On Improving the Eff ediveness of
Open Leaning Environments
Through Tail ored Suppat for Exploration

Andrea Bunt*, Cristina Conati, Michagl Huggett & Kasia Muldner
{bunt, conati, mikey, kmuldner} @cs.ubc.ca

Department of Computer Science
University of British Columbia
2366 Main Mall
Vancouver, B.C. Canada V6T 174
Phone: (604) 822-4632
Fax: (604) 822-5485

Abstract Open leaning environments can be beneficia for leaning in ways na
avail able in more tutor-controlled systems, because of the attive role the leaner playsin
knowledge acquisition. However, it has been shown that not al leaners are proficient in
unconstrained exploration, restricting their &bility to lean effectively in these
environments. In this paper we present the Adaptive Coach for Exploration (ACE), a
prototype computational framework that supports active exploration in an open learning
environment by providing tailored support to overcome spedfic student difficulties.

ACE provides dudents with a highly-graphical, exploratory learning environment in
the domain o mathematical functions. A Student Model assesses gudent knowledge
and exploratory behaviour using a Bayesian network; ACE's Coach uses this assessnent
to generate tailored hints that support the exploratory behaviour of those students who
would otherwise have trouble leaning in an ursupervised environment.

After describing ACE's components, we present the promising results of a
preliminary user study that gauges the system's effectiveness

1. Introduction

Open learning environments have been the subjed of extensive research in the fidd of
computer-supported learning. These environments, also known as exploratory or discovery
environments, place less emphasis on explicit instruction and more on providing the learner
with tools that support learning throughunconstrained exploration of the target instructional
domain [3, 18, 19]. Advocates of open learning environments bdieve that, through active
involvement in the knowledge acquisition process, the student can gain a degper and more
structured understanding of the domain. At the other end of the spectrum, supporters of more
guided ways of learning argue for the dfectiveness of tutor-controlled environments that
monitor and structure the learning processthrough focused activities [2, 12, 16].

! Research funded by NSERC PGS A

While there is substantial evidence on the effectiveness of environments that rely on some
degreeof tutor control [1, 5, 6], user evaluations of pure exploratory/discovery environments
have produced mixed results. In particular, successul learning in these ewironments ssems
to depend strongly on the student’s learning style [10, 11] and on meta-cognitive skill s which
contribute to effective eploration, such as the ability to formulate hypotheses, perform
experiments, draw conclusions based on the results, and monitor on€s progress in the
learning pocess [4].These results auggest that the efectiveness of open learning
environments can be improved by providing additional support to the learning process Two
approaches have been followed in this direction.

The first approach is to provide supplementary cognitive tods pecifically designed to
scaffold the application of the rdlevant meta-cognitive skills [7, 14, 18]. However, the results
obtained with this approach indicate that even when very carefully designed, cognitive tools
can sometimes interfere with the learning process. This is especially true if ther use is
imposed on al learnes, even the ones who do not need the extra scaffolding because they
already possessand apply the rdevant meta-cognitive skills.

The second approach is to provide the students with more active and explicit instruction,
taillored to ther specific difficulties in the eploratory process. This approach is quite
difficult, since it relies on the apability to monitor and understand the student’s
unconstrained exploratory behaviour. Nonethdess it has the advantage of providing hep for
those students who have problems learning through exploration, without affecting others who
can explore df ectively.

In this paper, we describe ACE (Adaptive Coach for Exploration), a prototype intdligent
learning environment that follows the second approach by offering tailored support for the
exploration of mathematical functions. ACE monitors the eploratory actions that students
perform throudh its interface and tries to deted when a student is experiencing difficulties
with the eploration process When necessary, the environment generates interventions aimed
at hdping the student overcome these difficulties, while giving them a sense of control and
freedom.

Because of the difficulty of monitoring a student’s behaviour in an open learning
environment, only a few other environments have pursued similar approaches. In [17] the
authors present a student modd to assess and support the process of hypothesis testing. This
model relies on the student being active enough to generate hypotheses and so does not assst
the student in searching the space of possble hypotheses. Similarly, Smithtown [11], a
discovery learning environment in the domain o microeconomics, heps students gructure
their experiments by guiding them through a fixed sequence of steps, but does not address the
needs of less active students who have problems initiating experiments and making
predictions. Bevedere [8], an environment that provides graphical tools to build scientific
arguments, also hdps gudents improve ther arguments based on predefined syntactic and
consistency reations among argument components. However, Bevedere does not actually
parse the students' arguments nor does it monitor the data collection processthat the students
engagein prior to argument formation.

In ACE, we focus more on €iciting students' exploratory behaviour, by explicitly guiding
more passve learners to use ACE's interface tools effedively in exploring the target domain
of mathematical functions. In the following sections of this paper, we first describe these
tools. Next, we introduce both the probabilistic student modd that ACE uses to assss
students exploratory behaviour, and ACE’'s coaching comporent. Finally, we report on the
results of a prdiminary study that evaluates ACE’s €ffectiveness in promoting learning by
supporting exploration.

<[> 88| B
FUNCTION MACHINE N

50 44 -0 -7 O 1 4 30 36

The Machine

In the machine unit, you will get a sense of how
functions transforen an input number into an output

number.
f(x) =2x+2

Az you input nunbers and click through the stepsina
computation, the simple step-by-step nature of function
calculation becomes clear

Drag abox behind the tail of the arrow and ® Vel do 1 do?

click on the coloured button! O Tt i

Next Exercise
i The RAFT Help Pages
Get hint

Figure1: Machine Unit

2. Description of the System

The ACE system consists of three components: a Graphical User Interface (GUI), a Student
Modd, and a Coach. The GUI presents interactive activities geared at stimulating exploration
of mathematical functions. The Student Modd interprets interactions with the student in
order to determine the dfectiveness of the student’s exploratory behaviour and leve of
knowledge. The Coach monitors the student’s traversal of the curriculum, providing tailored
situation-dependent suggestions and hints aimed at improving the student’s exploration of the
avail able material.

21 TheGUI

The GUI is designed to allow the student to explore functions in as many ways as possble
Most of ACE's information is displayed in its main window (see Figure 1, Ieft-top pand).
The upper area of the window is a graphical display that can draw and animate text, pictures,
and computable shapes such as function curves. This is the main area in which the student
interacts with the system. Below this is a Feadback pand (Figure 1, left-bottom pand), in
which hints from the Coach are printed. The right side of the window is in effed an HTML
browser containing hyperlinks to the system's hdp pages, which include both interface
instructions and domain-related help.

2.1.1 ThreeUnit Types

Currently, ACE presents the student with three different units — the Machine, the
Switchbeard, and the Plot unit, which are loosdy based on the material in the pre-calculus

<> 8B <[> 8655] | f(x)=(x-.3)*-31

FUNCTION SWITCHBOARD |
output f(x)=4x -4 ; |
124 12 184 4 -196 -136 32 -40 -4 || |

o @ o & » =] (=] [] J |l : r

. |]

| l'(| |I|

0 0 0 I-.‘(‘IJ |00 (l 20 0 40 0

. \ 1w

. lll‘ i.‘] |,"

48 33 9 2 0 2 9 32 47 VT /
input x g/
Dragtheinputs (x) tothe oorrect outputs f(x) | n

S 00 1 09 a1 Nex eercise
Figure 2: Switchboard Unit Figure 3: Plot Unit

sedion of [13]. Each unit contains a s&t of exercises; each exercise presents the student with a
different function to explore. The units and exercises are initially shown in sequential order,
providing increasing complexity of interaction as the student moves through the arriculum.
The student can move to the next exercise by clicking an the “Next exercise’ button. Also,
the student can choose to move to any exercise by using the Lesson Browser tool (explained
bdow) at any time.

The Machine unit (Figure 1) shows the student how a numeric input to a function is
processed into an output. The student drags an input to the “maching’, which generates the
output. The student is presented with a variety of inputs to explore The student clicks
through the ‘steps’ involved in the calculation, and can view the intermediate result at each
step. Animation is used as an added stimulus — in order to draw the student’s attention to it,
the output generated by the Machine appearsin a pink circle after moving acrossthe screen.

The Switchboard unit (Figure 2) requires more active thinking from the student, in that the
student is given the opportunity to explore the mapping of a range of inputs onto a range of
outputs. As the unit’s name might imply, the functionality is very much like a switchboard —
each of the inputs has a ‘draghall’ next to it that the student can drag to any ‘socke’ next to
an output number. As it is dragged, a line continuously connects it to the input. If the student
succeads in connecting the input to the @rred output, the draghball and the conned line turn
green, otherwise they turn red. The student may reconnect an input to a different output at
any time.

The goal of the Plot unit (Figure 3) is to help the student explore the properties of graphs
and equations, and reationships between the two. The interface contains bath an equation
box (found in the lower left corner of Figure 3), which shows the current function eguation,
and the corresponding gaph o that function, displayed in an x-y plane. The student can
manipulate the graph d the function ether by dragging it around the plane or by typing
diredly into the equation box. Updating the graph automatically updates the function
equation, and vice-versa.

2.1.2 Tools

Although the abowve units and correspording exercises are initially presented in a predefined
sequence, we want students to be able to fredy explore the curriculum. Therefore, the GUI
toolbar holds buttons to allow the student to move forward and backward through the
curriculum, as well as a Lesson Browser (Figure 5). The Lesson Browser shows all exercises,
and allows the student to go to any exercise by clicking on it. The toolbar also contains an

Figure 4: An example portion of the Bayesian Network for the plot unit.

Exploration Asdstant, a tool to help the students organize their exploration process that will
be described in more detail in a later section.

2.2 The Student Modd

The Student Modd monitors the student’ s interaction with the system in order to determine
whether the student is effectively exploring the environment and gaining an understanding of
the domain.

The Student Modd mugt assess the student’s behaviour with reativey sparse information.
The modd can view low-levd information such as the inputs and autputs entered by the
student, but it does nat have any access to the student’s underlying reasoning. While this
restricts the level of assessment, it does alow for a more natural interaction with the system
where the student is allowed to fredy explore the environment without imposition. Given the
limited information available to the mode, asessng the student’s behaviour involves a great
deal of uncetainty, which we handle using the probabilistic reasoning framework of
Bayesian networks [9].

The Student Modd’s Bayesian network consists of two types of nodes. one that assesses the
effediveness of the student's exploratory behaviour (exploratory nodes) and the other
representing the student’s understanding of the domain concepts. Exploratory nodes in the
network represent exploratory behaviour at different levels of granularity (see Figure 4): the
effediveness of the student's overall exploration, the eploration of individua units, the
exploration o individual exercises, and the exploration of concepts, such as ‘dope and
‘intercept’. Concepts are modeled in the network in a hierarchical fashion. For example, the
general concept of dope eploration consists of the more specific concepts — the exploration
of positive slopes, negative slopes and the ze&o dope The Conditional Probability Tables in

Chapter 1 "You have tried these inputs:

machinelnit

small-r ange +
Ex.0 9 4 I
large-range +
Ex. 1
-7 I -2 I
Ex. 2
zero
small-r ange -
Ex. 4 1
37 I
arrowlnit |
N arge-range - |43 I 33 I
Ex. 6
Figure 5: The Lesson Browser Figure 6: The Exploration Assistant

the network are mnstructed using ou initial estimates, empirical evaluations will be nesded
to verify and refine these probabilities.

In order to assess the dfectiveness of the student’s exploratory behaviour, the Student
Modd looks for evidence that the student is exploring an exercise s slient concepts, referred
to as relevant exploration cases. The rdevant exploration cases for a particular exercise
depend on bath the current unit and current function being explored. For example, in the
Machine and Switchboard units, the student should explore all of the different categories of
inputs available, such as small positive inputs, large postive inputs, small negative inputs,
large negative inputs, and zero. In the Plot unit, the student should explore how modifying
each of the different components of the function (e.g. the slope coefficient) changes the shape
of the graph, and vice-versa.

The Student Modd uses evidence that each relevant exploration case has been sufficiently
explored to both assess how wel the student has explored a particular exercise, as wdl as
how wdl the student has explored concepts that appear in multiple exercises. As the system
does not know ahead o time the exact number and nature of exercises that the student will
visit (since the student can jump around using the Leson Browser), each exercise node and
its associated case nodes are added to the network dynamically at run-time when the student
begins a new exercise

Figure 4 shows an example portion of the network for the plot unit where the sudent has
visted two exercises, as indicated by the “Exercise 1 Exploration” and “Exercise 2
Exploration” nodes. In the first exercise the student was presented with a constant function,
which has as rdevant exploration cases paostive intercepts (labeled “Exercise 1 Case 17 in
Figure 4) and negative intercepts (labded “Exercise 1 Case 27). In the second exercise, the
student was presented with a linear function, which has as reevant exploration cases paositive
intercepts, negative intercepts, positive slopes, negative slopes, and the zero slope (labeed
“Exercise 2 Case 1" through “Exercise 2 Case 5" respectively). These cases are used to
update the nodes representing the eploration of the related general concepts (labeed
“Podintercept Exploration”, “Negintercept Exploration”, “PosSlope Exploration”,
“ZeroSlope Exploration” and “NegSlope Exploration”) and the student’s exploration of each
individual exercise.

The other type of nodes found in the network represent the student’s knowledge of function-
-rdlated concepts. The etent of the student’s explorations is used in part to judge how well
the student seems to understand the material. The exercises in the Switchbaard alow the
students to demonstrate their knowledge directly, although these are the only exercises with
any notion of ‘ corredness.

| think you shoul d explore a wider variety of graphs

You shoul d seewhat the function looks likewhen it has a positive slope: pay clase attention to
the shape of the line!

You can modify the slope by typing a new valueinto the function equation text box. Think
about therelationship between the functi on equation and gr aph! L

Figure 7: TheHint Window
2.3 TheCoach

In order to remain consistent with the philosophy of exploratory learning environments, it is
crucial that the Coach supports sudent exploration as unobtrusively as possble. Thus, the
Coach is designed to provide different levels of guidance according to the neals of the
individual learner.

The first levd of guidance @mnsigs of a generic suggestion to continue eploring when a
student tries to leave an exercise before having adequately explored it. Currently, the Coach
does nat interrupt a student’s exploration d an exercise. Once the students sgnal that they
wish to move to a different exercise, the Coach examines the students' behaviour in order to
decide whether the eploration is satisfactory. In order to do so, the Coach queries the
Student Modd for two pieces of information: the probability that the student has adequatdy
explored the current exercise and the probabilities for the rdevant exploration concepts. The
Coach remains slent if ether the current exercise eploration is satisfactory (i.e. the reated
probability is above a pre-determined threshold), or if all of the associated exploration
concept probabilities are satisfactory. If the student does not meat either of these two criteria,
then a message is down, suggesting that the student explore more and ask for hints if
necessry. This message does not contain any concrete information as to what the student
should explore, but includes a suggestion to ask for a hint. We omitted any specifics from this
message to force the students to be as Hf-direded as possble in the exploration process and
to take initiative in obtaining hints. Since we want to maintain a high leve of learner control,
the student may always choose to disregard the Coach’s suggestion and leave the ercise at
any point. If a student does decide to stay, a suggestion is made to gpen the Exploration
Asgstant (currently only available for the Machine and Switchbaard unts), a tool that helps
students monitor their exploration process by categorizing and displaying their recent
exploratory actions. Figure 6 shows the tool open for an exercise in the Machine unit; it has
organized the various inputs that the student has explored into relevant categories represented
in the Student Modd (such as Small-Positive-Range inputs, Zero inputs, €c).

As gudents explore, they can ask for a hint at any time. The Coach generates hints
dynamically by traversing the concept hierarchies that are stored in the Student Modd in a
bottom-to-top, left-to-right manner. The traversal includes only those hierarchies that contain
concepts rdlevant to the current exercise, and stops when an unexplored concept is found
Each applicable mncept has a direct mapping to a hint object that contains a template for a
progresson of suggestions on how to explore that concept; these suggestions dart off very
general, and become more specific. Once an unexplored concept is found its corresponding
hint object is used to generate the hint. The Student Modd continues to assess the student’s
actions between hint requests, and so the concept traversal is performed every time a hint is
requested; this approach allows the Coach’s suggestions to remain consisent with the current

status of the student’ s exploration.

We will illustrate the hint procedure by going back to the example in the previous sction.
Let’s suppose owr student is working with a linear function, has already explored both
positive and negative intercepts extensively, and has just requested a hint. In order to generate
the hint, the Coach first traverses the exploration-related concept hierarchies that are reevant
to the current exercise. In this exercise, the traversal begins with the hierarchy containing
nodes related to intercept exploration (see “Intercept Exploration” nodes in Figure 4). Since
the positive-intercept, negative-intercept and general intercept exploration node probabilities
are satisfactory, the Coach moves on to examine the slope-concept hierarchy, starting with
the “PosSlope Exploration”. This concept has a probability below the satisfactory threshold,
and so the traversal stops here. The hint object linked to this node is used to generate the hint.
Our student requests two more hints in succession; the hint window containing all threeleves
of hints related to dope exploration is siown in Figure 7. Currently, each concept has two to
three leves of hints associated with it; further testing is required to determine the optimal
number of leves.

3. Empirical Evaluation of ACE

3.1 Experimental design

The target population for ACE is high school students who are beginning to learn about
functions. Thus, to evaluate if and rhow the current version of ACE influences gudents
learning, we were planning to run a study with gade 11 students from a local school.
Unfortunately, due to urforeseen last-minute scheduling difficulties with the school, we were
unable to carry out the study with these subjeds and had to resort to first year undergraduate
students in our university. We only acoepted subjeds who were not currently taking any math
courses, nor had dane so within the past year. Nonethdess several of our subjects $owed
very good function knowledge. Because only 14 subjects signed up for the study and because
several subjects dowed a celling effect in the pre-test, a two-groups design was unlikely to
give any reiable information on ACE. Thus, we decided to use all of the 14 subjects in ore
experimental group, to gain an initial understanding o how and if system usage affects
learning.

The one-sesson study was carried ou in aur computer science research lab. Each student
used ACE for 30 minutes. To gauge students learning, we gave them an equivalent paper-
and-pencil pretest and podt-test. The tests consisted o 39 questions equally divided into
categories of function ouput recognition and generation, graph property recognition,
equation property recognition, and eguation—graph correspondence. In addition, the students
wrote a 9-item questionnaire to assesstheir subjedive experiencewith ACE.

Each sesson was observed by one of the experimental team members, who recorded data on
standardized observer sheds. ACE itsdf also produced log files of the students' interactions.
From these files, we etracted a number of interaction events, including: 1) numbe of
exercises pased (a student ‘passed’ an exercise if the Student Modd indicated sufficient
exploration); 2) total number of exploration hints requested; 3) average leve of hint accessd
by each subject; and 4) total exploratory actions performed. In the next sedion, we report
results from the analysis of thelog files, questionnaire and olserver shedts.

3.2 Reallts

Effed of ACE on learning. We first wanted to verify if interaction with ACE triggered any
learning at all. It did, as we found a statistically significant difference (p = 0.013) beween the
pre-test average (78.4%) and post-test average (92.3%), despite the fact that 8 out of our 14
subjects had very high pretest scores. Second, we wanted to understand how system usage
influences learning. Thus, for each of the event courts extracted from the log files, we ran a
regresson analysis with that event count and pretest scores as independent variables, and
post-test scores as the dependent variable'. Pretest score was always a significant positive
predictor of post-test scores.

We fourd the following positive predictors of post-test scores (after controlli ng for pre-test)

1. Total number of exploration hints accessed [p = 0.0406, R?=84.6%).
2. Thenumber of exercises passd [p = 0.0093, R*= 87.9%.

These results provide an initial indication that ACE's support of the exploratory process
does improve learning. The first result confirms that some students do need hdp when
interacting with an open learning environment. The second result also suggests that the
Student Modd accuratedly predicts when students are ready to move to a new execise,
because ACE lds students leave an exercise without warning only when the Student Modd
assesss that they have adequatdly explored it. The above results could, of course, also be
caused by additional factors (such as dudent’s general academic ability or conscientiousnesg
that might influence the related event counts and pcst-test performance The fact that there is
no correlation between event counts in 1 and 2 above suggests that this is not the case, but
only a formal study can show this morerdiably.

The total number of exploratory actions that students performed was nat a significant
predictor of learning. This might be due to a tendency that we noticed in several students to
“over-explore’. When these students receéved a hint from the system to stay and explore
more, they stayed, but then tended to try every available case, even those rdated to concepts
that they had already explored. Redurdant explorations likdy did not contribute to improving
the student’s understanding, which explains the lack of corrdation between number of
exploratory actions and learning. Over-exploration is consstent with ane of the problems
students have in open learning environments. the inability to monitor one€'s own progress
during the eploration process[15].

The system's Exploration Assistant is specifically designed to hdp students monitor their
exploration, but not a sngle subjed used it, passibly because it was relegated to the tool bar
and labeled with an ambiguous icon. This requires ether re-designing the interface so that the
Exploration Assstant is more accessble, or having ACE explicitly suggest its use whenever
over-exploration ocaurs.

Another rdevant result obtained from the log files showed that the number of times a stay
event was generated was a paositive predictor of the number of exploratory actions performed
[p = 0.0378 , R*= 31.2%]. At first, this may seem like an obvious result: a suggestion is made
to explore an exercise further, it is followed, and thus more eploratory events are generated.
However, it is possible that a subject may choose to stay, inspect the interface without
performing any meaningful actions, and then move on to the next exercise — this in fact did
happen a number of times with ane subject. Nonethdess the fact that stay events were
typically followed by exploratory actions indicates that ACE’s interventions are successful at
encouraging exploration.

* Due to our small sample size, we were only able to include a the most two independent variables in our model.

Subjeds Perception of ACE. In gengal, students answers to the questionnaire indicate
that they enjoyed using the system and found it useful. The degree to which subjects fourd
the hints hepful (measured on a scale from 2 to -2) was a paositive predictor of ther post test
scores [p = 0.0339, R® = 85.0%), after controlling for the pre-test. This indicates that the
subjects questionnaire answers were not simply dictated by a desire to please (a common
confounding variable in subjective questionnaires) but reliably reflected their opinion.

We aso found that the average levd of hints requested were predictors of the degree to

which subjects found the hints helpful [p= 0.0267, R? = 34.7%)]. This indicates that although
in many cases the first, generic leve of hint was aufficient to trigger more eploration (74%
of al hints requested were at the first leve), the more detailed hints were useful to the people
who nesded them.
Further qualitative observations from the observer sheds All subjects traversed the
curriculum sequentially — in fact, only one tried “jumping arourd’, and even then only
towards the end of the sesgon. The fact that a “Next exercisg’ button was considerably more
accessble than the Leson Browser doubtlesdy encouraged this behaviour; making the
Lesson Browser more visible or available would likely encourage a less linear approach to
the arriculum.

Although we did find a pasitive rdationship between learning and the number of hints used,
hints were not requested as often as subjects samed to real them. A number of subjects
indicated that they had forgotten about the hints — this suggests that the interface should
emphasize that hints are available. On the other hand, we also bdieve that some students
simply have a tendency not to ask for hep. These students ether flounder, in which case the
system should react to long pauses and ‘wandering, or they move on without learning the
required concepts. In such cases the system should intervene more aggressvely, urtil it
becomes apparent that the student has taken charge of ther own learning; this will have to be
investigated in further sudies.

Finally, by observing the students interaction with the system, we realized that even
individuals who know the material and explore adequately need reassurance at times that they
are in fact “daing the right thing”. This type of support is not reated to either domain- or
exploration-specific knowledge provision, but rather is a form of emotional support for the
students. Currently, the system indicates when the student has explored enough by saying
“good job” when the student asks to move to the next exercise, but says nothing as the
student is exploring. In future versions, we will explore ways of identifying students who
require more verbase support, and the means of providing it.

4. Conclusionsand Future Work

We have presented a prototype intdligent exploratory learning environment, ACE
(Adaptive Coach for Exploration), whose goal is to provide tailored adaptive support to
student exploration. ACE aims to address one of the main limitations of open learning
environments: that students who do not already possess the capability to learn throuch
autonomous and urconstrained exploration ganerally do ot learn as effectivdy from these
environments.

The approach we took to overcome this limitation involves three steps. providing students
with highly graphical tools designed to encourage the exploration of domain concepts (reated
to mathematical functions in the current application); monitoring the student’s exploration, to
allow a probabilistic Student Modd to assess the dfectiveness of the student’s exploratory
process;, using the Student Modd’s assessment to drect the interventions of an exploration

Coach. The Coach provides both ursolicited encouragement to explore more and hints on
demand, which are tailored to improving the eff ectiveness of students exploratory behaviour.
Particular emphasis placed on guding students who do not take theinitiative to explore,

We described a preiminary study to evaluate ACE's effect on learning. The study shows
that ACE does trigger learning, as e in a significant increase in test scores following
usage Regression analyses of posttest scores on different interaction events and pretest score
suggest that, as subjects explored the system more and asked for more hints, their learning
increased. Subjects who requested hints in greater depth found them usgful. The study also
uncovered various ways to make ACE's interface and tailored support more dfedive, which
wewill investigate in future versions of the system.

Since the study we conducted did not have a control group, the results we report do not tell
us how rdevant ACE's tailored support is to triggering students exploration and learning —
perhaps the same results could be obtained with the ACE interface alone To address this
isaue, we are planning to conduct a more forma study with grade-11 students who represent
our initial target population.

Future work on ACE includes designing additional activities to encourage students
exploration. We will also focus on improving the ACE's gudent modding in two ways.
Firg, we would like to use eyetracking technology to add data on user attention to the
evidence used to assss exploratory behaviour. The second enhancement involves enriching
the modd’s representation of exploratory behaviour by including additional user’s features
that influence this behavior, such as motivation and relevant meta-cognitive skills (eg., sdf-
explanation). This will enable the modd to dagnose the causes of poor exploration and to
support tutorial interventions that specifically target these causes. Finally, we plan on
researching alternative ways of mativating exploration, which could supplement ACE's hints
and suggestions.

References

1. Aleven, V., K.R. Koedinger, and K. Cross Tutoring arswer-explanation fosters learning with understandng.
in AIED ‘99, 9th World Conferenceof Artificial Intelligenceand Education. 1999 Le Mans, France.

2. Anderson, J.R., et al., Cogrnitive Tutors: Lessons Learned. The Journa of the Learning Sciences, 1995 4(2):
p. 167-207.

3.Cdllins, A. and J.S. Brown, The computer as a tool for learning through refledion, in Learning issues for
intelligent tutoring systems, H. Mande and A. Lesgdd, Editors. 1990, Springer: New York.

4.de Jong, T. and W. van Joolingen, R., Scientific Discovery Learning With Computer Smulations of
Conceptual Domains. Review of Educational research, 1998. 68(2): p. 179201

5. Koedinger, K.R., et al., Intelligent tutoring goes to schod in the big city, in Proceeadings of the 7th World
Conference on Artificial Intelligence and Education, J. Gree, Editor. 1995, AACE: Charlottesville, NC. p.
421-428.

6.Lesgald, A., et al., Sherlock A coached practice ewironment for an eledronics troubleshooting job., in
Computer Asdsted Instruction and Intelligent Tutoring Systems. Shared Goals and Complementary
Approaches, JH. Larkin and R.W. Chabay, Editors. 1992, Lawrence Erlbaum Assciates: Hill sdale, NJ. p.
201-238.

7.Njoo, M. and T. de Jon, Exploratory Learning with a Computer Simulation for Control Theory: Learning
Processes andInstructiond Sypport. Journal of Research in Science Teaching, 1993 30(8): p. 821-844.

8. Paducd, M., D. Suthers, and A. Weiner, Automated advice-giving strategies for scientific inquiry, in
Intelligent Tutoring Systems. Proceelings of the Third International Conference, C. Frasson, G. Gauthier, and
A. Lesgold, Editors. 1996, Springer: Berlin. p. 372-38L.

9. Pearl, J., Probabhili stic Reasoning in Intelligent Systems: Networks of Plausible Inference 1988 San Mateo,
CA: Morgan-Kaufmann.

10.Shute, V.J., A comparison d learning environments: All that glitters..., in Computers as Cogrnitive Tools,
S.P. Laoie and S.J. Derry, Editors. 1993 Lawrence Erlbaum Asociates: Hillsdale, NJ. p. 47-73.

11.Shute, V.J. and R. Glaser, A large-scale ewluation of an intelligent discovery world. Interactive Leaning
Environments, 1990. 1: p. 51-76.

12.Shute, V.J. and J. Psatka, Intelligent tutoring systems: Past, Present and Future, in Handbodk of Research on
Educational Comnunications and Technology, D. Jonassen, Editor. 1996, Scholastic Publications.
13.Stewart, J., Caculus: Single Variable, Early Transcendentals. 3rd ed. 199, Pacific Grove: Brocks/Cole.

14.van Jodingen, W. and T. de Jong, Supparting hypothesis generation by learners exploring an interactive
computer simulation. Instructional Science, 1991 20: p. 389-404.

15.van Jodingen, W.R., Cogritive Tools for Discovery Learning. Journal of Artificial Intelligencein Education,
1999. 10.

16.VanLehn, K., Conceptual and meta learning duing coached problem solving, in ITS96: Proceeding o the
Third Internationd conference on Intdligent Tutoring Systems., C. Frason, G. Gauthier, and A. Lesgald,
Editors. 1996 Springer-Verlag: New York.

17Veemans, K. and W.R. van Jodingen. Using induction to generate feedback in simulation-based discovery
learning environments. in ITS'98, 8th International Conferenceon Intelligent Tutoring Systems. 1998
18 White, B., T. Shimoda, and J. Frederiksen, Enahling students to construct theories of collabarative inquiry

and reflective learning: computer support for metacognitive devdopment. International Journal of Al in
Education, 1999. 10: p. 151-182.

19White, B., ThinkerTools. Causal modeds, conceptual change and science alucation. Cognition and
Instruction, 1998. 10(1): p. 1-100.

