg1 to the socket, then P1
saves its current state, which includes the number of bytes
sent to P0. Process P1 now continues trying to advance
other active requests and returns later to writing the rest of
Msg1. While advancing other messages, if P1 sends an ACK

to P0 for long message Msg2 using the same stream number
that Msg1 used, then P0, which has recieved part of Msg1,
now receives a message from the same process on the same
stream number as Msg1. Since P0 uses the association and
stream number to decide on the communication request to
be advanced, P0 incorrectly takes the ACK for Msg2 as part
of the body of Msg1.

3.4.1 Option A
In order to fix the above race condition we considered several
options, and the tradeoffs associated with them. The first
option was to stay in a loop while sending Msg1 until all of it
has been written out to the socket. One advantage of this is
that the rendezvous mechanism introduces latency overhead
and once the transmission of long message body starts, we
do not want to delay it any longer. The disadvantage is that
it greatly reduces the amount of concurrency that would
otherwise have been possible, since we do not receive from
or send to other streams or associations. Also, if the receiver
of the long message had issued a non-blocking receive call,
then it might continue to do other computations, and, as a
result, sending the data in a tight loop may simply cause
the sender to stall waiting for the receiver to remove data
from the connection. Another disadvantage that can arise
is when the receiver is slow and we overload it by sending a
lot of data in a loop, instead of advancing other requests on
other streams or associations.



3.4.2 Option B
The second option was to disallow P1 from writing a dif-
ferent message, if a previous message writing operation was
still in progress, on the same stream number to the same
process. The advantage of this was simplicity in design, but
we reduce the amount of overlap that was possible in the
above case if we allowed both processes to exchange long
messages at the same time. However, it is still possible to
send/receive from other streams or associations. This option
is the one we implemented in our module.

3.4.3 Option C
A third option was to treat acknowledgments used within
LAM to synchronize message exchange, such as those used
in the long message rendezvous mechanism, as control mes-
sages. These control messages would be treated differently
from other messages containing actual data. Whenever a
control message carrying an ACK arrives, the middleware
would know it is not part of any unfinished message, e.g.
the long message in our example, and would invoke the cor-
rect state function to handle it. This option introduces more
complexity and bookkeeping to the code, but may turn out
to be one that offers the most concurrency.

There was one other race condition that occurred in im-
plementing the SCTP module. Because the one-to-many
SCTP style does not require any of the customary accept

and connect function calls before receiving messages, we
had to be careful about MPI Init to ensure that each process
establishes associations with all the other processes before
exchanging messages. In order to ensure that all associ-
ations are established before messages are exchanged, we
implemented a barrier at the end of our association setup
stage and before the message reception/ transmission stage.
This is especially important in an heterogeneous environ-
ment with varying network and machine speeds. It is easier
with TCP because the MPI Init connection setup procedure
automatically takes care of this issue by its use of connect
and accept function calls.

3.5 Reliability
In general, MPI programs are not fault tolerant and com-
munication failure typically causes the programs to fail. As
well, network loss which results in added latency and re-
duced bandwidth can severely impact the overall perfor-
mance of programs. There are several mechanisms in SCTP
that improve the overall reliability of executing an MPI pro-
gram in a WAN environment.

3.5.1 Multihoming Feature
MPI applications have a strong requirement for the abil-
ity to rapidly switch to an alternate path without excessive
delays in the event of failure. MPI processes in a given appli-
cation’s environment tend to be loosely synchronized even
though they may not all be communicating directly with
each other. Delays occurring in one process due to failure of
the network can have a domino effect on other processes and
they can potentially get delayed as well. It would be highly
advantageous for MPI processes if the underlying transport
protocol supports fast path failover in the event of network
failure.

SCTP’s multihoming feature provides an automatic failover
mechanism where a communication failure between two end-
points on one path will switch over to an alternate path. Of
course, this is useful only when there are independent paths,
but having multiple interfaces on different networks is not
uncommon and SCTP makes it possible to exploit the possi-
bility when it exists. SCTP provides several user-adjustable
controls that can be used to change the amount of time it
takes to determine network problems [25].

Ideally, these control parameters need to be tuned to a par-
ticular network, and perhaps even the application, to ensure
fast failover but to avoid unnecessary failovers due to net-
work delay. Note, there is no similar mechanism in TCP. It
could be accomplished by using multiple sockets and man-
aging them in the middleware but this introduces added
complexity to the middleware.

3.5.2 Added Protection
SCTP has several in-built features that provide an added
measure of protection against flooding and masquerade at-
tacks. They are discussed below.

As SCTP is connection oriented, it exchanges setup mes-
sages at the initiation of the communication, for which it
uses a robust four-way handshake as shown in Figure 7.
The receiver of an INIT message does not reserve any re-

P0 P1

INIT

INIT-ACK

COOKIE-ECHO

COOKIE-ACK

Figure 7: SCTP’s four-way handshake

sources until the sender proves that its IP address is the one
claimed in the association setup message. The handshake
uses a signed state cookie to prevent use of IP spoofing for
a SYN flooding denial of service attack. The cookie is au-
thenticated by making sure that it has a valid signature and
then a check is made to verify that the cookie is not stale.
This check guards against replay attacks [27]. Some imple-
mentations of TCP also use a cookie mechanism, but those
typically do not use signed cookies and also the cookie mech-
anism is supplied as an option and it is not an integral part
of the TCP protocol as is the case with SCTP. In TCP, a
user has to validate that both sides of the connection have
the required implementation. SCTP’s four-way handshake
may be seen to be an overhead, however, if a one-to-many
style socket is used, then user data can be piggy-backed on
the third and fourth leg of the handshake.

Every SCTP packet has a common header that contains,
among other things, a 32-bit verification tag. This verifi-
cation tag protects against two things: (1) it prevents an



SCTP packet from a previous inactive association from be-
ing mistaken as a part of a current association between the
same endpoints, and (2) it protects against blind injection
of data in an active association [27].

A study [30] done on TCP Reset attacks has shown that
TCP is vulnerable to a denial of service attack in which
the attacker tries to prematurely terminate an active TCP
connection. The study has found that this type of attack
can utilize the TCP window size to reduce the number of
sequence numbers that must be guessed for a spoofed packet
to be considered valid and accepted by the receiver. This
kind of attack is especially effective on long standing TCP
flows such as BGP peering connections, which if successfully
attacked, would disrupt routing in the Internet. SCTP is not
susceptible to the reset attacks due to its verification tag.

SCTP is able to use large socket buffer sizes by default be-
cause it is not subject to denial of service attacks that TCP
becomes susceptible to with large buffers [26].

SCTP also provides an autoclose option that protects against
accidental denial-of-service attacks where a process opens an
association but does not send any data. Using autoclose, we
can specify the maximum number of seconds that an asso-
ciation remains idle, i.e., no user traffic in either direction.
After this time the association is automatically closed [25].

There is another difference between SCTP’s and TCP’s close
mechanisms; TCP allows an “half-closed” state, which is not
allowed in SCTP. In the half-closed state, one side closes a
connection and cannot send data, but may continue to re-
ceive data until the peer closes its connection. SCTP avoids
the possibility of a peer failing to close its connection by
disallowing a half-closed state.

In this section we have highlighted the additional security
features that are present in SCTP. These features are espe-
cially important in open network environments, such as the
Internet, where security is an issue and therefore the use of
SCTP adds to the reliability of the environment for MPI.

3.5.3 Use of a Single Underlying Protocol
One issue not directly related to SCTP was the mixed use of
UDP and TCP in LAM. LAM uses user level daemons that
by default employ UDP as their transport protocol. These
daemons serve several purposes such as enabling external
monitoring of running jobs and carrying out cleanup when
a user aborts an MPI process. LAM also provides remote
I/O via the LAM daemon processes. We modified the LAM
daemons to use SCTP so that the entire execution now uses
SCTP and all the components in the LAM environment can
take advantage of the features of SCTP.

3.6 Limitations
As discussed in Section 3.4, SCTP has a limit on the size of
message it can send in a single call to sctp sendmsg. This
limits us from taking full advantage of the message-framing
property of SCTP since our long message protocol divides
a long message into smaller messages and then carries out
message framing at the middleware level.

Both TCP and SCTP use a flow control mechanism where

a receiver advertises its available receive buffer space to the
sender. Normally when a message is received it is kept in
the kernel’s protocol stack buffer until a process issues a
read system call. When large sized messages are exchanged
in MPI applications and messages are not read out quickly,
the receiver advertises less buffer space to the sender, which
slows down the sender due to flow control. An event driven
mechanism that gets invoked as soon as a message arrives is
currently not supported in our module.

Some factors that can affect the performance of SCTP are
as follows:

• SCTP uses a comprehensive 32 bit CRC32c checksum
which is expensive in terms of CPU time, while TCP
typically offloads checksum calculations to the network
interface card (NIC). However, CRC32c provides much
greater data protection at the cost of additional CPU
time and it is likely that hardware support for it may
become available in a few years.

• TCP can always pack a full MTU, but SCTP is limited
by the fact that it bundles different messages together,
which may not always fit to pack a full MTU. However,
in our experiments this was not observed to be a factor
impacting the performance.

• TCP performance has been fine-tuned over the past
decades, however, optimization of the SCTP stack is
still in its early stages and will improve over time.

4. EXPERIMENTAL EVALUATION
In this section we describe the experiments carried out to
compare the performance of our SCTP module with the
LAM-TCP module for different MPI applications. Our ex-
perimental setup consists of a dedicated cluster of eight iden-
tical Pentium-4 3.2GHz, FreeBSD-5.3 nodes connected via a
layer-two switch using 1Gbit/s Ethernet connections. Ker-
nels on all nodes are augmented with the Kame.net SCTP
stack [16]. The experiments were performed in a controlled
environment and Dummynet was configured on each of the
nodes to allow us to vary the amount of loss on the links
between the nodes. We compare the performance under dif-
ferent loss rates of 0%, 1% and 2% between each of the eight
nodes.

In Section 4.1, we evaluate the performance of the SCTP
module using two standard benchmark programs. In Sec-
tion 4.2, we look at the effect of using a latency tolerant
program that overlaps communication with computation.
We compare the performance using a real world program
that uses a manager-worker communication pattern com-
monly found in MPI programs. We also discuss the effects
of head-of-line blocking. In order to make the comparison
between SCTP and TCP as fair as possible, the following
settings were used in all the experiments discussed in sub-
sequent sections:

1. By default, SCTP uses a larger SO SNDBUF/SO RCVBUF

buffer size than TCP. In order to prevent any possible
effects on performance due to this difference, the send
and receive buffers were set to a value of 220 Kbytes
in both the TCP and SCTP modules.



2. Nagle’s algorithm is disabled by default in LAM-TCP
and this setting was used in the SCTP module as well.

3. An SCTP receiver uses Selective Acknowledgment SACK
to report any missing data to the sender, therefore,
SACK option for TCP was enabled on all the nodes
used in the experiment.

4. In our experimental setup, the ability to multihome
between any two endpoints was available since each
node is equipped with three gigabit interface cards and
three independent paths between any two nodes were
available. In our experiments, however, this multi-
homing feature was not used so as to keep the network
settings as close as possible to that used by the LAM-
TCP module.

5. TCP is able to offload checksum calculations on to the
NICs on our nodes and thus has zero CPU cost as-
sociated with its calculation. SCTP has an expensive
CRC32c checksum which can prove to be a consider-
able overhead in terms of CPU cost. We modified the
kernel to turn off the CRC32c checksum in SCTP so
that this factor does not affect the performance results.

4.1 Evaluation of Benchmark Programs
We evaluated our implementation using two benchmark pro-
grams; MPBench ping-pong test and NAS parallel bench-
marks. The NAS benchmarks approximate the performance
of real applications. These benchmarks provided a point of
reference for our measurements and the results are discussed
below.

4.1.1 MPBench Ping-Pong Test
We first report the output obtained by running the MP-
Bench [22] ping-pong test with no message loss. This is a
standard benchmark program that reports the throughput
obtained when two processes repeatedly exchange messages
of a specified size. All messages are assigned the same tag.
Figure 8 shows the throughput obtained for different mes-
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Figure 8: The performance of SCTP using a stan-
dard ping-pong test normalized to TCP under no
loss

sage sizes in the ping-pong test under no loss. The through-
put values for the LAM-SCTP module are normalized with
respect to LAM-TCP. The results show that SCTP is more

efficient for larger message sizes, however, TCP does bet-
ter for small message sizes. The crossover point is approxi-
mately at a message size of 22 Kbytes, where SCTP through-
put equals that of TCP. The SCTP stack is fairly new com-
pared to TCP and these results may change as the SCTP
stack is further optimized.

We also used the ping-pong test to compare SCTP to TCP
under 1% and 2% loss rates. Since the LAM middleware
treats short and long messages differently, we experimented
with loss for both types of messages. In the experiments
short messages were 30 Kybtes and long messages were 300
Kbytes. For both short and long messages under 1% and
2% loss, SCTP performed better than TCP and the results
are summarized in Table 1.

Throughput(bytes/second)
Loss:1% Loss:2%

MPI Message Size SCTP TCP SCTP TCP
(bytes)

30K 54,779 1,924 44,614 1,030
300K 5,870 1,818 2,825 885

Table 1: The performance of SCTP and TCP using
a standard ping-pong under loss

SCTP shows that it is more resilient under loss and can
perform rapid recovery of lost segments. Work done in [1]
and [24] compares the congestion control mechanisms of
SCTP and TCP and shows that SCTP has a better con-
gestion control mechanism that allows it to achieve higher
throughput in error prone networks. Some features of SCTP’s
congestion control mechanism are as follows:

• Use of SACK is an integral part of the SCTP proto-
col, whereas, for TCP it is an option available in some
implementations. In those implementations SACK in-
formation is carried in IP options and is, therefore,
limited to reporting at most four TCP segments. In
SCTP, the number of gap ACK blocks allowed is much
larger as it is dictated by the PMTU [27].

• Increase in the congestion window in SCTP is based
on the number of bytes acknowledged and not on the
number of acknowledgments received [1]. This allows
SCTP to recover faster after fast retransmit. Also,
SCTP initiates slow start when the congestion win-
dow is equal to the slow start threshold. This helps in
achieving a faster increase in the congestion window.

• The congestion window variable cwnd can achieve full
utilization because when a sender has 1 byte of space
in the cwnd and space available in the receive window,
it can send a full PMTU of data.

• The FreeBSD KAME SCTP stack also includes a vari-
ant called New-Reno SCTP that is more robust to mul-
tiple packet losses in a single window [15].

• When the receiver is multihomed, an SCTP sender
maintains a separate congestion window for each trans-
port address of the receiver because the congestion sta-
tus of the network paths may differ from each other.



SCTP’s retransmission policy helps in increasing the
throughput, since retransmissions are sent on one of
the active alternate transport addresses of the receiver.
The effect of multihoming was not a factor in our tests.

4.1.2 NAS Benchmarks
In our second experiment, we used the NAS parallel bench-
marks (NPB version 3.2) to test the performance of MPI
programs with SCTP and TCP as the underlying transport
protocol. These benchmarks approximate the performance
that can be expected from a portable parallel application.
The suite of benchmarks consists of eight programs, how-
ever, we tested the following seven of those: LU (LU Fac-
torization), IS (Integer Sort), MG (Multi-Grid Method),
EP (Embarrassingly Parallel), CG (Conjugate Gradient),
BT (Block Tridiagonal ADI) and SP (Scalar Pentadiago-
nal ADI). The eighth benchmark FT (Fourier Transform)
was not used because it does not compile with mpif77. Per-
formance of the benchmarks is reported using Mop/s total
value. Dataset sizes S, W, A and B were used in the ex-
periments with the number of processes equal to eight. The
Dataset sizes increase in order S, W, A, and B with S be-
ing the smallest. We have done an analysis of the type of
messages being exchanged in these benchmarks and we have
found that in datasets ‘S’ and ‘W’, short messages (as de-
fined in LAM middleware to be messages smaller than or
equal to 64 Kbytes) are predominantly being sent/received.
In datasets ‘A’ and ‘B’ we see a greater number of long
messages (i.e., messages larger than 64 Kbytes) being ex-
changed.

Figure 9 shows the results for dataset size ‘B’ under no loss.
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Figure 9: TCP versus SCTP for the NAS bench-
marks

The results for the other datasets are not shown in the figure,
but as expected from the ping-pong test results, TCP does
better for the shorter datasets. These benchmarks use single
tags for communication between any pair of nodes and the
benefits of using multiple streams in the SCTP module are
not being utilized. The SCTP module, in this case, reduces
to a single stream per association and as the results show,
the performance on average is comparable to TCP. TCP
shows an advantage for the MG and BT benchmarks and
we believe the reason for this is that these benchmarks use
greater proportion of short messages in dataset ‘B’ than the
other benchmarks.

4.2 Evaluation of a Latency Tolerant Program
In this section we compare the performance of the SCTP
module with LAM-TCP using a latency tolerant program.
In order to take advantage of highly available, shared envi-
ronments that have large delays and loss, it is important to
develop programs that are latency tolerant and capable of
overlapping computation with communication to a high de-
gree. Moreover, SCTP’s use of multiple streams can provide
more concurrency. Here, we investigate the performance of
such programs with respect to TCP and also discuss the
effect of head-of-line blocking in these programs.

4.2.1 Comparison for a Real World Program
In this section we investigate the performance of a realistic
program that makes use of multiple tags. Our objectives
were two-fold: first, we wanted to evaluate a real-world par-
allel application that is able to overlap communication with
computation, and secondly, to examine the effect of intro-
ducing multiple tags which, in the case of the SCTP mod-
ule, can map to different streams. We describe the experi-
ments performed using an application which we call the Bulk
Processor Farm program. The communication characteris-
tics of this program is typical of real-world manager-worker
programs.

The Bulk Processor Farm is a request driven program with
one manager and several workers. The workers ask the
manager for tasks to do, and the manager is responsible
for creating tasks, distributing them to workers and then
collecting the results from all the workers. The manager
services all task requests from workers in the order of their
arrival (MPI ANY SOURCE). Each task is assigned a different
tag, which represents the type of that task. There is a max-
imum number of different tags (MaxWorkTags) that can be
distributed at any time. The workers can make multiple re-
quests at the same time and when they finish doing some
task they send a request for a new one, so at any time,
each of the workers have a fixed number of outstanding job
requests. This number was chosen to be ten in our experi-
ments. The workers use non-blocking MPI calls to issue send
and receive requests and all messages received by the work-
ers are expected messages. The workers use MPI ANY TAG to
show that they are willing to perform a task of any type.

The manager has a total number of tasks (NumTasks) that
need to be performed before the program can terminate. In
our experiments we set that number to 10,000 tasks. We
experimented with tasks of two different sizes; short tasks
equal to 30 Kbytes and long tasks equal to 300 Kbytes. The
size of the task represents the message sizes that are ex-
changed between the manager and the worker.

In case of the SCTP module, the tags will be mapped to
streams and in case of congestion if a message sent to a
worker is lost, then it would still be possible for messages on
the other streams to be delivered and the worker program
can continue working without blocking on the lost message.
In LAM-TCP, however, since all messages between the man-
ager and a worker must be delivered in order, there is less
overlap of communication with computation. The experi-
ments were run at loss rates of 0%, 1% and 2%. The farm
program was run six times for each of the different com-
binations of loss rates and message sizes and the average



value of total run-times are reported. The average and the
median values of the multiple runs were very close to each
other. We also calculated the standard deviation of the av-
erage value, and found the variation across different runs to
be very small.
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Figure 10: TCP versus SCTP for (a) short and (b)
long messages for the Bulk Processor Farm applica-
tion

Figure 10 shows the comparison between LAM-SCTP and
LAM-TCP for short and long message sizes under different
loss rates. As seen in Figure 10, SCTP outperforms TCP
under loss. For short messages, LAM-TCP run-times are
10 to 11 times higher than that of LAM-SCTP at loss rates
of 1 to 2%. For long messages, LAM-TCP is slower than
LAM-SCTP by 2.58 times at 1% and 2.7 times at 2% loss.
Although SCTP performs substantially better than TCP for
both short and long messages, the fact that the difference is
more pronounced for short messages is very positive. MPI
implementations, typically, try to optimize short messages
for latency and long messages for bandwidth [3]. In our la-
tency tolerant application, the workers, at any time, have
a number of pre-posted outstanding receive requests. Since
short messages are sent eagerly by the manager, they are
copied to the correct receive buffer as soon as they are re-
ceived. Since messages are being transmitted on different
streams in LAM-SCTP, there is less variation in the amount
of time the worker might have to wait for a job to arrive,
especially under loss conditions, and results in more over-
lap of communication with computation. The rendezvous
mechanism in the long messages introduces synchrony to
the transmission of the messages, and the payload can only
be sent after the receiver has acknowledged its readiness
to accept it. This reduces the amount of overlap possible,
compared to the case when messages are sent eagerly. The
long messages are also more likely to be affected by loss by

virtue of their size. Long messages are typically used for
bulk transfers, and the cost of the rendezvous is amortized
over the time required to transfer the data.

We also introduced a tunable parameter to the program de-
scribed above, which we call Fanout. Fanout represents the
number of tasks a manager will send to a worker in response
to a single task request from that worker. In Figure 10, the
Fanout is 1.

We experimented with a Fanout value of 10 as shown in Fig-
ure 11. We anticipated that the settings with Fanout=10
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Figure 11: TCP versus SCTP for (a) short and (b)
long messages for the Bulk Processor Farm applica-
tion using Fanout of 10

would create more possibilities for head-of-line blocking in
the LAM-TCP case, since in this case ten tasks are sent to a
worker in response to one task request, and are more prone
to be affected by loss. Figure 11 shows that with larger
Fanout, the average run-time for TCP increases substan-
tially for long messages, while there are only slight changes
for short messages. One possibility for this behavior is TCP’s
flow-control mechanism. We are sending ten long tasks in
response to a job request, and in case of loss, TCP blocks
delivery of all subsequent messages until the lost segment is
recovered. If it does not empty the receive buffer quickly
enough, it can cause the sender to slow down. Moreover, as
discussed in Section 4.1.1, SCTP’s better congestion control
also aids in faster recovery of lost segments, and this is also
reflected in all our results. Also, we expect the performance
of SCTP over TCP to further increase when multihoming is
present and retransmissions are sent on an alternate path.



4.2.2 Investigating Head-of-line Blocking
In the experiments presented so far, we have shown that
SCTP has superior performance than TCP under loss, and
there are two main factors affecting the results: improve-
ments in SCTP’s congestion control mechanism, and the
ability to use multiple streams to reduce head-of-line block-
ing. In this section we examine the performance improve-
ment obtained as a result of using multiple streams in our
SCTP module. In order to isolate the effects of head-of-line
blocking in the farm program, we created another version
of the SCTP module, one that uses only a single stream
to send and/or receive messages irrespective of the message
tag, rank and context. All other things were identical to our
multiple-stream SCTP module.

The farm program was run at different loss rates for both
short and long message sizes. The results are shown in
Figure 12. Since multihoming was not present in the ex-
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Figure 12: Effect of head-of-line Blocking in the
Bulk Processor Farm program for (a) short and (b)
long messages

periment, the results obtained show the effect of head-of-
line blocking and the advantage due to the use multiple
tags/streams. The reduction in average run-times when us-
ing multiple streams compared to a single stream is about
25% under loss for long messages. In the case of short mes-
sages, the benefit of using multiple streams becomes appar-
ent at 2% loss where using a single stream shows an in-
crease in run-time of about 35%. This shows that head-of-
line blocking has a substantial effect in a latency tolerant
program like the Bulk Processor Farm. The performance
difference between the two cases, can increase in a network
where it takes a long time to recover from packet loss [26].

5. RELATED WORK
The effectiveness of SCTP has been explored for several pro-
tocols in high latency, high-loss environments. Researchers
have investigated the use of SCTP in FTP [18], HTTP [23],
and also over wireless [7] and satellite networks [1]. Using
SCTP for MPI has not been investigated.

There are a wide variety of projects that use TCP in an MPI
environment. MPICH-G2 [17] is a multi-protocol implemen-
tation of MPI for the Globus environment that was primarily
designed to link together clusters over wide area networks.
MPICH-G2 can use a custom transport for inside the cluster
and a TCP connection between clusters. LAM as well has a
TCP-based Globus component to support meta-computing.
Our work provides the opportunity to add SCTP for trans-
port in a Grid-environment where we can take advantage of
the improved performance in the case of loss.

Several projects have used UDP rather than TCP. As men-
tioned, UDP is message-based and one can avoid all the
“heavy-weight” mechanisms present in TCP to obtain bet-
ter performance. However, when ones adds reliability on
top of UDP the advantages begin to diminish. For exam-
ple, LA-MPI, a high-performance, reliable MPI library that
uses UDP, reports performance of their implementation over
UDP/IP to be similar to TCP/IP performance of other MPI
implementations over Ethernet [2]. WAMP [28] is an exam-
ple of UDP for MPI over wide area networks. Interestingly,
WAMP only wins over TCP in heavily congested networks
where TCP’s congestion avoidance mechanisms limit band-
width. This is a problem but hopefully research in this area
will lead to better solutions for TCP that could also be in-
corporated into SCTP.

Another possible way to use streams is to send eager short
messages on one stream and long messages on a second one.
LA-MPI followed this approach with their UDP/IP imple-
mentation of MPI [2]. This potentially allows for the fast
delivery of short messages and a more optimized delivery
for long messages that require more bandwidth. It also may
reduce head of line blocking for the case of short messages
waiting for long messages to complete. However, one has to
maintain MPI message ordering semantics and thus, as is
the case in LA-MPI, sequence numbers were introduced to
ensure that the messages are received strictly in the order
they were posted by the sender. Thus, in the end, there is no
added opportunity for concurrent progression of messages as
there is in the case of our implementation.

There are a number of MPI implementations that explored
improving communication through improved socket inter-
faces [20] or by changes to operating system. In general,
these will not have the same degree of support, which lim-
its their use. Although the same can be said about SCTP,
the fact that SCTP has been standardized and implementa-
tions have begun to emerge are all good indications of more
wide-spread support.

Recently Open MPI has been announced which is a new pub-
lic domain version of MPI-2 that builds on the experience
gained from the design and implementation of LAM/MPI,
LA-MPI and FT-MPI [8]. Open MPI takes a component-
based approach to allow the flexibility to mix and match



components for collectives and for transport and link man-
agement. We hope that our work could be incorporated
into Open MPI as a transport module. TEG [31] is a fault-
tolerant point-point communication module in Open MPI
that supports multi-homing and the ability to stripe data
across interfaces. The ability to schedule data over differ-
ent interfaces has been proposed for SCTP and may provide
an alternative way to provide the functionality of TEG in
environments like the Internet. A group at the University
of Delaware is researching Concurrent Multipath Transfer
(CMT) [14, 13], which uses SCTP’s multihoming feature
to provide simultaneous transfer of data between two end-
points, via two or more end-to-end paths. The objective
of using CMT between multihomed hosts is to increase an
application throughput. CMT is at the transport layer and
is thus more efficient, compared to multipath transfer at
application level, since it has access to finer details about
the end-to-end paths. CMT is currently being integrated
into FreeBSD KAME SCTP stack and will be available as a
sysctl option by the end of year 2005 [26].

6. CONCLUSIONS
In this paper we discuss the design and evaluation of using
SCTP for MPI. SCTP is better suited as a transport layer
for MPI because of its several distinct features not present
in TCP. We have designed the SCTP module to address the
head-of-line blocking problem present in LAM-TCP middle-
ware. We have shown that SCTP matches MPI semantics
more closely than TCP and we have taken advantage of the
multistreaming feature of SCTP to provide a direct mapping
from streams to MPI message tags. This has resulted in in-
creased concurrency at the TRC level in the SCTP module
compared to concurrency at process level in LAM-TCP.

Our SCTP module’s state machine uses one-to-many style
sockets and avoids the use of expensive select system calls,
which leads to increased scalability in large scale clusters.
In addition, SCTP’s multihoming feature makes our module
fault tolerant and resilient to network path failures.

We have evaluated our module and reported the results of
experiments using standard benchmark programs as well
as a real world application and compared the performance
with LAM-TCP. Simple ping-pong tests, under no loss, have
shown that LAM-TCP outperforms the SCTP module for
small message sizes but SCTP does better for large mes-
sages. In addition, SCTP’s performance is comparable to
TCP’s for standard benchmarks such as the NAS Bench-
marks when larger dataset sizes are used. The strengths of
SCTP over TCP become apparent under loss conditions as
seen in the results for the ping-pong tests and our latency
tolerant Bulk Processor Farm program. When different tags
are used in a program, the advantages due to multistreaming
in our module can lead to further benefits in performance.

In general, the performance requirements of different MPI
programs will vary. There will be those programs that can
only achieve satisfactory performance on dedicated machines,
with low-latency and high-bandwidth links. On the other
hand, there will be those latency tolerant programs that will
be able to run just as well in highly available, shared envi-
ronments that have larger delays and loss. Our contribution
is to the latter type of programs, for extending their perfor-

mance in open environments such as the Internet. Ideally,
we want to increase the portability of MPI and in doing so,
encourage programmers to develop programs more towards
this end of the spectrum.
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