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High-performance heuristic algorithms are difficult to design

I many design choices (representation / search space;
neighbourhoods; search strategy; variable/value selection
heuristic; restart rules; pre-processing; data structures; ...)

I best performance often achieved by combination
of various heuristics
(e.g., best improvement + random restart, multi-phase search,
systematic search + preprocessing, iterated local search,
local + systematic search)

I various heuristic components interact in complex ways
 unexpected, emergent behaviour

I performance can be tricky to assess due to
I differences in behaviour across problem instances
I stochasticity
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Therefore ...

I time-consuming design process, success often
critically dependent on experience, intuition, luck

I resulting algorithms often complex,
somewhat ad-hoc, not fully optimised
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Real-world example:

I Application: Solving SAT-encoded software verification
problems

I Given: High-performance DPLL-type SAT solver (Spear)
I 26 parameters (7 categorical, 3 Boolean, 12 continuous,

4 integer-valued)
I control variable/value ordering heuristics, clause learning,

restarts, ...

I Goal: Minimize expected run-time on ‘typical’ SAT instances
from software verification tool

I Problems:

– default settings  ≈ 300 seconds / run
– good performance on a few instances may not generalise
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From traditional to computer-aided
algorithm design

Traditional algorithm design approach:

I iterative, manual process

I designer gradually introduces/modifies components or
mechanisms

I test performance on benchmark instances

I design often starts from generic or broadly applicable
problem solving method (e.g., evolutionary algorithm)
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Note:

I During the design process, many decisions are made.

I Some choices take the form of parameters,
others are hard-coded.

I Design decisions interact in complex ways.
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Problems:

I Design process is labour-intensive.

I Design decisions often made in ad-hoc fasion,
based on limited experimentation and intuition.

I Human designers typically over-generalise observations,
explore few designs.

I Implicit assumptions of independence, monotonicity
are often incorrect.

I Number of components and mechanisms tends to grow
in each stage of design process.

 complicated designs, unfulfilled performance potential
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Solution: Computer-aided Algorithm Design

I Goal: construct high-performance algorithms automatically

I Key idea: use fully formalised procedures to effectively explore
Key idea: large space of candidate designs

 genetic programming, hyper-heuristics, learning and intelligent op-
timisation, SLS engineering
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Human designer:

I specifies (possibly large) space of candidate algorithm design

I supplies set of problem instances for performance evaluation

I specifies performance metric

Meta-algorithmic system:

I explores design space in principled manner

I evaluates candidate design

I finds high-performance designs
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Advantages:

I lets human designer focus on higher-level issues

I enables better exploration of larger design spaces

I exploits complementary strengths of different approaches
for solving a given problem

I uses principled, fully formalised methods for algorithm design

I can be used to customise algorithms for use in specific
applications with minimal human effort
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Example: SAT-based software verification

Hutter, Babic, Hoos, Hu – FMCAD’07

I Goal: Solve suite of SAT-encoded software verification
Goal: instances as fast as possible

I new DPLL-style SAT solver Spear (by Domagoj Babic)

= highly parameterised heuristic algorithm
= (26 parameters, ≈ 8.3 × 1017 configurations)

I manual configuration by algorithm designer

I automated configuration using ParamILS, a generic
algorithm configuration procedure
[Hutter, Hoos, Stützle – AAAI’07]
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Spear: Empirical results on software verification benchmarks

solver num. solved mean run-time

MiniSAT 2.0 302/302 161.3 CPU sec

Spear original 298/302 787.1 CPU sec
Spear generic. opt. config. 302/302 35.9 CPU sec
Spear specific. opt. config. 302/302 1.5 CPU sec

I ≈ 500-fold speedup through use automated algorithm
configuration procedure (ParamILS)

I new state of the art
(winner of 2007 SMT Competition, QF BV category)
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Design spaces and design patterns

Special cases of computer-aided algorithm design:

I parameter optimisation (for given set of instances)
Birattari et al. 2002; Adenso-Diaz & Laguna 2006, Hutter et al. 2007;

Bartz-Beielstein 2006

I algorithm configuration from components
(for given set of instances)
Fukunaga 2002, Chiarandini et al. 2008, KhudaBukhsh et al. 2009

I restart strategies
Luby et al. 1993; Gagliolo & Schmidhuber 2007
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Special cases of computer-aided algorithm design (2):

I instance-based algorithm configurators
Hutter et al. 2006

I on-line algorithm control / reactive search
Carchrae & Beck 2005; Battiti et al. 2008

I instance-based algorithm selection
Rice 1976; Leyton-Brown et al. 2003; Guerri & Milano 2004;

Xu et al. 2008

I algorithm portfolios (static and dynamic)
Huberman et al. 1997, Gomes & Selman 2001;

Gagliolo & Schmidhuber 2007

 meta-algorithmic design patterns, induce design spaces
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Generalised local search machines (GLSMs)
Hoos (1998); Hoos & Stützle (2004)

I formal model for complex / hybrid stochastic local search
(SLS) algorithms

I facilitate the design of complex SLS algorithms
by structuring and restricting the design space

I abstract GLSMs as instantiable design patterns

I capture structure of search control mechanism
I instantiation of state and transition types

results in SLS algorithm
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Meta-algorithmic search and
optimisation procedures

How to search design spaces?

I use powerful heuristic search and optimisation procedures,
combined with significant amounts of computing power

I use machine learning methods (classification, regression),
combined with significant amount of training data
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Some examples:

I parameter tuning:
I numerical optimisation techniques

e.g., CMA-ES (Hansen & Ostermeier 2001)

I model-based optimisation methods
e.g., SPO (Bartz-Beielstein 2006),

e.g., SPO+ (Hutter et al. 2009)

I algorithm configuration:
I genetic programming

e.g., CLASS (Fukunaga 2002)

I racing procedures
e.g., F-Race (Birattari et al. 2002)

I advanced stochastic local search procedures
e.g., ParamILS (Hutter et al. 2007)
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More examples:

I instance-based algorithm selection
I classification approaches (e.g., Guerri & Milano 2004)

I regression approaches (e.g., Leyton-Brown et al. 2003,
Xu et al. 2008)

I dynamic algorithm portfolios (time allocators)
I bandit solvers (e.g., Gagliolo & Schmidhuber 2007)

I evolutionary algorithms (e.g., Harick & Lobo 1999)
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Many open questions:

I Which procedure for which type of design space?

I How to deal with hybrid design patterns?

I How to best deal with censored, sparse data?
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Selected computer-aided algorithm design
procedures:

I F-Race / Iterative F-Race
Birattari, Stützle, Paquete, Varrentrapp (2002);
Balaprakash, Birattari, Stützle (2007)

I ParamILS
Hutter, Hoos, Stützle (2007); Hutter, Hoos, Leyton-Brown, Stützle (2009)

I SPO / SPO+

Bartz-Beielstein (2006); Hutter, Hoos, Leyton-Brown, Murphy (2009)

I SATzilla
Xu, Hutter, Hoos, Leyton-Brown (2008)
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Automated algorithm selection/configuration
using F-Race
Birattari, Stützle, Paquete, Varrentrapp (2002); Balaprakash, Birattari, Stützle (2007)

Key idea:

I Given: set S of algorithms for a problem, set of problem
instances Π

I Select from S the algorithm expected to solve instances from
Π most efficiently on average
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F-Race (Birattari, Stützle, Paquete, Varrentrapp 2002)

I inspired by methods for model selection methods
in machine learning
(Maron & Moore 1994; Moore & Lee 1994)

I sequentially evaluate algorithms/configuration,
in each iteration, perform one new run per
algorithm/configuration

I eliminate poorly performing algorithms/configurations
as soon as sufficient evidence is gathered against them

I use Friedman test to detect poorly performing
algorithms/configurations
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Iterative F-Race (Balaprakash, Birattari, Stützle 2007)

Problem: When using F-Race for algorithm configuration,
Problem: number of initial configurations considered
Problem: is severely limited.

Solution:

I perform multiple iterations of F-Race on limited set of
configurations

I sample candidate configurations based on probabilistic model
(independent normal distributions centred on surviving
configurations)

I gradually reduce variance over iterations (volume reduction)

 good results for

– MAX-MIN Ant System for the TSP (6 parameters)

– simulated annealing for stochastic vehicle routing (4 parameters)

– estimation-based local search for PTSP (3 parameters)
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Automated algorithm configuration using
ParamILS
Hutter, Hoos, Stützle (2007); Hutter, Hoos, Leyton-Brown, Stützle (2009)

Key idea:

I Given: parameterised algorithm A for a problem,
set of problem instances Π

I Select parameter values of A to solve instances from Π most
efficiently based on search in configuration space

Goal: Apply to algorithms with

I many parameters, relatively few instances.

I categorical parameters
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ParamILS (Hutter, Hoos, Stützle 2007)

I initialisation: pick best of default + R random configurations

I iterated local search in configuration space

I subsidiary local search: iterative first improvement,
change one parameter in each step

I perturbation: change s randomly chosen parameters

I acceptance criterion: always select better configuration

I number of runs per configuration increases over time;
ensure that incumbent always has same number of runs
as ‘new’ configurations
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Some example applications:

I SLS for 2D/3D HP protein structure prediction (5 parameters)
Thachuk, Shmygelska, Hoos (2007)

I DPLL for SAT-encoded software verification (26 parameters)
Hutter, Babic, Hoos, Hu (2007)

I CPLEX for mixed integer programming (63 parameters)
Hutter, Hoos, Leyton-Brown, Stützle (2009)

I University timetabling (7+11 parameters)
Chiarandini, Fawcett, Hoos (2008); Fawcett, Chiarandini, Hoos (2009)

 substantial improvements in state of the art for solving
 these (and other) problems
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Model-based parameter tuning using
Sequential Parameter Optimisation
Bartz-Beielstein (2006); Hutter, Hoos, Leyton-Brown (2009)

Key idea:

I Given: parameterised algorithm A for a problem,
set of problem instances Π

I Select parameter values of A to solve instances from Π most
efficiently based on predictive performance model
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Sequential Parameter Optimisation (SPO):
Bartz-Beielstein (2006)

I perform runs for selected configurations (initial design)
and fit (noise-free Gaussian process) model

I iteratively select promising configuration C ,
run A using C and update model

I initial design: Latin Hypercube Design (LHD)

I use expected improvement criterion to select
promising configurations

I intensification mechanism:
I gradually increase number of runs for each configuration;
I ensure that incumbent always has same number of runs

as ‘new’ configurations
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Latest variant: SPO+ (Hutter, Hoos, Leyton-Brown, Murphy
2009)

I model/predict log-transformed performance data

I modified intensification mechanism ensures that sufficiently
many runs are performed before changing incumbent

Example applications:

I CMA-ES (state-of-the-art continuous optimisation procedure)

I SAPS (high-performance SAT algorithm)

 substantial performance improvements over
 default configurations

(Ongoing work on better handling of tuning over multiple instances.)
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Instance-specific algorithm selection
based on run-time predictions
Leyton-Brown, Nudelman, Shoham (2002); Xu, Hutter, Hoos, Leyton-Brown (2008)

Key idea: (Rice 1976)

I Given: set S of algorithms for a problem, problem instance π

I Select from S the algorithm expected to solve π
most efficiently, based on (cheaply computable) features of π

Here:

I problem instance  vector of cheaply computable features

I features  performance prediction for given set of solvers

I run solver with best predicted performance
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Instance features:

I Use generic and problem-specific features that correlate with
performance and can be computed cheaply.

I Examples (for SAT):
I number of clauses, variables, ...
I constraint graph features
I local & complete search probes

I Use as features statistics of distributions,
e.g., variation coefficient of node degree in constraint graph

I Consider pairwise products of features (quadratic basis
function expansion).
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Run-time prediction:

I Collect feature and performance data on (large & diverse ) set
of training instances.

I Use feature selection to avoid problems due to correlated /
uninformative features.

I Use ridge regression on training data to build predictive model.

Example applications:

I SATzilla (Leyton-Brown et al. 2002; Xu et al. 2008)

I Winner determination for combinatorial auctions
(Leyton-Brown et al. 2003, 2009)

Holger Hoos: Computer-aided design of high-performance algorithms (LION 4 Tutorial) 33



Three success stories Three success stories

How good are current methods for computer-aided
algorithm design?

“The proof is in the pudding”:

I Propositional Satisfiability

I Course Timetabling

I Mixed Integer Programming (CPLEX)

Further successes:

– protein structure prediction (Thachuk et al. 2007)

– TSP (Styles & Hoos in preparation)

– real-world scheduling for the oil & gas industry (Actenum Corp.)
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SATenstein: Automatically Building
Local Search Solvers for SAT
KhudaBukhsh, Xu, Hoos, Leyton-Brown – IJCAI-09

Frankenstein:

create perfect human being from scavenged body parts

SATenstein:

create perfect SAT solvers using components scavenged from
existing solvers

Geneneral approach:

I components from GSAT, WalkSAT, dynamic local search and
G2WSAT algorithms

I flexible SLS framework (derived from UBCSAT)

I find performance-optimising instantiations using ParamILS
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Challenge:

I 41 parameters (mostly categorical)

I over 2 · 1011 configurations

I 6 well-known distributions of SAT instances
(QCP, SW-GCP, R3SAT, HGEN, FAC, CBMC-SE)

I 11 challenger algorithms
(includes all winning SLS solvers from SAT competitions 2003–2008)
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Result:

I factor 70–1000 performance improvements over best
challengers on QCP, HGEN, CBMC-SE

I factor 1.4–2 performance improvement over best challengers
on SW-GCP, R3SAT, FAC
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SATenstein-LS vs VW on CBMC-SE
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SATenstein-LS vs Oracle on CBMC-SE
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SATzilla: Portfolio-based algorithm selection
for SAT
Xu, Hutter, Hoos, Leyton-Brown (JAIR 2008)

Key idea: Instance-based Algorithm Selection

I Given: set S of high-performance SAT solvers (DPLL and
SLS), CNF formula F

I Select the algorithm from S expected to solve F
most efficiently, based on (cheaply computable) features of F .

SATzilla in a nutshell:

I CNF formula  84 polytime-computable instance features

I features  performance prediction for set of SAT solvers

I run solver with best predicted performance
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Under the hood:

I Use state-of-the-art complete (DPLL) and incomplete (local
search) SAT solvers.

I Use ridge regression on selected features to predict solver
run-times from instance features.

I Use method by Schmee & Hahn (1979) to deal with censored
run-time data.
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Some bells and whistles:

I Use pre-solvers to solve ‘easy’ instances quickly.

I Build run-time predictors for various types of instances,
use classifier to select best predictor based on instance
features.

I Predict time required for feature computation; if that time is
too long, use back-up solver.

 prizes in 5 of the 9 main categories of the 2009 SAT Solver
Competition (3 gold, 2 silver medals)
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Hydra: Automatically Configuring Algorithms
for Portfolio-Based Selection
Xu, Hoos, Leyton-Brown – work in progress

Note:

I SATenstein builds solvers that work well on average on a given
set of SAT instances
but: may have to settle for compromises for broad,
heterogenous sets

I SATzilla builds algorithm selector based on given set
of SAT solvers
but: success entirely depends on quality of given solvers

Idea: Combine the two approaches  portfolio-based selection
from set of automatically constructed solvers
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Simple combination:

1. build solvers for various types of instances using automated
algorithm configuration

2. construct portfolio-based selector from these

Drawback: Requires suitably defined sets of instances

Better solution:

iteratively build & add solvers that improve performance
of given portfolio

 Hydra

Note: Builds portfolios solely using

I generic, highly configurable solver (e.g., SATenstein)

I features (as used in SATzilla)
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First results of Hydra for SAT
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First results of Hydra for SAT
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Post-Enrolment Course Timetabling
Chiarandini, Fawcett, Hoos (2008); Fawcett, Hoos, Chiarandini (in preparation)

Post-Enrolment Course Timetabling:

I students enroll in courses

I courses are assigned to rooms and time slots,
subject to hard constraints

I preferences are represented by soft constraints

Our solver:

I modular multiphase stochastic local search algorithm

I hard constraint solver: finds feasible course schedules

I soft constraint solver: optimise schedule (maintaining
feasibility)
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Our first solver:

I developed over ca. 1 month

I starting point: Chiarandini et al. (2003)

I soft constraint solver unchanged

I automatically configured hard constraint solver

Design space for hard constraint solver:

I parameterised combination of constructive search, tabu
search, diversification strategy

I 7 parameters, 50 400 configurations

Automated configuration process:

I configurator: FocusedILS 2.3 (Hutter et al. 2009)

I performance objective: solution quality after 300 CPU sec
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2nd International Timetabling Competition (ITC), Track 2
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Our latest solver:

I developed over ca. 6 months

I starting point: our previous solver

I automatically configured hard & soft constraint solvers

Design space for soft constraint solver:

I highly parameterised simulated annealing algorithm

I 11 parameters, 2.7 × 109 configurations

Automated configuration process:

I configurator: FocusedILS 2.4 (new version, multiple stages)

I multiple performance objectives
(final stage: solution quality after 600 CPU sec)
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2-way race against ITC Track 2 winner

Rank

Cambazard et al.

Our Solver

5 10 15 20

Aggregate

I our solver wins beats ITC winner on 20 out of 24 competition instances

I application to university-wide exam scheduling at UBC in 2010
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Mixed Integer Programming (MIP)
Hutter, Hoos, Leyton-Brown, Stützle (2009)

I MIP is widely used for modelling optimisation problems

I MIP solvers play an important role for solving broad range of
real-world problems

CPLEX:

I prominent and widely used commercial MIP solver

I exact solver, based on sophisticated branch & cut algorithm
and numerous heuristics

I 159 parameters, 81 directly control search process
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“A great deal of algorithmic development effort has been devoted to
establishing default ILOG CPLEX parameter settings that achieve good
performance on a wide variety of MIP models.”

[CPLEX 10.0 user manual, p.247]

Automatically Configuring CPLEX:

I starting point: factory default settings

I 63 parameters (some with ‘AUTO’ settings)

I 1.38 × 1037 configurations

I configurator: FocusedILS 2.3 (Hutter et al. 2009)

I performance objective: minimal mean run-time

I configuration time: 10 × 2 CPU days
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CPLEX on various MIPS benchmarks

Benchmark Default performance Optimised performance Improvement
[CPU sec] [CPU sec] factor

BCOL/Conic.sch 5.37 2.35 (2.4 ± 0.29) 2.2

BCOL/CLS 712 23.4 (327 ± 860) 30.4

BCOL/MIK 64.8 1.19 (301 ± 948) 54.4

CATS/Regions200 72 10.5 (11.4 ± 0.9) 6.8

RNA-QP 969 525 (827 ± 306) 1.8

(Timed-out runs are counted as 10 × cutoff time.)
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CPLEX on BCOL/CLS
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CPLEX on BCOL/Conic.sch

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Runtime [s], default

R
un

tim
e 

[s
], 

au
to

−
tu

ne
d

Holger Hoos: Computer-aided design of high-performance algorithms (LION 4 Tutorial) 56



Latest results: Gurobi on BCOL-MIK
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Latest results: lpsolve on CA-WDP
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Towards a software environment
for computer-aided design
of high-performance algorithms

How to best support use of computer-aided
algorithm design methods?

I develop powerful procedures for searching large design spaces

I develop useful abstractions for specifying design spaces

I develop best practices for computer-aided algorithm design

I provide comfortable software environments for computer-aided
algorithm design
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HAL: High-performance Algorithm Lab
Nell, Fawcett, Hoos, Leyton-Brown (work in progress)

I support algorithm design and empirical analysis

I support wide range of design patterns, procedures

I support effective utilisation of parallel computation

I support multiple platforms
(Linux, Windows, MacOS, Chrome)

I web-based UI, component-based architecture

I open source, easy to use & expand
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A first implementation: HAL 1.0 (sneak preview)

I focus on automated algorithm configuration:
ParamILS [Hutter et al.], GGA [Ansótegui et al.]

I empirical analysis of single solvers, pairs of solvers
(comparative analysis)

I statistical tests (via R), plotting (via Gnuplot)

I system runs on Linux, Mac OS;
web-based UI runs on any browser

I support for compute clusters, batch systems
(pre-configured for Sun Grid Engine)
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Computer-aided Algorithm Design ...

I leverages computational power to construct
better algorithms

I liberates human designers from boring, menial tasks and
let them focus on higher-level design issues

I enables effective exploration of larger design spaces

I facilitates principled design of heuristic algorithms

I revolutionises the way we build and use algorithms
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