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ABSTRACT 
In this paper, we describe a user study aimed at evaluating 
the effectiveness of two different data visualization 
techniques developed for describing complex 
environmental changes in an interactive system designed to 
foster awareness in sustainable development. While several 
studies have compared alternative visualizations, the 
distinguishing feature of our research is that we try to 
understand whether individual user differences may be used 
as predictors of visualization effectiveness in choosing 
among  alternative visualizations for a given task. We show 
that the cognitive ability known as perceptual speed can 
predict which one of our target visualizations is most 
effective for a given user. This result suggests that tailored 
visualization selection can be an effective way to improve 
user performance. 

Author Keywords 
Evaluation of visualization techniques; individual 
differences. 

ACM Classification Keywords 
H5.m. Information interfaces and presentation (e.g., HCI): 
Miscellaneous.  

1. INTRODUCTION 
In recent years, information visualization has been gaining 
importance as a means of managing the often 
overwhelming amount of digital information available to 
users. From generic search engines to specialized software 
in areas as diverse as bioinformatics, economics and the 
social sciences, many applications need to be able to help 
users understand and manipulate bodies of data with 
various degrees of complexity. Research in information 
visualization strives to provide graphical representations 

that can help deal with this complexity. However, despite 
the many attempts to identify mappings between user needs 
and effective visualizations (e.g. [6], [4]) results are still 
partial and often conflicting (see [7]). Most of these 
attempts have been based on the assumption that it is 
possible to identify optimal visualizations given type and 
amount of data to be visualized as well as nature of the 
perceptual task involved. We argue that this assumption is 
one of the reasons for the lack of consistency in findings, 
and that there are other factors that determine a 
visualization’s effectiveness. In particular, in this paper we 
explore the hypothesis that the mapping between user needs 
and effective visualizations is influenced by individual user 
differences. Given a task and corresponding data, different 
visualizations may work best for different users, given user 
traits such as cognitive skills, knowledge and personal 
preferences.  

There is already anecdotal evidence in the literature that 
different users may have different visualization preferences 
[2], and several studies have linked individual differences 
to visualization effectiveness for search and navigation 
tasks in complex information spaces [e.g., 13,14,15]. Velez 
et al. [9] have shown that cognitive measures related to 
spatial ability correlated with performance accuracy in 
performing 3D mental rotations supported by 2D 
visualizations.  Our research extends these results by 
analyzing how spatial abilities and other user-specific traits 
affect performance on two different visualizations for 
interpreting geographical data.  

One of the ways in which visualization methods are used 
within Geographical Information Systems (GISs) is to show 
how an area of interest will change over time. Georgia 
Basin Quest ( GB-Quest) and QuestVis, both developed at 
the University of British Columbia,  use different 
visualization methods to illustrate how a particular 
geographical region (the Georgia Basin in British 
Columbia, Canada) would change in 40 years time 
depending on the behaviours of its inhabitants. Anecdotal 
evidence (i.e., feedback from participants in environmental 
workshops that used  GB-Quest and observations from pilot 
studies on QuestVis), suggests that the effectiveness of the 
visualization methods used by these two systems may 
depend on the user viewing them. If these observations 
were to be empirically confirmed, they could have 

 



 

important implications for research in information 
visualization, as they open the door to the idea of user-
adaptive visualizations. These are visualizations that are 
tailored in real-time to the needs of each individual user, 
where these needs derive from specific user traits as well as  
user tasks. Thus, we decided to run a formal study to test 
the role that individual differences may play in the 
effectiveness of the visualizations used by  GB-Quest and 
QuestVis. 

In the rest of this paper, we first discuss related work. Next, 
we introduce  GB-Quest and QuestVis and the visualization 
methods that they use. We then describe the study and its 
results. We conclude with a discussion of the implications 
of these results and plans for future work. 

2. RELATED WORK 
While most of the research on the factors that define 
visualization effectiveness has focused on properties of the 
data to be visualized or the tasks to be performed, some 
studies have started considering user individual differences 
as a promising avenue of investigation.  

Most existing research in this area has focused on exploring 
the link between individual differences (mostly related to 
spatial abilities) and visualization effectiveness for 
information retrieval and navigation in complex 
information spaces [e.g. 13, 14, 15]. Baldonado et al. [2] 
cite differences in user profiles as one reason to have 
multiple individual views available in information 
visualization. Velez et al. [9] explored the link between five 
spatial abilities (selected from the Kit of Factor-referenced 
Cognitive Tests [5]) and proficiency in a visualization task 
involving the identification of a 3D object from its 
orthogonal projections. The data analysis in this paper is 
mostly based on correlations and thus does not provide 
insights into the actual predictive power of the target spatial 
abilities. It does,  however,  provide initial evidence that 

cognitive abilities may affect visualization effectiveness in 
a data interpretation task. 

In [3], Brusilowsky et al. explore the idea of adaptive 
visualizations that are automatically tailored to the user’s 
knowledge in the context of an educational system. This 
system visualizes available  practice problems based on 
their similarity, and adaptively adds icons to each problem 
to indicate how suitable they are for the knowledge level of 
the current user. While Brusilowsky et al. [3] adapt the 
content of the visualization but maintain a fixed 
visualization technique, we investigate whether individual 
differences exist that may require selecting alternative 
visualizations for different users. 

3. VISUALIZING ENVIROMENTAL 
CHANGES WITH  GB-QUEST AND 
QUESTVIS 

3.1  GB-Quest 
Georgia Basin Quest ( GB-Quest) [8] was designed to 
bridge the gap between scientific research, policy making 
and public engagement. It has been used in workshops 
during which residents and policymakers are asked to 
identify environmental strategies to achieve their ideal 
future for the Georgia Basin region. These strategies are 
inputs to  GB-Quest, which computes their effects and 
produces a scenario describing the environmental changes 
that they will cause in the region in 40 years.  

In  GB-Quest, each scenario is characterized by a set of 294 
indicators, grouped into 9 high-level variables that represent 
the most salient indicators of the economic, environmental, 
and social health of the region (e.g. government deficit, 
traffic congestion, student per teacher, air pollution).  GB-
Quest’s main tool to visualize changes to the region is the 
radar graph (see right panel in Figure 1A), which illustrates 

Figure 1: Screenshots from  GB-Quest (A) and QuestVis (B) 
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changes to the high-level variables between the present and 
a 40-year horizon.  

In the radar graph, the values of each variable in both the 
present time and in 40 years are displayed simultaneously 
along the corresponding radial line in the graph, using 
different colors (red for the present and green for the future 
in the actual application; dark grey and light grey 
respectively, if this paper is printed in black and white). 
Variable values increase with the distance from the center 
of the graph. Because each variable represents an indicator 
that is inversely correlated with quality of life, values closer 
to the center are more desirable.  

The user is required to make a visual comparison between 
the two values for each variable in order to determine how 
it has changed. For instance, in Figure 1A the amount of 
newly developed land decreased in 40 years, while the 
annual cost of living remained unchanged. The user must 
also make a visual comparison of the areas outlined by all 
the variable values for each year in order to determine any 
overall trend in the current scenario. Large areas in the 
lighter color represent “good” scenarios in which most 
variables have decreased, while large areas in the darker 
color represent “bad” scenarios in which most of the values 
have increased. 

Users can input alternative strategies to try and improve the 
scenario (i.e., the environment’s evolution in the next 40 
years).  GB-Quest, however, does not have a dedicated 
mechanism to support direct scenario comparison; that is, 
there is no easy way to view alternative radar graphs 
together in order to compare them.  

User surveys conducted after the workshops indicated that 
users generally appreciated  GB-Quest as a tool to increase 
their environmental awareness. However, anecdotal 
evidence indicates that the radar graph visualization is 
intuitive for some users, but rather incomprehensible for 
others. 

3.2 QuestVis 
QuestVis [10] (see Figure 1B) is a redesign of  GB-

Quest aimed at facilitating the exploration and comparison 
of different scenarios. Here we describe the main 
differences with GB-Quest. Two were introduced in order 
to facilitate scenario generation. The first difference is that  
QuestVis reduces input choices to a set of 11 sliders with 2 
or 3 possible choices each, replacing the more cumbersome 
input mechanism available in  GB-Quest. The second 
difference is that, while  GB-Quest waits until the user has 
finalized all choices before calculating the results, QuestVis 
uses a pre-computed database to show the effect of each 
choice as it is made. This highly reactive behavior was 
introduced to  improve the user’s sense of the connections 
between input choices and their effect on the region. 

Another difference (the most relevant to this paper) is that 
QuestVis  uses  a new  visualization to show changes to the 

region. This  technique, known as the Multiscale Dimension 
Visualizer (MDV) [10],  is shown in the right panel in 
Figure 1B, and was introduced primarily to  facilitate a 
scenario’s analysis and comparison. The only way to 
observe scenario changes at the level of individual 
indicators in  GB-Quest is to abandon the radar graph view 
and access visualizations based on bar graphs that show the 
changes at the level of small subsets of related indicators. 
In contrast, QuestVis uses the MDV to represent all 294 of 
the individual indicators simultaneously. The normalized 
value of each indicator is color encoded to enable a 
compact representation of the results. The color scale uses 
blue and green to represent, respectively, an increase and a 
decrease in value relative to the present-day value. The 
saturation of the color represents the extent of the change, 
normalized relative to the minimum and maximum possible 
values for that particular indicator across all scenarios. The 
more saturated the color, the larger the change from the 
current value. Thus, unlike with GB Quest, the user is not 
required to perform a mental comparison of values in order 
to determine how much each variable has changed over 
time1.  

 

Figure 2: QuestVis’s MDV aggregated view (left) and two 
aggregated views side-to-side (right) 

QuestVis can also produce a summary view of a scenario 
by (i) aggregating the 294 indicators in the high-level 
variables used by  GB-Quest; and (ii) using the same color 
conventions to represent direction and magnitude of 
changes over these variables, as shown on the left of Figure 
2. Using this aggregated view (called colored boxes from 
now on), the user can compare multiple scenarios side by 
side (see Figure 2, right), something that would be hard to 
do with the radar graph, especially when comparing more 
than 2 scenarios. 

                                                           
1 The numbers in the boxes in Figure 1 and 2 relate to variables, they do 
not represent additional information about the scenario. 



 

 

4. COMPARING THE RADAR GRAPH AND 
THE COLORED BOXES VIEW  
The MDV technique in QuestVis has two obvious 
advantages compared with  GB-Quest: it supports the 
explicit comparison of alternative scenarios and it includes 
a flexible, integrated mechanism to observe scenarios at 
different levels of detail.  

However, it is not obvious that the MDV colored boxes 
visualization is better at providing an overview of  the 
changes in terms of high-level variables. As with the radar 
graph, observations from informal pilot studies indicate that 
not all users find the colored boxes intuitive. These 
observations suggest the hypothesis that the colored boxes 
and the radar graph could be used more effectively as 
alternative visualizations within the same system, and that 
the choice between the two may need to be based on 
knowledge of individual user differences. 

The study described in the rest of the paper was designed to 
shed light on this issue. In particular, we wanted to 
investigate the following questions: (1) Is one visualization 
more effective than the other for all users? (2) If not, can 
the most effective visualization for a given participant be 
predicted from specific individual traits? In the rest of this 
section, we first describe the individual traits we chose to 
investigate in our study. We then describe the tasks and 
design details of the study, and finally discuss the data 
analysis and related results. 

4.1 Individual traits explored in the study 
A variety of individual traits could influence a user’s 
perception of different visualizations, including cognitive 
abilities, expertise with visualization techniques and  

 

affective elements such as personality. For this study, we 
chose to focus on cognitive abilities. We selected four that 
have been previously linked to visualization capabilities [9], 
as well as five additional abilities that, to our knowledge, 
have never been considered in the context of information 
visualization research. The four previously explored 
abilities come from Velez et al.[9] (see Section 2) and are 
listed in the first four rows of Table 1. The rest of the rows 
show the new cognitive abilities that we introduced, i.e., 
need for cognition along with four indicators that define a 
person’s learning style. 

4.2 Experimental tasks 
Because we want to study the effectiveness of the radar 
graph and colored boxes as alternative means to visualize 
the same information, an evaluation involving interaction 
with the complete system would be confounded by the 
different interaction styles and functionalities of QuestVis 
and  GB-Quest. Therefore, for this study we used a series of 
basic tasks that would allow us to compare user 
performance with each visualization in isolation from the 
system in which it is embedded. The tasks were based on a 
set of low-level analysis tasks that Amar et al. [1] identified 
as largely capturing people’s activities while employing 
information visualization tools for understanding data. In 
consultation with one of  the researchers involved in the 
design of QuestVis (who was also highly familiar with  GB-
Quest and its radar graph visualization), we chose a subset 
of Amar et al.’s tasks that are most relevant for interacting 
with visualizations of scenarios for environmental changes. 
Tasks were left out when they required knowledge of 
absolute values instead of unmarked scales (e.g., “Retrieve 
value” of a variable in a single scenario, “Determine 
Range” of a variable’s values), because neither the radar 
graph nor the colored boxes represent absolute values. The  

Table 1. The cognitive abilities tested in our study 

Name                                              Description 

Visual Memory (VM) The ability to remember the configuration, location, and orientation of figural material 

Spatial Visualization (SV) The ability to manipulate or transform the image of spatial patterns into other arrangements 

Perceptual Speed (PS) Speed in comparing figures or symbols, scanning to find figures or symbols, or carrying out other very 
simple tasks involving visual perception 

Disembodiment (D) The ability to hold a given visual percept or configuration in mind so as to disembed it from other well 
defined perceptual material 

Need for Cognition (N4C) The tendency to engage in and enjoy tasks that require thinking 

Learning Style (LS) Preferences for the manner in which information is received and learned, i.e., preference for: 

Active/Reflective (A/R) • proactive participation to the learning process vs. passive reception of instruction 

Sensing/Intuitive (S/I) • concrete, well defined learning objects/strategies vs. discovering possibilities and relationships 

Visual/Verbal (V/V) • receiving information visually vs. verbally 

 

Sequential/Global(S/G) • learning in linear, logical steps vs. learning in large non-methodical jumps, absorbing material almost 
randomly and then suddenly “getting it.”  
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tasks were framed as a series of questions that participants 
had to answer while viewing a single scenario or pair of 
scenarios, and they are listed  in Table 2. The scenarios and 
corresponding questions were presented via automated 
software developed specifically for this study. Note that we 
changed the radar graph’s original red-green color scheme 
to avoid complications due to color-blindness.  

Participants repeated each of the tasks in Table 2 on four 
different scenario “types” that varied in terms of the 
skewness of the distribution of variable values. Two of the 
four  types are shown in Table 3 (with only the Radar graph 
for brevity). Distribution skew was varied to make 
participants perform each task type at different levels of 
difficulty. For instance, performing the sorting task “Rank 
the following variables, putting the greatest increase first” 
is easier with the  spiky distribution shown at the top of 
Table 3 than with the uniform distribution shown at the 
bottom of the table. 

4.3 Design and procedure 
The study was a within-subject factorial design with 
visualization type (Radar Graph or Colored Boxes) as the 
primary factor and visualization order as a between-subjects 
control variable. There were 45 participants, 18 male, 27 
female, all students at a local university. Students were paid 
$30 for their time and came from  a variety of departments, 
including commerce, engineering, and dentistry. The 
experiment was designed and pilot-tested to fit in a single 
session lasting at most 2 hours (average session length was 
1h 45’). Participants took part in the study in small groups 
of 1 to 4 people. The study took place in a room set up with  

 

 

4 separate stations, each  equipped with  a laptop computer 
with the testing software pre-loaded for immediate use. 

Each session started with the participant taking pencil-and-
paper tests for the six cognitive traits in Table 1, with a 5-
minute break after the first three tests. For spatial abilities 
we used the Kit of Factor-referenced Cognitive Tests [5];  
for need for cognition we used the test described in [12]; 
and for learning style we used the the ILS inventory [11]). 
After completing the tests, participants took a second break, 
received a brief training on the two visualizations and the 
testing software, and finally started interacting with the 
software. Each participant performed a block of basic 
visualization tasks twice, once with each visualization 
method. A task block was structured as follows: First, 
subjects were presented with a single scenario and had to 
answer the five questions listed in the "One Scenario” 
portion of Table 2. Then subjects were presented with two 
scenarios and had to answer the five questions listed in the 
“Two Scenarios” portion of Table 2. Participants repeated 
the above cycle four times, once for each of the four 
distribution types described earlier.  Visualization order was 
fully counterbalanced to account for learning effects, 
making visualization order a between-subject control 
variable in our design  

4.4 Measures 

We measure visualization effectiveness in terms of 
accuracy on the visualization tasks, computed as the 
number of correct answers generated for the questions in 
the testing software. More specifically, accuracy on each of 
the 10 task types in Table 2 is computed by summing all 

Table 2: The ten task types in the study and related sample questions 

    One Scenario 

Task Sample Question 

Filter Find the variables that increased in the scenario. 

Compute derived value Taken as a whole, how much did the scenario increase or decrease? 

Find extremum Name the variable that decreased the most. 

Sort Rank the following variables, putting the greatest increase first. 

Characterize distribution Describe the distribution of values within the scenario (choose all options that you think apply). 

   Two Scenarios  

Task Sample Question 

Retrieve value For each of the following variables, do you think it is larger in the scenario on the left or on the right. 

Filter Find the variables whose values decreased in the scenario on the right compared to the scenario on the left. 

Compute derived value As a whole, how much did the scenario on the right increase/decrease compared to the scenario on the left. 

Find extremum Find the variable whose value in the scenario on the right decreased the most compared to the one on the left. 

Sort Rank the following variables in terms of greatest increase in the scenario on the right compared to the scenario 
on the left. 



 

correct answers to the related questions across the four 
distribution types. 
 

 

Table 3:  Two of the four distributions in the study 

Spiky 

Uniform 

5. DATA ANALYSIS AND RESULTS 

5.1 Cognitive abilities as predictors of the most 
effective visualization 
Recall that the main goal of this study is to verify whether 
one of our two visualizations dominates the other over any 
of the target tasks, or whether best visualization depends on 
one or more of the cognitive abilities in Table 1. 

To answer these questions, we use an analysis based on 
General Linear Models (GLM). We started the analysis by 
running a repeated-measures 2 (visualization type) by 10 
(task) by 2 (visualization order) GLM with the 9 cognitive 
test measures as covariates and task accuracy as the 
dependent variable. In this and all subsequent GLM, we 
applied the Greenhouse-Geisser adjustment for non-
spherical data. We report statistical significance at the 0.05 
level (unless otherwise specified), as well as partial eta-
squared (η2), a measure of effect size. To interpret this 
value, .01 is a small effect size, .06 is medium, and .14 is 
large [7]. 
The salient findings from this first GLM include:  
 No significant main effect of visualization type on 
accuracy 

 No main or interaction effects of visualization order, 
indicating that the counterbalancing of visualization 
presentation successfully avoided ordering effects 

 A significant interaction of visualization type with the 
cognitive ability related to perceptual speed (PS) 
(F(1,34)=4.8, p = 0.035, η2= .124). This interaction means 
that perceptual speed has a significant effect in 
determining which visualization generates better 
accuracy for each individual user. In other words, PS is a 
significant predictor of the difference in accuracy 
between the two visualizations. 

 No other cognitive ability had a significant interaction 
with visualization type 

 A significant main effect of task (F(9,26)= 5.951, p < 
0.01, η2= .149), indicating that accuracy outcome 
significantly varies with task type.  

 
Because only perceptual speed (PS from now on) generated 
a significant interaction with visualization type, we will 
focus on this ability in the rest of the analysis. To better 
understand the relationships among visualization type, 
perceptual speed and task type, we ran a series of GLMs 
with task accuracy as the dependent variable, visualization 
type as the main factor and perceptual speed as covariate, 
one for each of the ten tasks in Table 2 (we applied a 
Bonferroni adjustment for 10 post-hoc comparisons, 
bringing the alpha level for significance down to 0.005). 
Note that we no longer include visualization order in the 
analysis, because it did not show any significant effect in 
the overall model.  

For nine of the tasks,  there was no significant difference in 
accuracy between the two visualizations, and no significant 
effect of perceptual speed on accuracy. In contrast, the 
GLM for accuracy on the “Compute Derived Value” task 
with two scenarios generated a significant interaction 
between visualization type and perceptual speed, with a 
high effect size (F(1,43) = 14.442, p < 0.005, η2= .251).  

Recall, from  Table 2, that “compute derived value” with 
two scenarios requires users to compare the  scenarios in 
terms of how much they changed as a whole. The eta-
square value reported above indicates that variation in PS 
can explain 25.1% of the variance in accuracy difference 
between the two visualizations for this task. An analysis of 
the relationship between PS and accuracy with each 
visualization on this task shows that PS is a significant 
negative predictor of  accuracy with radar graph (β 
correlation coefficient = -.475, t = -3.6, p = .001). It is also  
positively correlated with (although not a significant 
predictor of) accuracy with the colored boxes for this task. 
Figure 3 shows the interaction between PS and visualization 
type if PS is converted to a categorical variable with values 
HIGH and LOW determined by the median of the original 
covariate 

These results indicate that users with high PS will be more 
accurate when comparing  scenarios in terms of how much 
they changed as a whole if they use the colored boxes rather 
than the radar graph, and that PS can be used as a factor to 
decide which of our two target visualizations will be more 
effective for accomplishing this particular value-derivation 
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task. This predictive ability is especially important in the 
context of systems focused on sustainable development like  
GB-Quest and QuestVis, because evaluation of overall 
environmental changes is a focal concept for these systems  

 
Figure 3: Interaction  between PS and Visualization  Type  

and was one of the main targets in the  GB-Quest 
workshops described earlier. Thus, adaptive visualization 
selection based on this predictor could have direct 
applications in the activities that GB Quest or QuestVis will 
be used for. 

Table 4: Linear Regression results for Individual Accuracies. 
“Pred.” stands for “Predictors”; “R2” stands for adjusted R2 

One Scenario 

Task Measure Pred. β Linear Model 

Sort AccCB N4C, 
V/V; 

.445 
-.282 

F=6.91, p=.003, R2= .150 

Characterize 
Distribution 

AccCB SV .434 F=9.97, p=.003, R2= .169 

Two Scenarios 

Filter AccCB VM .443 F=9.91, p=.003, R2= .168 

Compute 
Derived Value 

AccRadar PS  

A/R 

-.47 

-.36 

F=8.33,p=.001, R2= .25

Although we don’t have a conclusive explanation for the 
direction of the relationships that we found among 
perceptual speed, accuracy with the radar graph and 
accuracy with the colored boxes, our results for the radar 
graph visualization are consistent with the negative 
correlation found by Velez et al. between perceptual speed 
and accuracy in deriving 3D shapes from 2D projections. In 
the radar graph, scenario change is derived by performing a 
visual comparison of the areas outlined by the individual 
variables. Thus, both this task and the derivation of 3D 
shapes from 2D projections studied by Velez et al. require  

comparing 2D shapes. This commonality is a plausible 
explanation of why we found the same negative correlation 
as Velez et al. between perceptual speed and task accuracy.  
 

5.2 Cognitive abilities as predictors of 
accuracy with individual visualizations 
While the main goal of this study was to understand 
whether user cognitive abilities can predict which 
visualization is most effective for each user, there is also 
value in exploring whether these abilities can  predict task 
accuracy with each visualization. Towards this end, we ran 
a series of 20 linear regression analyses for each of the two 
available visualizations, with accuracy on each task as the 
dependent variable and the cognitive test scores as 
predictors. Table 4 summarizes the results of this analysis 
as follows. The first column lists all the tasks for which we 
found a  significant (p < 0.0025 with adjustment for 
multiple tests) or marginally significant (p < 0.005)2 linear 
model for predicting accuracy. The second column reports, 
for each task, which accuracy measure we can predict 
(AccCB = Accuracy with Colored boxes; ACCRadar = 
Accuracy with Radar). The third column reports the 
significant or marginally significant predictors in the model. 
The fourth column lists their correlation coefficients. The 
fifth column summarizes the model statistics.A relevant 
result from Table 4 is that the new cognitive abilities we 
added in this study compared to the study by Velez et al. 
(2005) (i.e. need for cognition and the four linear scales for 
learning styles) do play a role as predictors of visualization 
accuracy. In fact, they are the only predictors for the 
visualization accuracy of sorting with one scenario with the 
colored boxes (see first row in Table 4). Furthermore, they 
are comparable to the spatial abilities from the Velez et al. 
study in terms of the amount of accuracy variance they can 
explain (see R2 values in the 5th column of Table 4). 

It should be noted, however, that the variance accounted for 
by all our linear models is rather low, ranging from 12.9% 
to 25%. This result suggests that other user traits should be 
explored to understand how individual differences affect 
visualization effectiveness. One promising candidate is 
expertise with visualizations, which we could not include in 
our study due to the difficulty of finding a reasonable 
number of visualization experts in the user population 
available to us. 

6. CONCLUSIONS AND FUTURE WORK 
 In this paper, we presented a study aimed at exploring 
whether user’s individual differences can be used as 
predictors to select the most effective visualization for 
different users. The study involved a variety of tasks that 
can be accomplished using two alternative visualizations 

                                                           
2 We include results with close marginal significance because they are 
most likely due to not having sufficient subjects to run a linear regression 
with nine predictors 



 

for representing value changes in a set of variables: one is 
the Radar Graph, which relies on both spatial elements 
(linear distance and area) and color  to represent change; the 
other is the Multiscale Dimension Visualizer (called 
Colored Boxes in the paper), which uses primarily color.  

Our data analysis shows that, while there is no significant 
difference in task accuracy with the two visualization for 9 
of the task types performed during the study, for the 10th 
task type (comparing how the values of two sets of 
variables change as a whole) the best visualization depends 
on the user’s Perceptual Speed (PS). That is, users with 
high perceptual speed perform this task better if they can 
see the relevant data via the colored boxes, while users with 
low perceptual speed perform better with the radar graph. 
This finding suggests the idea of having a system that can 
display both visualizations but  that adaptively selects 
which one to recommend based on the user perceptual 
speed, if one of the tasks to be performed involves 
comparing overall changes in variables of interest. 
Information of the user’s perceptual speed could be 
obtained at the onset of the interaction by administering to 
the user a test for this cognitive ability [5]. If the test is 
administered on-line, then its results can be automatically 
computed by the software and used in real time to suggest 
the optimal visualization.  

Our data analysis also provided initial evidence that some 
cognitive abilities can be used as predictors for the 
effectiveness of each individual visualization. The 
predictive power of cognitive abilities related to spatial 
reasoning had already been identified by previous research. 
Our contribution lies in the identification of additional 
predictors not related to  spatial processing, specifically 
need for cognition and measures related to learning style. 
These findings could be used to provide users with further 
automatic support to ensure effective visualization 
processing. While using a specific visualization, the user 
may receive help or clarifications from the system if the 
system detects that this user scores low on the cognitive 
abilities that predict success in using the current 
visualization. For instance, one of our findings was that 
Need for Cognition is a positive predictor of user accuracy 
in sorting variables with the colored boxes. If a system 
detects that the user has a low need for cognition, it can 
offer help in interpreting the visualizations during this task.  

However, in order to provide effective help, the system also 
needs to know what type of problems a user with low 
scores on the relevant cognitive measures may have when 
using a specific visualization. We plan to investigate this 
issue in the context of the visualization systems discussed 
in this paper by running further studies specifically 
designed to uncover these problems. We also plan to 
investigate additional individual traits that may function as 
predictors of visualization effectiveness, including abilities 
related to color perception and user expertise.  
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