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Abstract. We describe several computational problems on prediction
and design of RNA molecules.

1 Introduction

Almost a decade ago, I ventured two blocks from my Computer Sciences de-
partment to a very unfamiliar world - the Chemistry Department. This short
walk was the start of a rewarding ongoing journey. Along the way, I have made
wonderful new friends - both the real sort and the technical sort that like to
make their home in the heads of us theoreticians, there to remain indefinitely.
In this article, I will describe some of the the latter.

The subjects are nucleic acids: DNA and RNA. From a biological perspective,
the role of double-helical DNA in storing genetic information is well known.
The central dogma of molecular biology posits that in living cells, this genetic
information is translated into proteins, which do the real work. The traditional
view of RNA is as a helper molecule in the translation process. That view has
changed in recent years, with RNA getting star billing in regulation of genes
and as a catalyst in many cellular processes [9]. Attention on RNA stems also
from the many diseases caused by RNA viruses. Accordingly, significant effort is
now expended in understanding the function of RNA molecules. The structure
of RNA molecules is key to their function, and so algorithms for prediction of
RNA structure are of great value.

While the biological roles of DNA and RNA molecules are clearly of great
importance, they are only part of the story. From an engineering perspective,
DNA and RNA molecules turn out to be quite versatile, capable of functions
not seen in nature. These molecules can be synthesized and used as molecular
bar-codes in libraries of polymers [24] and as probes on DNA chips for analysis
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of gene expression data. RNA’s with new regulatory properties are designed,
with hopes of applications in therapeutics [25]. Tiny instances of combinatorial
problems have been solved in a wet-lab, using DNA or RNA to represent a pool of
solutions to a problem instance [4]. Novel topological and rigid three-dimensional
structures have been built from DNA [22, 30], and a theory of programmable
self-assembly of such structures is emerging [20]. Scientists are working to create
catalytic RNA molecules that support the so-called “RNA world hypothesis”:
prior to our protein-dominated world, RNA molecules functioned as a complete
biological system capable of the basic processes of life [26]. Naturally, advances
in these areas also rely greatly on good understanding of function, and hence
structure, of RNA and DNA molecules.

The problems described in this article are motivated more by the engineering,
rather than the biological perspective of the potential roles of DNA and RNA.
Even for the problem of predicting RNA structure, the two different perspectives
suggest somewhat different approaches. In the biological setting, it is often pos-
sible to get sequences of homologous (i.e. evolutionarily and functionally related)
molecules from several organisms. In this case, a comparative approach that uses
clues about common structure from all molecules in the set are the most success-
ful in structure prediction. However, in the engineering setting, this approach is
typically not applicable. Moreover, the inverse to the prediction problem, namely
design of a DNA or RNA molecule that has a particular structure, is of central
importance when engineering novel molecules.

We focus on problems relating to RNA and DNA secondary structure, which
we describe in Section 2. In Section 3, we describe problems on predicting the
secondary structure of a given DNA or RNA molecule. Section 4 considers more
general problems when the input is a set of molecules. Finally, in Section 5, we
describe problems on the design of DNA and RNA molecules that fold to a given
input secondary structure.

2 Basics on RNA secondary structure

To keep things simple, consider an RNA molecule to be a strand of four types
of bases, with two chemically distinct ends, known as the 5′ and 3′ ends. In
RNA the base types are Adenine (A), Cytosine (C), Guanine (G), and Uracil
(U). DNA also has four types of bases, including A, C, G and replacing Uracil
(U) with Thymine (T). We represent an RNA (DNA) molecule as a string over
{A, C, G, U} ({A, C, G, T }), with the left end corresponding to the 5′ end of the
molecule.

In a process called hybridization, pairs of bases in RNA and DNA form
hydrogen bonds, with the complementary pairs C-G and A-U (or A-T in the
case of DNA) being the strongest and others, particularly the “wobble” pair
G-U also playing a role [29]. A folded molecule is largely held together by the
resulting set of bonds. called its secondary structure. Knowledge of the secondary
structure of a folded RNA molecule sheds valuable insight on its function [27].
We note that while the DNA that stores genetic information in living organisms
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is formed from two complementary strands, single-stranded DNA folds and forms
structures according to the same basic principles as does a single stand of RNA.

Figure 1 depicts the secondary structure of two DNA molecules. In the graph-
ical depictions (top), dots indicate base pairs, and “stems” of paired bases and
“loops” of unpaired bases can be identified. The graphical depictions do not con-
vey the three-dimensional structure of the molecules. For example, stems twist to
form double helices familiar in illustrations of DNA, and angles at which stems
emanate from loops cannot be inferred from the diagrams. In the arc depiction
(bottom), arcs connect paired bases. In the left structure, arcs are hierarchically
nested, indicating that this is a pseudoknot free structure. In contrast, arcs cross
in the arc depiction of the structure on the right, indicating that it is pseudo-

knotted.

(a) (b)

Fig. 1. (a) Pseudoknot free secondary structure. This structure contains 10 base pairs
and three loops, two of which are hairpin loops (having one emanating stem) and one
of which is a multi-loop (having three emanating stems). The numbers refer to base
indices, in multiples of 10, starting at the 5′ end (leftmost base in arc depiction). The
substructure from index 19 to index 28 contains a stem with two stacked pairs, namely
(G-C,C-G) and (C-G,G-C), and a hairpin loop with four unpaired bases (all A’s) and
closing base pair G-C. In set notation, this substructure is {(19, 28), (20, 27), (21, 26)}.
The free energy contributions of the two stacked pairs and hairpin loop are −3.4
kcal/mol, −2.4 kcal/mol, and 4.5 kcal/mol, respectively, so the total free energy of
the substructure from index 19 to 28 is −1.3 kcal/mol. (b) Pseudoknotted secondary
structure.

Abstractly, we represent the secondary structure of a DNA or RNA molecule
of length (i.e. number of bases) n as a set S of integer pairs {(i, j) | 1 ≤ i < j ≤
n}, where each i is contained in at most one pair of S. The pair (i, j) indicates
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a bond between the bases at positions i and j of the corresponding strand. The
secondary structure is pseudoknot free if and only if for all pairs (i, j) and (i′, j′),
it is not the case that i′ < i < j′ < j.

The thermodynamic model for RNA structure formation posits that, out of
the exponentially many possibilities, an RNA molecule folds into that struc-
ture with the minimum free energy (mfe). Free energy models typically assume
that the total free energy of a given secondary structure for a molecule is the
sum of independent contributions of adjacent, or stacked, base pairs in stems
(which tend to stabilize the structure) and of loops (which tend to destabilize
the structure). These contributions depend on temperature, the concentration
of the molecule in solution, and the ionic concentration of the solution. Standard

models additionally assume that the free energy contribution of a loop depends
only on (i) the bases closing the stem and those unpaired bases in the loop
adjacent to the stem, for each stem, (ii) the number of stems emanating from
the loop, and (iii) the number of unpaired bases between consecutive stems. For
loops with more than two stems, (ii) and (iii) are further simplified to be of the
form a + bs + cu, where b, c are constants, s is the number of stems emanating
from the loop, and u is the total number of unpaired bases in the loop.

Significant effort has been expended to determine many of these energy con-
tributions experimentally [21, 23]. Other contributions are estimated based on
extrapolations from known data or existing databases of naturally occurring
structures [17]. More sophisticated models also associate energy contributions
with coaxially stacked pairs and other structural features, but we will ignore
these here for the sake of simplicity.

3 RNA secondary structure prediction

“If 10% of protein fold researchers switched to RNA, the problem could
be solved in one or two years.” - I. Tinoco Jr. and C. Bustamente

The best known algorithms for predicting the secondary structure of a single
input RNA or DNA molecule work by finding the minimum free energy (mfe)
secondary structure of the given input RNA molecule, with respect to a given
standard thermodynamic model. Lyngsø and Pedersen [15] have shown that the
task is NP-hard. However, the problem is not as intractable as this might suggest,
because in practice the range of structures into which a molecule will actually
fold is somewhat limited.

Zuker and Steigler [32] describe a dynamic programming algorithm for finding
the mfe pseudoknot free secondary structure of a given molecule. (In practice, the
algorithm can be used to gain insight on secondary structure even for molecules
with pseudoknotted structures, because there is some evidence that molecules
fold to form a pseudoknot free secondary structure first, and pseudoknotted
features are added only at the end of the folding process.) Conceptually the
algorithm is quite simple, exploiting the following fact. Let the input strand
be b1b2 . . . bn. Suppose that W (i, j) is the energy of the mfe pseudoknot free



5

secondary structure for strand bi . . . bj , and V (i, j) be the energy of the mfe
pseudoknot free secondary structure for strand bi . . . bj , among those structures
containing base pair (i, j). Then, W satisfies the following recurrence (base cases
excluded):

W (i, j) = min[V (i, j), mink:i<k<j{W (i, k) + W (k + 1, j)}].

V (i, j) also satisfies a recurrence that is expressed in terms of the different types
of loops (omitted here). A refinement of the original Zuker-Steigler algorithm,
due to Lyngsø et al. [16], has running time O(n3). We note that the algorithm
exploits the simplified loop energy contributions of the standard thermodynamic
model mentioned earlier. Implementations of this algorithm are available on the
world wide web as part of the mfold [17] and the Vienna [13] packages.

Mathews et al. [17] report that on a large data set of RNA molecules of
length up to 700, the algorithm reports 73% of known base pairs. On longer
molecules, the prediction accuracy is poorer. Thus, there is certainly room for
improvement in the current mfe approach to secondary structure prediction.
Perhaps the most important problem listed in this article is to find algorithms for
pseudoknot free secondary structure prediction that have improved accuracy. We
expect that significant progress will only come through a greater understanding
of the underlying biological forces that determine folding, perhaps by refining
the currently used thermodynamic model or by considering the folding pathway
of molecules. In light of this and the subtle interplays between algorithmic and
modeling considerations, we believe that the best progress can be made only
through productive collaborations between algorithm designers and experts on
nucleic acids.

So far, we have focused on the problem of finding the mfe secondary structure
(with respect to some thermodynamic model) of a DNA or RNA molecule. Other
information on the stability of the molecule’s structure can also be very useful.
A better view is that each possible secondary structure S for molecule M occurs
with a probability that is proportional to e−∆G(S)/RT where ∆G(S) is the free
energy associated with structure S, R is the Boltzmann constant, and T is
temperature. Associated with each possible base pair of the molecule is a weight,
defined to be the sum of the probabilities of the structures in which it occurs.
McCaskill [18] gave an O(n3) dynamic for calculating the set of base pair weights
of a molecule. This algorithm is incorporated into standard folding packages
[17, 13], significantly enhancing their utility. Another useful enhancement to the
Zuker-Steigler algorithm outputs not just the mfe structure, but all structures
with energy below a user-supplied threshold [31, 33].

From a purely algorithmic standpoint, the problem of predicting RNA and
DNA secondary structure becomes more interesting when one considers pseu-
doknotted structures. The thermodynamic model for pseudoknot free secondary
structures has been extended to include contributions of pseudoknotted stems
and loops. Several algorithms have been proposed for predicting the mfe sec-
ondary structure from a class of secondary structures that allows limited types
of pseudoknots [1, 15, 19, 28]. Other algorithms are heuristic in nature, such as the
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genetic algorithm of Gultyaev et al. [12]. The dynamic programming algorithm
of Rivas and Eddy [19] is the most general in terms of the class of structures
handled. The authors claim that all known natural structures can be handled by
the algorithm, although they do not provide evidence for this claim. However,
the authors state that “we lack a systematic a priori characterization of the
class of configurations that this algorithm can solve”. Another limitation of the
algorithm is its high running time of Θ(n6). An algorithm of Akutsu [1] runs
in O(n4) time and O(n2) space, but there are natural pseudoknotted structures
that cannot be handled by this algorithm.

An interesting goal for further research is to precisely classify pseudoknotted
structures, refining the current partition into pseudoknot free and pseudoknotted
structures. As a first step in this direction, we have developed a characterization
of the class of secondary structures that can be handled by the Rivas and Eddy
algorithm. Roughly, a secondary structure can be handled by that algorithm if
and only if in the arc depiction of that structure (see Figure 1), all arcs can be
reduced to one arc by repeatedly applying a collapse operation. In a collapse
operation, two arcs can be replaced by one arc if one can colour at most two line
segments along the baseline of the depiction, and touch all four end points of
the two arcs but no other arc. (We note that a natural approach to classification
of secondary structures, which does not seem to be particularly fruitful, is to
consider the crossing number of the arc depiction of the secondary structure.)

With a good classification of secondary structures in hand, one can then hope
to clarify the trade-offs between the class of structures that can be handled, and
the time or space requirements of algorithms for predicting mfe pseudoknot-
ted structures. Perhaps the classification would provide a hierarchy of structure
classes, parameterized by some measure k, and a fixed-parameter tractability
result for this classification is possible, as in the work of Downey et al. [10].

It would be very useful to calculate the partition function for pseudoknotted
structures. An extension of the Rivas and Eddy algorithm along the lines of
McCaskill [18] should be possible, but would be computationally expensive and
limited by the range of structures handled by the Rivas and Eddy algorithm.
It may be possible to approximate the partition function via the Markov chain
monte carlo method of Jerrum and Sinclair [14].

Finally, we note that secondary structures can also form between two or more
RNA or DNA molecules in solution, so a natural generalization of the problem
discussed so far is to predict the mfe secondary structure formed by two or more
input molecules. Conceptually, the thermodynamic model for a secondary struc-
ture formed from multiple strands is very similar to that for a single strand,
but an initiation penalty is added to the total free energy. An algorithm for pre-
dicting the secondary structure of a pair of molecules is publically available [2].
Some interesting algorithmic questions arise in design of algorithms for handling
multiple strands. For example, what does it mean for a structure with multiple
strands to be pseudoknot free?
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4 Prediction for combinatorial sets of strands

The problems in this section are motivated by the use of combinatorial sets of
strands in various contexts. In the first context, described by Brenner et al. [7],
the goal is to sequence millions of short DNA fragments (these fragments could
be in a gene expression sample). DNA sequencing machines handle one sequence
at a time, and it would be infeasible to separate out the millions of short frag-
ments and sequence each separately. Instead, Brenner described an ingenious
“biomolecular algorithm” to sequence the molecules in a massively parallel fash-
ion. One step of this algorithm attaches a unique DNA “tag” molecule to each of
the DNA fragments. The tags are used to help to organize the DNA fragments
in further steps of the algorithm. Let

S = {TTAC, AATC, TACT, ATCA, ACAT, TCTA, CTTT, CAAA}. (1)

The tags constructed by Brenner et al. [8] are all of the 88 strands in the combi-
natorial set S8. The strands in S were carefully designed so that each contains
no G’s, exactly one C, and differs from the other strands of S in three of the
four bases. The reason for this design is to ensure that the tags do not fold on
themselves (that is, have no secondary structure), in which case they would not
be useful as tag molecules in the sequencing scheme.

The set S of tags given in (1) above is an example of a complete combinatorial

set, defined as a set of strings (strands) in S(1) × S(2) . . . × S(t), where for
each i, 1 ≤ i ≤ t, S(i) is a set of strings, all having the same length li. The
li are not required to be equal. Complete combinatorial sets are also used to
represent solution spaces in biocomputation that find a satisfying assignment to
an instance of the Satisfiability problem [6, 11]. Again, for this use, all strands
in the complete combinatorial sets should form no secondary structure.

These applications motivate the structure freeness problem for combi-

natorial sets: given the description of a complete combinatorial set S, determine
whether all of the 2t strands in S are structure free. Here, we consider a strand
to be structure free if its mfe pseudoknot free secondary structure is the empty
set. We limit our definition to pseudoknot free secondary structures here because
in the case of predicting the mfe secondary structure of a single molecule, the
pseudoknot free case is already well understood, as discussed in the last section
of this article.

Given sets of strings S(1), S(2), . . . , S(t), one can test that all strands in
S = S(1) × S(2) . . . × S(t) are structure free by running the Zuker-Steigler
algorithm on each strand of S. This would take time proportional to |S|n3,
where n = l1 + l2 + . . . + lt is the total length of strands in S. In general, this
running time is exponential in the input size. Andronescu et al. [3] describe a
simple generalization of the Zuker-Steigler algorithm, which has running time
O(maxi|S(i)|2n3).

The algorithm of Andronescu et al. handles only complete combinatorial sets.
More general combinatorial sets can be defined via an acyclic graph G with a
special start node and end node. Suppose that each node i in the graph is labeled
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with a set of strands Si. Then, each path n1, n2, . . . , nt in the graph from the start
node to the end node corresponds to the set of strands S(n1)×S(n2) . . .×S(nt).
The combinatorial set of strands S(G) associated with the graph is the union
of the set of strands for each path of G from the start node to the end node.
(Since G is acyclic, there are a finite number of such paths). Such a combinatorial
set of strands was used by Adleman [4] in his biomolecular computation for a
small instance of the Hamiltonian Path problem. It is open whether there is an
efficient algorithm to test if all strands S(G) are structure free, where the input
is the graph G and the set S(i) of strands for each node i of G. The case where
all strands in S(i) have the same length, for any node i of G, is also open. By
adding cycles to G, the problem becomes even more general, and its complexity
remains open even for the simplest case that the nodes and edges of G form a
simple cycle.

5 Secondary structure design

“... rather than examining in detail what occurs in nature (biological
organisms), we take the engineering approach of asking, what can we
build?” - Erik Winfree.

The simplest version of the RNA design problem is as follows: given a sec-
ondary structure S (that is, set of desired base pairings), design a strand whose
mfe secondary structure is S, according to the standard thermodynamic model.
There has been relatively little previous theoretical work on algorithms for de-
sign of DNA or RNA molecules that have certain structural properties. Indeed, it
is open whether the problem is NP-hard, although we conjecture that this is the
case. Even if the range of secondary structures is restricted to be the pseudoknot
free secondary structures, the complexity of the problem is open.

However, as with RNA secondary structure prediction, we expect that the
range of structures one may wish to design in practice will be somewhat lim-
ited. Thus, it would certainly be useful to provide characterizations of secondary
structure classes for which the design problem is efficiently solvable. More useful
versions of the RNA design problem may pose additional requirements, perhaps
on the stability of the mfe structure or on the base composition of the RNA
molecule.

A generalization of the RNA secondary structure design problem above arises
when the desired structure is composed of more than one strand. Many of the
applications of RNA secondary structure design that we are familiar with involve
multiple strands. For example, Seeman has designed several multi-strand struc-
tural motifs, and has developed an interactive software tool to help design the
component strands [22]. Winfree et al. [30] proposed a method for self-assembly
of DNA “tile” molecules in a programmable fashion, and has shown that pro-
grammable self-assembly is in principle capable of universal computation. The
component tile molecules used in these self-assembly processes involve four com-
ponent strands, which form a rigid two-dimensional structure with protruding
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short single strands, called sticky ends, that are available for hybridization with
the sticky ends of other tile molecules. RNA molecules are designed as molecular
switches, biosensors, and even for therapeutic uses. For example, it is possible to
inhibit the action of certain pathogenic RNA molecules (such as viruses) using
carefully-designed short RNA molecules, called trans-cleaving ribozymes, that
can bind to the pathogenic RNA and cleave it [25]. The trans-cleaving ribozymes
are currently developed via in-vitro evolution, in which a large library of RNA
molecules is screened to select for those that exhibit some tendency towards the
desired function and the screened molecules are then randomly mutated, in or-
der to diversify the pool. The screening and diversification steps are repeated
until a molecule with the desired function is obtained. Computational methods
for design of RNA molecules could help provide good starting points for in-vitro

evolution processes. As with the RNA secondary structure design problem for
a single strand, while ad-hoc techniques are in use by researchers in Chemistry,
there is little theoretical knowledge of good algorithmic design principles.

Finally, a design problem that has received significant attention is that of de-
signing combinatorial sets of molecules that have no secondary structure. This
is the inverse of the prediction problem mentioned in Section 4. BenDor et al. [5]
describe a combinatorial design scheme with provably good properties that ad-
dress one version of this problem. Other approaches, such as the simple design of
Brenner described in Section 4, construct strands in the component sets (S(i))
of the combinatorial sets to be over a three-letter alphabet and have certain
coding-theoretic properties. In light of the wide uses of these designs, further
insights as to good design strategies would be useful.

6 Conclusions

This article has described several problems of a combinatorial flavour relating to
RNA secondary structure prediction and design. These problems are motivated
by work in design of RNA and DNA strands for diverse applications with both
biological and computational motivations. The prediction and design problems
are inter-related, with good algorithms for prediction being a prerequisite to
tackling the secondary structure design problems. In light of the importance of
these problems in both the biological and engineering settings, and the relatively
little attention they have received to date from the computer science community,
they represent a fruitful direction for algorithms research.

Inevitably, the problems reflect my own interests and biases. Many other the-
oretically interesting problems, motivated by three-dimensional RNA structure
prediction, visualization of secondary structures, and more are not covered here,
but raise interesting questions in computational geometry and graph drawing.
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