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Abstract. We present a model of user affect to recognize multiple user 
emotions during interaction with an educational computer game. Our model 
deals with the high level of uncertainty involved in recognizing a variety of user 
emotions by probabilistically combining information on both the causes and 
effects of emotional reactions. In previous work, we presented the performance 
and limitations of the model when using only causal information. In this paper, 
we discuss the addition of diagnostic information on user affective valence 
detected via an EMG sensor, and present an evaluation of the resulting model.  

1 Introduction 

Several studies have reported correlations between student affect and learning (see 
[1] for an overview) suggesting that educational systems may be more effective if 
they can trigger appropriate student affective states. Taking student affect into 
account could be especially beneficial for systems that, like educational (edu-) games, 
rely heavily on student emotional engagement to be effective. The long-term goal of 
our research is to devise emotionally intelligent agents for edu-games that model both 
student affect and learning, and generate adaptive interventions aimed at balancing 
the two [2]. In this paper, we focus on the model of student affect that we built for one 
such agent included in an edu-game on number factorization.  

The model is based on a framework that uses Dynamic Decision Network (DDN) 
to leverage information on both the possible causes and the observable effects of the 
user's affective reaction [2]. In previous work, we built the model’s part that reasons 
from causes to emotions (predictive model) and found that it can achieve reasonable 
accuracy  [3,20]. As expected, however, we also found limitations hard to overcome 
by using causal information only. In this paper, we investigate the instantiation of the 
part of the model that reasons from effects to emotions (diagnostic model) by 
monitoring the valence of the user emotional state (i.e., positive or negative) via an 
Electromyography (EMG) sensor. We show that this addition significantly improves 
model accuracy in detecting strong user emotions during the interaction.  

While other work has looked at combining causal and diagnostic information for 
affect detection (e.g.,[4-6]) to our knowledge ours is the first attempt to provide an 
explicit comparison between a model that uses both sources vs. a model that uses 
causal information only. This comparison is important to assess whether it is 
worthwhile using the potentially more costly and intrusive technology necessary to 
obtain diagnostic information on user behaviors, as opposed to causal information that 
can be usually gathered from naturally occurring interaction events. Our approach is 



also unique with respect to using information on student goals as a source of causal 
evidence. McGuiggan et al. [6] proposed an affective student model that also includes 
goal-related information in its assessment. However, in their application goals are 
explicitly given to students, whereas in ours they are not, requiring the model to do 
goal recognition. 

Another distinguishing feature of our work is that we consider multiple, rapidly 
changing and possibly overlapping emotions, as often experienced by students 
playing educational games. In contrast, most work on affect recognition has focused 
on detecting one specific emotion (e.g., [4-6]), lower-level affective measures of 
valence and arousal (e.g.,[7,9]) or overall emotional predisposition over a complete 
interaction (e.g., [10, 11]). One exception is the work by D’Mello et al., [12], which 
used dialogue features as predictors of student’s boredom, confusion, flow and 
frustration during interaction with a dialogue-based tutoring system. There are three 
main differences between this work and ours. First, in [12] the target emotions are 
treated as mutually exclusive, which they mostly are, with the exception perhaps of 
confusion and frustration. We try to capture potentially overlapping emotions, adding 
an additional level of complexity to the modeling task. Second, [12] targets longer-
term states that some researchers may classify as moods, i.e., states that are less 
specific than simple emotions, less likely to be triggered by a particular stimulus, and 
lasting [10]. We see these longer-term affective states as being complementary to the 
more instantaneous emotions we focus on, as we discuss in a later section. Finally, the 
approach in [12] does not include an explicit representation of causes of affect, thus 
providing less information than our approach for an agent to decide how to best deal 
with the student’s emotions.  

We begin by describing our general framework for affective user modeling. Next, 
we introduce the edu-game we use as a test–bed for model development. We then 
summarize the performance of the predictive part of the model, and compare it with 
an extended model that uses data from an EMG sensor as diagnostic evidence on 
student affective valence. We conclude by discussing future work.  

2 The Affect-Modeling Framework 

Figure 1 shows a high-level representation of two time-slices in our DDN-based 
framework for modeling user affect [2]. Each time slice represents the system belief 
over relevant elements of the world after an interaction event of interest, such as a 
user’s action (left slice) or an action from an interface agent (right slice). As the figure 
shows, the network can combine evidence on both the causes and effects of emotional 
reactions to assess the user’s emotional state after each event.  

The sub-network above the nodes Emotional States is the predictive component of 
the framework, representing the relations between emotional states and their possible 
causes as described in the OCC cognitive theory of emotions [15]. According to this 
theory, emotions derive from one’s appraisal of the current situation (consisting of 
events, agents, and objects) with respect to one’s goals and preferences. For instance, 
depending on whether an event (e.g., the outcome of an interface agent’s action) fits 
or does not fit with one’s goals, one will feel either joy or distress in relation to the 
event. If the current event is caused by a third-party agent, one will feel admiration or 



   

reproach toward the agent; if that agent is oneself, one will feel either pride or shame. 
Based on this structure, the OCC theory defines 22 different emotions.  
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Figure 1: High-level representation of the DDN for affective user modeling 

We based our model on the OCC theory because its intuitive representation of the 
causal nature of emotions lends itself well to devising computational models that can 
assess not only which emotions a user feels but also why. Thus, an agent’s ability to 
adequately respond to these emotions is enhanced. For instance, if the agent can 
recognize that the user feels a negative emotion because of something wrong the user 
has done (shame by OCC definition) it may provide hints aimed at making the user 
feel better toward herself. If the agent recognizes that the user is upset because of its 
own behavior (reproach by OCC definition), it may take actions to make amends. 
These specific interventions are not possible with approaches that cannot assess the 
reasons underlying user emotions (e.g. [12]). Another distinguishing feature of the 
OCC theory is that it mostly captures emotions that are instantaneous reactions to 
specific events, as opposed to the longer-term affective states such as frustration, 
boredom, confusion and flow targeted by other researchers. We see these states as 
complementary to those captured by the OCC model in that instantaneous emotions 
can contribute to creating longer-term affective states. Ideally, an affective user model 
should be able to capture all these different affective dimensions. However, we 
decided to focus initially on instantaneous emotions since by acting on them an agent 
can still impact longer terms affective states.  

 Our OCC-based DDN includes variables for goals that a user may have during the 
interaction with a system that includes an interface agent (nodes Goals in Figure 1). 
The events subject to the user’s appraisal are the outcomes of the user’s or the agent’s 
actions (nodes User Action Outcome and Agent Action Outcome in Figure 1). Agent 
actions are represented as decision variables in the framework, indicating points 
where the agent decides how to intervene. The fit of events with user’s goals is 
modeled by the node class Goals Satisfied, which in turn influences the user’s 
Emotional States (we call this part of the model appraisal-subnetwork). Assessing 
user goals is not trivial, especially if asking the user about them during interaction is 



too intrusive, as is the case during game playing. Thus, our DDN also includes nodes 
(the goal-assessment subnetwork) to infer user goals from their interaction patterns 
and relevant traits (e.g., personality). 

The sub-network below the nodes Emotional States is the model’s diagnostic part, 
representing the interaction between emotional states and their observable effects. 
Emotional States directly influence user Bodily Expressions, which in turn affect the 
output of Sensors that can detect them. Our framework is designed to modularly 
combine data from any available sensor, and gracefully degrade in the presence of 
partial or noisy information. We used this framework to build an affective user model 
for an edu-game on number factorization, which we describe in the next section.  

3 The Prime Climb Educational Game 

Prime Climb is an educational game 
designed to help 6th and 7th grade students 
practice number factorization. Two players 
must cooperate to climb a series of 
mountains that are divided in numbered 
sectors (see Figure 2). Each player should 
move to a number that does not share any 
common factors with her partner’s number, 
otherwise she falls. Prime Climb includes a 
pedagogical agent that can both respond to 
explicit student help requests, and provide 
unsolicited hints when the student does not 
seem to be learning from the game [13]. 
Currently the agent decides when and how to 
intervene based solely on a probabilistic 

model that assesses how the player’s factorization knowledge evolves during game 
playing. We have evidence that this knowledge-aware agent can stimulate learning, 
but we believe that the agent could be more effective if it could respond to user 
emotions that we observed during game playing. These emotions include feelings 
generated by the player’s performance in the game (i.e., pride/shame in the OCC 
theory) or by the agent’s interventions (i.e., admiration/reproach, in the OCC theory). 
Thus, the affective user model we are designing for Prime Climb assesses these 
emotions, as well as emotions towards game states (i.e., joy/regret in the OCC theory) 
to help the agent take both affect and learning into account when deciding how to act. 
While other emotions in the OCC model may be relevant, for instance emotions 
toward one’s partner during game play, we decided to add more emotions only after 
verifying the viability of our approach with the six listed above.  

We adopted an iterative design and evaluation approach in building the affective 
model, starting with the predictive part. In the next section, we briefly summarize the 
definition of this predictive part and results on its accuracy, to provide the basis for 
the extensions we describe later.  

 

 
Figure 2: Prime Climb 
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4 Definition and Evaluation of the Predictive Model 

 Many components of the predictive part of the Prime Climb’s user model were 
derived from empirical evaluations [3, 20]. Based on student reports after game 
playing, we identified six high-level non-mutually exclusive goals (Have Fun, Avoid 
Falling, Beat Partner, Learn Math, Succeed By Myself and Wanting Help), 
represented by separate binary variables in the model. Note that while Succeed By 
Myself and Wanting Help intuitively seem mutually exclusive, we observed that they 
can in fact co-exist for students who express a general preference to succeed by 
themselves but end up wanting help during especially challenging episodes. We then 
used interaction data to identify (i) the dependencies among student personality traits, 
goals and interaction patterns in order to define the goal assessment network; and (ii) 
the dependencies between the outcomes of student/agent actions and goal satisfaction 
in order to define the appraisal network. Each of the three emotion pairs in the 
appraisal network is represented by a binary node (emotion-for-game, emotion-for-
self and emotion-for-agent, see figure 3 left). This structure was chosen because the 
two emotions in each pair are mutually exclusive and thus are best represented by a 
binary node; however, since students may simultaneously feel emotions in the 
different pairs, a separate node is required to represent each. 

An evaluation of the predicted model [3, 20], showed that it performs reasonably 
well in capturing emotions towards the game (69.5% accuracy), but less so in 
capturing emotions towards the agent (56.6%), mainly because of problems in 
capturing regret. In-depth analysis showed that this inaccuracy is due to the model not 
being able to capture the shifts that some students experience between the goals 
Succeed-by-myself and Wanting Help at critical times of game playing. This 
confusion in turn causes the model to misinterpret how the user appraises the agent’s 
interventions and the impact of user’s appraisal on her affect toward the agent. The 
problem is a consequence of the fact that the model currently represents student goals 
as static. Modeling how goals evolve during interaction is a form of plan recognition, 
which is difficult to do without explicitly asking students about their goals Thus, we 
decided to explore the alternative of improving the model by adding a diagnostic 
component that captures the player’s affective valence via EMG sensors. We look at 
one sensor, as opposed to directly combining multiple sensors as others have done 
(see [14] for an overview), because we want to understand the potential of specific 
sensors as individual sources of affective information in this domain, with the long-
term goal of modularly combining evidence in the diagnostic part of the model, 
depending upon which sensors are available/suitable to use.  

5 Adding the EMG Signal to the Affective Model  

EMG sensors measure muscle activity by detecting surface voltages that occur when a 
muscle is contracted. When placed on the corrugator muscle on the forehead, the 
signal gets excited by movements such as frowning and eyebrow raises. Previous 
studies (e.g., [16]) report that greater EMG activity in this area tends to be associated 
with expressions of negative affect. Thus, we decided to experiment with this source 



of diagnostic evidence, as a way to help the model capture instances of student’s 
reproach. We incorporate this evidence into what we call from now on the combined 
model, as follows. We add two new nodes to each time slice: Valence and Signal 
Prediction (see Figure 3, left), both binary. The Valence node represents the 
combined model’s overall prediction for the student’s affective valence; the Signal 
prediction node encodes whether the EMG signal is positive/negative at a time of 
interest (as we describe in more detail in a later section). The conditional probability 
table (CPT) for Valence given Emotional States is defined so that the probability that 
valence is positive/negative is proportional to the number of positive/negative 
emotion nodes. The CPT for Signal Prediction given Valence represents the 
probability of observing an EMG prediction of positive or negative valence, given the 
student’s actual affective valence. To instantiate this CPT, we ran a user study to 
collect both EMG evidence and accompanying affective labels, as described next. 

Figure 3: Adding EMG data to the model (left); emotion self-report dialogue box (right) 

Data Collection 

Forty-one 6th and 7th grade students from two local schools participated in our study. 
The study took place in the schools, where for logistic reasons we were limited to a 
30-minute session per student. An experimenter placed an EMG sensor on each 
participant’s forehead, and showed a demo of Prime Climb with the emotion self-
report mechanism described below. Participants were told that the game included an 
agent that would try to understand their needs and help them play the game better. 
The students were encouraged to provide their feelings whenever their emotions 
changed so that the agent could take them into account when providing help. Next, 
each participant played Prime Climb with an experimenter as a climbing companion. 
The experimenter was instructed to play as neutrally as possible, trying to avoid both 
making mistakes and leading the climb too much. This set up was adopted to avoid 
the strong emotions toward the partner that we often observed when students play 
together, given that our affective model currently does not model these emotions.  

During game playing, the Prime Climb agent autonomously generated hints to help 
the student learn from the game, based on the existing model of student learning [13]. 
At any point during the interaction, students could volunteer information on their 
emotional states via the dialogue box shown in Figure 3 (right). If students tend not to 
volunteer self-reports, the dialog box pops up unsolicited, requiring students to input 
self-reports with a frequency adjusted to balance the amount of data collected and the 



   

level of interference generated. The emotion dialog box only elicits information on 
student emotions towards the game and the agent because dealing with three pairs of 
emotions turned out to be too confusing for our young subjects. The emotion-self-
report approach (which we have used in several previous studies  [3, 20]) was chosen 
because, during interaction with Prime Climb, user emotions are varied, ephemeral 
and rapidly changing, making it hard for our young users to describe their emotions 
after the interaction, as it has been done by other researchers. Another commonly used 
method to obtain affective labels is to have observers post-annotate videos of the 
interactions based on the users’ visible reactions (e.g., [12]). However, when we tried 
to use this approach we found that observers often had a hard time discriminating 
among feelings with equal valence in our two different emotion pairs (e.g., reproach 
toward the agent vs. distress toward the game).  

The log files from the study include all relevant game events (e.g., a student’s 
successful climbs and falls, agent interventions), the student’s reported emotions and 
the EMG signals sampled at 32 Hertz. These log files were analyzed to generate a set 
of datapoints of the form <affective valence, signal prediction>, as we describe next. 

Creating Predictions from the EMG Signal 

 A datapoint <affective valence, signal prediction> is created for each event in the 
logs that can be associated with an emotion self-report, with value for affective 
valence (positive or negative) derived from that self-report and value for signal 
prediction (also positive or negative) computed by analyzing the EMG signal in the 
four seconds following the event. The period of four seconds was chosen based on 
[16], to allow for enough time to detect a response in the signal while avoiding 
recording the student’s reaction to subsequent events. The analysis yielded 196 
datapoints, which we used to instantiate the CPT for the Signal Prediction node in 
Figure 3 by calculating the frequencies of the various combinations of signal 
prediction/affective valence value pairs in the data set.  

To obtain the values of signal prediction for our datapoints, we used the mean of 
the raw EMG signal as the base for signal analysis, because it is a measure that has 
consistently shown a reliable mapping with affective valence (e.g., [4,11). The 
standard method for generating valence predictions from EMG is to compare the 
EMG signal over the interval of interest against a baseline recorded during a resting 
period before the experiment. Due to limitations on time with the students, in our 
study we could not set up an idle “resting time” that we could use as a baseline. Thus, 
we resorted to using as a baseline the mean of the EMG values recorded during the 
entire interaction. That is, given a datapoint associated with interface event e, the 
prediction produced by the EMG signal following e is computed as: 

signal prediction(e) = positive 
     if mean(EMG_e) < mean(EMG_all)   (1) 
negative, otherwise. 
 
where EMG_e is the set of EMG values recorded during the 4 seconds following e 

and EMG_all is the set of EMG values recorded during the entire interaction. Our 
choice of using the overall signal mean as a threshold for signal prediction is based on 



the experimenters’ observations that many students experienced both positive and 
negative affect at some point during the interaction. Because negative affect is often 
associated with greater EMG activity in the forehead muscles [16, 17], the overall 
EMG mean of a student who experienced both positive and negative affect would be 
higher than the mean in those intervals where the student did not experience negative 
affect. This non-standard baseline is bound to misclassify students who experienced 
only positive affect during interaction. However, when we checked the performance 
of Equation 1 as a classifier for affective valence on our dataset, we found that this 
method could still allow us to add useful information to the model (see next section). 
Thus, we decided to continue with our investigation, by comparing the performance 
of the combined model with the predictive model described earlier. 

6 Evaluating the Combined Model 

Each model’s performance is assessed via a simulator that replays event logs from 
Prime Climb interactions with that model. Model accuracy is computed via 100-fold 
random resampling, a cross-validation method commonly used with limited datasets 
[18]. We divided the evaluation into two steps. In the first step, we evaluate model 
performance on 83 datapoints obtained from self-reports that were either clearly 
positive or clearly negative. These are self-reports in which students indicated a 
positive (negative) emotion toward both game and agent, or in which one reported 
emotion was strongly positive (negative) and the other was neutral; we will call these 
data points clear-valence from now on. In the second step, we analyze model 
performance on the less-investigated assessment of multiple emotions with unclear 
and possibly conflicting valence, represented in our dataset by 99 self-reports. We 
excluded from our analysis 14 reports that received neutral answers for both emotion 
questions. These points are certain to be misclassified by our models, which currently 
can’t represent neutral affect. 

The first step above, focusing on clear valence datapoints, is meant to verify 
whether we can replicate previous results from the literature on using the EMG on the 
corrugator muscle as valence predictor. These results were mainly obtained with clear 
valence affective states. As part of this step, we checked the performance of Equation 
1 as a classifier for affective valence on the 83 clear-valence datapoints. The method 
achieved 89% accuracy in classifying  datapoints with negative affective valence,  
indicating that, despite our less than ideal baseline, evidence from the EMG signal 
may still be a good detector of negative effect and help us improve the model’s 
assessment of Reproach in the presence of clear valence emotions. As expected, 
Equation1 does not perform as well in classifying positive data points, reaching only 
48% classification accuracy. Thus, any positive results obtained with this method 
should be considered as a lower bound on the potential of including EMG evidence in 
the Prime Climb model.  

We tested model performance on clear-valence datapoints as follows. For each of 
the 100 folds in the cross-validation, we divided the set of students into a training and 
a test set of equal size using random selection. The clear-valence datapoints in the 
training set were used to define the CPT for the Signal prediction node in the 



   

Table 1: Accuracies on clear-valence data    
(†significantly different from predictive model) 

 Accuracy % 
(Clear-Valence Data Points) N

 Predictive Combined Baseline
Joy 74.80 79.10† 100 74
Distress 53.48 56.70 0.00 5
Macro Avg. 64.14 67.90† 50.00 
Micro Avg. 72.58 76.92† 91.03 
Admiration  83.49 83.18 100 67
Reproach  39.11  63.02† 0.00 9 
Macro Avg.   61.30 73.10† 50.00 
Micro Avg.  76.86 79.2† 84.67 

combined model. The event logs in the test set were run through the simulator, first 
with the predictive and then with the combined model. For each data-point in the test-
set, model prediction was compared with the corresponding self-reported emotion.We 
used an analogous procedure to test the models on datapoints with ambiguous valence 
(second evaluation step above).  

 
For each emotion pair, we 

report model accuracy on both 
the positive and the negative 
emotion. Since there is a trade-
off between these measures, we 
also need a measure of combined 
accuracy. Two common choices 
include micro-average (the 
percentage of cases correctly 
classified over all the test 
instances) and macro-average 
(the average of the accuracies for 
each class). Micro-averages are a 
commonly used measure of 

classification accuracy, but they produce a somewhat biased picture in the presence of 
classes with unbalanced size, because the accuracy over classes with few data-points 
is overshadowed by the accuracy over larger classes. Macro-averages are considered 
an adequate way to overcome this short-coming (e.g., [19]); they give fair weight to 
classes with few instances, when it is important that their instances are correctly 
detected. This is exactly the case in our work: we often see far fewer negative than 
positive data points (see Table 1), however, it is crucial for the model to detect these 
negative emotions since they may compromise the player's overall attitude towards 
the game. Given the nature of our dataset, macro-averages are a more appropriate 
measure of the model’s overall accuracy, and so we will base our discussion on this 
measure. However, we report both micro- and macro- average for sake of 
completeness. We also report the performance of a standard baseline, i.e., a model 
that always predicts the most likely emotion. However, comparison with this baseline 
is not very meaningful, given the unbalance in our data. The baseline tends to have a 
high micro-average, because its perfect performance in capturing positive emotions 
off-balances its non-existent performance on the negative data points. Still, it would 
be hard to argue for a model that cannot capture negative affect, as reflected by its 
poor macro-average, consistently lower than those of both affective models. 

Results 

Clear-valence datapoints. We start by comparing the predictive and combined 
models on the clear-valence dataset. All measures of statistical significance are based 
on a two-tailed paired-samples t-test with α = 0.05. As Table 1 shows, the combined 
model performs significantly better than the predictive model for Joy (t(99)=4.59, 
p<.001, d=.92) and Reproach (t(99)=8.84, p<.001, d=1.78). The increase in Reproach 



Table 2: Accuracies on ambiguous-valence data   
(†significantly different from predictive model) 

 Accuracy % 
(Clear-Valence Data Points) N 

 Predictive Combined Baseline 
Joy 83.66 75.15† 100 51 
Distress 43.82 38.72 0.00 15 
Macro Avg. 63.74 56.44† 50.00  
Micro Avg. 75.69 66.71† 79.35  
Admiration  58.58 71.70† 0.00 28 
Reproach  25.36  25.11 100 33 
Macro Avg.  42.11 48.41† 50.00  
Micro Avg.  42.67 49.10† 51.57  

results in a significant increase of the model’s macro average for emotions towards 
the agent (t(99)=8.62, p<.001, d=1.38), with a large effect size. The increase for Joy 
results in a significant increase of the model’s macro average for emotions towards 
the game (t(99)=2.11, p=.038, d=.26), with small effect size.    

Thus, we achieved our goal of improving the assessment of reproach by including 
diagnostic evidence in the model, at least for clear-valence datapoints. Essentially, 
when the student feels strong reproach and has no other conflicting emotion, the 
strong evidence of negative affect from the EMG sensor propagates to the emotion-
for-agent node, overriding the more indirect (and incorrect) goal-based assessment 
from the causal part of the model. It is also encouraging to see that the poor 
performance of the EMG as a classifier for positive valence (see section 5) did not 
transfer to the combined model. In this case, the limitations of the EMG signal in 
detecting positive affect are compensated by the predictive model, with no negative, 
and actually some positive impact, on accuracy. 

Ambiguous-valence datapoints. Accuracy results on the ambiguous-valence 
datapoints are not as encouraging. As Table 2 shows, there are significant decreases in 
both Joy (t(99)=-10.87, p<.001, d=-2.19) and Distress (t(99)=-2.55, p<.001, d=-.51). 
There is no relevant change for Reproach. The model’s macro and micro-average for 
emotions towards the agent increase significantly (t(99)=8.03, p<.001, d=.84) because 
of an increase in admiration, but they are still below baseline accuracy. Although 
these results are disappointing, they are not surprising. Previous work showing the 
effectiveness of EMG in predicting valence usually investigated the mapping between 
EMG and clear valence emotions. Our ambiguous-valence data points, on the other 
hand, correspond to states were students reported mild or even conflicting emotions. 
Mild emotions are likely to generate more subtle facial expressions, difficult to 
capture by monitoring only the movements of the corrugator muscle. As for 
conflicting emotions, their 
overall valence may depend on 
which of the emotions involved 
is stronger. In our model, any 
evidence of overall valence 
coming from diagnostic data is 
propagated upwards to all the 
emotion pairs, biasing them in 
the same direction and causing a 
misclassification for any pair 
that had opposite valence, unless 
there is strong evidence coming 
from the causal model to correct 
the trend. 

The problem with capturing 
mild emotions is likely to be solved by increasing the model’s ability to capture 
valence-related behaviors with the addition of other sensors linked with affective 
valence (e.g. an heart-rate monitor, EMG sensors on the frontalis muscle, or on the 
zygomatic major muscle). This solution, however, is unlikely to ease the problem 
with capturing conflicting emotions, because the problem is due to valence not 
carrying enough information to tease out the individual emotions. In this case, the 



   

only viable solution seems to be improving the accuracy of the diagnostic model, the 
only component that can provide direct information on the user’s individual emotions. 

Discussion and Conclusion 

In this paper, we evaluated the addition of diagnostic information to an affective 
user model to detect players’ emotions while interacting with Prime Climb, an edu-
game for number factorization. The model combines information on causes and 
effects of users’ affect to recognize multiple, possibly overlapping and rapidly 
changing emotions. While there are approaches to recognizing one specific user 
emotion or emotion valence/arousal, ours is one of the few models targeting the 
recognition of multiple emotions, and is unique in dealing with possibly overlapping 
emotions.  

We have presented results of comparing a model that uses only causal information 
on game state, against a model that also includes information on user affective 
valence detected via an EMG sensor placed on the user’s forehead. While approaches 
combining diagnostic and predictive inference have received substantial attention, our 
contribution is an ablation study that compares two versions of the model to 
understand the effects of each source of evidence. We showed that EMG information 
can significantly improve the model’s accuracy in cases where the students’ affective 
state has clear valence. Given that our method for signal processing relies on a less-
than-ideal baseline, this result is a lower bound of what this approach can achieve. We 
also discussed the limitations of our approach in the presence of emotions with milder 
or conflicting valence, and presented two avenues of future work to overcome them. 
In particular, we are planning to (i) include other sources of valence information to 
detect emotional states expressed more subtly; and (ii) explore ways to capture the 
evolution of player goals during game playing, to refine the model assessment of 
conflicting emotions. We also plan to add sensors to capture arousal, so that the agent 
can gauge the actual impact of the user’s emotions on game playing and learning. 
Other future work includes adding to the model the capability of assessing emotions 
toward a partner, and showing the effectiveness of an agent that has detailed 
information on user affect.  
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