Lecture 4
Uninformed Search Strategies,
Search with Costs
(Ch 3.1-3.5, 3.7.3)
Announcement

• Assignment 1
 • out tomorrow (Friday)
 • due Friday Jan 27

• Office hours (will be posted on course website)

Cristina: Thursday, 2pm – 3pm

TAs

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>TA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mondays</td>
<td>10-11am</td>
<td>TBD</td>
<td>Michael</td>
</tr>
<tr>
<td>Tuesdays</td>
<td>4-5pm</td>
<td>DLC table 1</td>
<td>Rui</td>
</tr>
<tr>
<td>Wednesdays</td>
<td>12-1pm</td>
<td>ICCS X151</td>
<td>Abed</td>
</tr>
<tr>
<td>Thursdays</td>
<td>1-2pm</td>
<td>ICCS X341</td>
<td>Mario</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fridays</td>
<td>2-3pm</td>
<td>ICCS X237</td>
<td>Jordon</td>
</tr>
</tbody>
</table>
Today’s Lecture

Recap from Previous lectures

• Depth first search - analysis
• Breadth first search
• Iterative deepening
• Search with costs
• Intro to heuristic search (time permitting)
Bogus Version of Generic Search Algorithm

Input: a graph
 - a set of start nodes
 - Boolean procedure $goal(n)$ that tests if n is a goal node

$frontier := [g : g$ is a goal node]$;

While $frontier$ is not empty:
 - select and remove path $<n_o, ..., n_k>$ from $frontier$;
 - If $goal(n_k)$
 - return $<n_o, ..., n_k>$;
 - Find a neighbor n of n_k
 - add n to $frontier$;

end

• How many bugs?

A. One B. Two C. Three D. Four
Bogus Version of Generic Search Algorithm

- Start at the **start** node(s), NOT at the goal
- Add **all** neighbours of n_k to the frontier, NOT just one
- Add **path(s)** to frontier, NOT just the node(s)
Comparing Searching Algorithms: Will it find a solution? the best one?

Def. : A search algorithm is **complete** if whenever there is at least one solution, the algorithm **is guaranteed to find it** within a finite amount of time.

Def.: A search algorithm is **optimal** if when it finds a solution, it is **the best one**.

Def.: The **time complexity** of a search algorithm is the **worst-case** amount of time it will take to run, expressed in terms of
- maximum path length \(m \)
- maximum branching factor \(b \).

Def.: The **space complexity** of a search algorithm is the **worst-case** amount of memory that the algorithm will use (i.e., the maximum number of nodes on the frontier), also expressed in terms of \(m \) and \(b \).
The branching factor of a node is the number of arcs going out of the node.

If the branching factor of a node is b and the graph is a tree, how many nodes are n steps away from that node?

- A. nb
- B. b^n
- C. n^b
- D. n/b
The branching factor of a node is the number of arcs going out of the node.

If the branching factor of a node is \(b \) and the graph is a tree, how many nodes are \(n \) steps away from that node?

\[B. \ b^n \]
Depth-First Search, DFS

- explores each path on the frontier until its end (or until a goal is found) before considering any other path.
- the frontier is a last-in-first-out stack
Today’s Lecture

• Recap from Previous lectures
 ➡ Depth first search - analysis
 • Breadth first search
 • Iterative deepening
 • Search with costs
 • Intro to heuristic search (time permitting)
Def. : A search algorithm is **complete** if whenever there is at least one solution, the algorithm is guaranteed to find it within a finite amount of time.

Is DFS **complete**?
Analysis of DFS

Def.: A search algorithm is **complete** if whenever there is at least one solution, the algorithm is guaranteed to find it within a finite amount of time.

Is DFS complete? **No**

- If there are cycles in the graph, DFS may get “stuck” in one of them
- See this in AISpace by loading “Cyclic Graph Examples” or by adding a cycle to “Simple Tree”
 - E.g., click on “Create” tab, create a new edge from N7 to N1, go back to “Solve” and see what happens
Def.: A search algorithm is **optimal** if when it finds a solution, it is the best one (e.g., the shortest)

Is DFS optimal?

- E.g., goal nodes: red boxes
Analysis of DFS

Def.: A search algorithm is **optimal** if when it finds a solution, it is the **best one** (e.g., the shortest)

Is DFS optimal?

- A. Yes
- B. No

• E.g., goal nodes: red boxes
Analysis of DFS

Def.: A search algorithm is **optimal** if when it finds a solution, it is the best one (e.g., the shortest)

Is DFS **optimal**? No

- It can “stumble” on longer solution paths before it gets to shorter ones.
 - E.g., goal nodes: red boxes

- see this in AISpace by loading “Extended Tree Graph” and set N6 as a goal
 - e.g., click on “Create” tab, right-click on N6 and select “set as a goal node”
Analysis of DFS

Def.: The **time complexity** of a search algorithm is the worst-case amount of time it will take to run, expressed in terms of
- maximum path length \(m \)
- maximum forward branching factor \(b \).

• What is DFS’s **time complexity**, in terms of \(m \) and \(b \)?

• E.g., single goal node -> red box
Analysis of DFS

Def.: The time complexity of a search algorithm is the worst-case amount of time it will take to run, expressed in terms of
- maximum path length m
- maximum forward branching factor b.

• What is DFS’s time complexity, in terms of m and b?

A. $O(b^m)$
B. $O(m^b)$
C. $O(bm)$
D. $O(b+m)$

• E.g., single goal node -> red box
• Hint: think about how many nodes are in a search tree m steps away from the start
Analysis of DFS

Def.: The **time complexity** of a search algorithm is the **worst-case** amount of time it will take to run, expressed in terms of
- maximum path length \(m \)
- maximum forward branching factor \(b \).

O(\(b^m \))

- What is DFS’s **time complexity**, in terms of \(m \) and \(b \)?

- In the worst case, must examine every node in the tree
 - E.g., single goal node -> red box
Analysis of DFS

Def.: The **space complexity** of a search algorithm is the **worst-case** amount of memory that the algorithm will use (i.e., the maximal number of nodes on the frontier), expressed in terms of
- maximum path length \(m \)
- maximum forward branching factor \(b \).

• What is DFS’s **space complexity**, in terms of \(m \) and \(b \)?

See how this works in...
Analysis of DFS

Def.: The space complexity of a search algorithm is the worst-case amount of memory that the algorithm will use (i.e., the maximal number of nodes on the frontier), expressed in terms of:
- maximum path length \(m \)
- maximum forward branching factor \(b \).

- What is DFS’s space complexity, in terms of \(m \) and \(b \)?

\[O(bm) \]

- for every node in the path currently explored, DFS maintains a path to its unexplored siblings in the search tree
 - Alternative paths that DFS needs to explore
- The longest possible path is \(m \), with a maximum of \(b-1 \) alternative paths per node along the path
To Summarize

<table>
<thead>
<tr>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS</td>
<td>NO</td>
<td>NO</td>
<td>$O(b^m)$</td>
</tr>
</tbody>
</table>
Analysis of DFS: Summary

• **Is DFS complete?** NO
 • Depth-first search isn't guaranteed to halt on graphs with cycles.
 • However, DFS is complete for **finite acyclic graphs**.

• **Is DFS optimal?** NO
 • It can “stumble” on longer solution paths before it gets to shorter ones.

• What is the worst-case **time complexity**, if the maximum path length is m and the maximum branching factor is b?
 • $O(b^m)$: must examine every node in the tree.
 • Search is unconstrained by the goal until it happens to stumble on the goal.

• What is the worst-case **space complexity**?
 • $O(bm)$
 • the longest possible path is m, and for every node in that path must maintain a fringe of size b.
Analysis of DFS (cont.)

DFS is appropriate when

- Space is restricted
- Many solutions, with long path length

It is a poor method when

- There are cycles in the graph
- There are sparse solutions at shallow depth
Why DFS need to be studied and understood?

• It is simple enough to allow you to learn the basic aspects of searching

• It is the basis for a number of more sophisticated and useful search algorithms (e.g. Iterative Deepening)
Today’s Lecture

• Recap from Previous lectures
• Depth first search - analysis
 ➢ Breadth first search
 • Iterative deepening
 • Search with costs
 • Intro to heuristic search (time permitting)
Breadth-first search (BFS)

- BFS explores all paths of length /on the frontier, before looking at path of length / + 1
BFS as an instantiation of the Generic Search Algorithm

Input: a graph
- a set of start nodes
- Boolean procedure `goal(n)`
 - testing if n is a goal node

frontier: `=<s>: s is a start node>;`

While `frontier` is not empty:
- **select** and **remove** path `<n₀,...,nₖ>` from `frontier`;
- **If** `goal(nₖ)`
 - **return** `<n₀,...,nₖ>``;
- **Else**
 - **For every** neighbor n of `nₖ`,
 - **add** `<n₀,...,nₖ, n>` to `frontier`;

In BFS, the frontier is a first-in-first-out queue

Let’s see how this works in AIspace in the Search Applet toolbar, set “Search Options -> Search Algorithms” to “Breadth-First Search”.

27
Breadth-first Search: BFS

Example:

- the frontier is \([p_1, p_2, \ldots, p_r]\)
- neighbors of the last node of \(p_1\) are \(\{n_1, \ldots, n_k\}\)

What happens?
- \(p_1\) is selected, and its end node is tested for being a goal. If not
- New \(k\) paths are created attaching each of \(\{n_1, \ldots, n_k\}\) to \(p_1\)
- These follow \(p_r\) at the end of the frontier.
- Thus, the frontier is now \([p_2, \ldots, p_r, (p_1, n_1), \ldots, (p_1, n_k)]\).
- \(p_2\) is selected next.

As for DFS, you can get a much better sense of how BFS works by looking at the Search Applet in AI Space
Def.: A search algorithm is **complete** if whenever there is at least one solution, the algorithm is **guaranteed to find it within a finite amount of time**.

Is BFS **complete**?
Analysis of BFS

Def.: A search algorithm is **complete** if whenever there is at least one solution, the algorithm is guaranteed to find it within a finite amount of time.

Is BFS **complete**?

A. Yes
B. No
C. It depends
Is BFS complete? Yes

- If a solution exists at level \(l \), the path to it will be explored before any other path of length \(l + 1 \)
 - impossible to fall into an infinite cycle
- see this in AISpace by loading “Cyclic Graph Examples” or by adding a cycle to “Simple Tree”
Def.: A search algorithm is **optimal** if when it finds a solution, it is the best one

Is BFS optimal?

- E.g., two goal nodes: red boxes
Def.: A search algorithm is **optimal** if when it finds a solution, it is the best one

Is BFS optimal? • E.g., two goal nodes: red boxes

A. Yes
B. No
C. It depends
Def.: A search algorithm is **optimal** if when it finds a solution, it is the best one.

Is BFS **optimal**? Yes

- E.g., two goal nodes: red boxes
- Any goal at level / (e.g. red box N7) will be reached before goals at lower levels
Analysis of BFS

Def.: The time complexity of a search algorithm is the worst-case amount of time it will take to run, expressed in terms of
- maximum path length \(m \)
- maximum forward branching factor \(b \).

• What is BFS’s time complexity, in terms of \(m \) and \(b \)?

A. \(O(b^m) \)
B. \(O(m^b) \)
C. \(O(bm) \)
D. \(O(b+m) \)
Analysis of BFS

Def.: The **time complexity** of a search algorithm is the **worst-case** amount of time it will take to run, expressed in terms of
- maximum path length \(m \)
- maximum forward branching factor \(b \).

\[O(b^m) \]

- What is BFS’s **time complexity**, in terms of \(m \) and \(b \) ?

- Like DFS, in the worst case BFS must examine every node in the tree
 - E.g., single goal node -> red box
Def.: The **space complexity** of a search algorithm is the **worst case** amount of memory that the algorithm will use (i.e., the maximal number of nodes on the frontier), expressed in terms of
- maximum path length \textit{m}
- maximum forward branching factor \textit{b}.

- What is BFS’s **space complexity**, in terms of \textit{m} and \textit{b} ?

A. \(O(b^m)\)
B. \(O(m^b)\)
C. \(O(bm)\)
D. \(O(b+m)\)
Analysis of BFS

Def.: The space complexity of a search algorithm is the worst case amount of memory that the algorithm will use (i.e., the maximal number of nodes on the frontier), expressed in terms of
- maximum path length \(m \)
- maximum forward branching factor \(b \).

- What is BFS’s space complexity, in terms of \(m \) and \(b \) ?

\[O(b^m) \]

- BFS must keep paths to all the nodes at level
When to use BFS vs. DFS?

- The search graph has cycles or is infinite
- We need the shortest path to a solution
- There are only solutions at great depth
- There are some solutions at shallow depth and others deeper
- No way the search graph will fit into memory
When to use BFS vs. DFS?

• The search graph has cycles or is infinite
 BFS

• We need the shortest path to a solution
 BFS

• There are only solutions at great depth
 DFS

• There are some solutions at shallow depth and others deeper
 BFS

• No way the search graph will fit into memory
 DFS
To Summarize

<table>
<thead>
<tr>
<th></th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS</td>
<td>NO</td>
<td>NO</td>
<td>$O(b^m)$</td>
<td>$O(bm)$</td>
</tr>
<tr>
<td>BFS</td>
<td>YES</td>
<td>YES</td>
<td>$O(b^m)$</td>
<td>$O(b^m)$</td>
</tr>
</tbody>
</table>

How can we achieve an acceptable (linear) space complexity while maintaining completeness and optimality?

Key Idea: re-compute elements of the frontier rather than saving them.
Iterative Deepening DFS (IDS) in a Nutshell

- Use DFS to look for solutions at depth 1, then 2, then 3, etc
 - For depth D, ignore any paths with longer length
 - Depth-bounded depth-first search

If no goal re-start from scratch and get to depth 2

If no goal re-start from scratch and get to depth 3

If no goal re-start from scratch and get to depth 4
(Time) Complexity of IDS

- That sounds wasteful!
- Let’s analyze the time complexity
- For a solution at depth m with branching factor b

<table>
<thead>
<tr>
<th>Depth</th>
<th>Total # of paths at that level</th>
<th>#times created by BFS (or DFS)</th>
<th>#times created by IDS</th>
<th>Total #paths for IDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\cdot</td>
<td>\cdot</td>
<td>\cdot</td>
<td>\cdot</td>
<td>\cdot</td>
</tr>
<tr>
<td>\cdot</td>
<td>\cdot</td>
<td>\cdot</td>
<td>\cdot</td>
<td>\cdot</td>
</tr>
<tr>
<td>\cdot</td>
<td>\cdot</td>
<td>\cdot</td>
<td>\cdot</td>
<td>\cdot</td>
</tr>
<tr>
<td>$m-1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(Time) Complexity of IDS

- That sounds wasteful!
- Let’s analyze the time complexity
- For a solution at depth m with branching factor b

<table>
<thead>
<tr>
<th>Depth</th>
<th>Total # of paths at that level</th>
<th>#times created by BFS (or DFS)</th>
<th>#times created by IDS</th>
<th>Total #paths for IDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>b</td>
<td>1</td>
<td>m</td>
<td>mb</td>
</tr>
<tr>
<td>2</td>
<td>b^2</td>
<td>1</td>
<td>$m-1$</td>
<td>$(m-1) b^2$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>$m-1$</td>
<td>b^{m-1}</td>
<td>1</td>
<td>2</td>
<td>$2 b^{m-1}$</td>
</tr>
<tr>
<td>m</td>
<td>b^m</td>
<td>1</td>
<td>1</td>
<td>b^m</td>
</tr>
</tbody>
</table>
(Time) Complexity of IDS

Solution at depth \(m \), branching factor \(b \)

Total # of paths generated:

\[
b^m + 2b^{m-1} + 3b^{m-2} + \ldots + mb
\]

\[
= b^m (1 + b^{-1} + b^{-2} + \ldots + m b^{-m})
\]

\[
= b^m \left(\sum_{i=1}^{m} ib^{1-i} \right) \leq b^m \left(\sum_{i=1}^{\infty} ib^{1-i} \right) = b^m \left(\frac{b}{b-1} \right)^2 \in O(b^m)
\]

- For \(b = 10 \), \(m = 5 \). BSF 111,111 and ID = 123,456 (only 11% more nodes)

- The larger \(b \) the better, but even with \(b = 2 \) the search ID will take only 2 times as much as BFS
Further Analysis of Iterative Deepening DFS (IDS)

- Space complexity

<table>
<thead>
<tr>
<th>Depth</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>If no goal re-start from scratch and get to depth 2</td>
</tr>
<tr>
<td>3</td>
<td>If no goal re-start from scratch and get to depth 3</td>
</tr>
</tbody>
</table>

- Complete?

- Optimal?
Summary of Uninformed Search

<table>
<thead>
<tr>
<th></th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS</td>
<td>N</td>
<td>N</td>
<td>$O(b^m)$</td>
<td>$O(mb)$</td>
</tr>
<tr>
<td>BFS</td>
<td>Y</td>
<td>Y</td>
<td>$O(b^m)$</td>
<td>$O(b^m)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(shortest)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDS</td>
<td>Y</td>
<td>Y</td>
<td>$O(b^m)$</td>
<td>$O(mb)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(shortest)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCFS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Today’s Lecture

• Recap from Previous lectures
• Depth first search - analysis
• Breadth first search
• Iterative deepening

Search with costs

• Intro to heuristic search (time permitting)
Search with Costs

Sometimes there are costs associated with arcs.

Def.: The cost of a path is the sum of the costs of its arcs

\[
\text{cost}(\langle n_0, \ldots, n_k \rangle) = \sum_{i=1}^{k} \text{cost}(\langle n_{i-1}, n_i \rangle)
\]
Example: Traveling in Romania
Search with Costs

Sometimes there are costs associated with arcs.

Def.: The cost of a path is the sum of the costs of its arcs

\[
\text{cost}\left(\langle n_0, \ldots, n_k \rangle \right) = \sum_{i=1}^{k} \text{cost}\left(\langle n_{i-1}, n_i \rangle \right)
\]

In this setting we often don't just want to find any solution

- we usually want to find the solution that minimizes cost

Def.: A search algorithm is optimal if when it finds a solution, it is the best one: it has the lowest path cost
Lowest-Cost-First Search (LCFS)

- **Lowest-cost-first search** finds the path with the lowest cost to a goal node.
- At each stage, it **selects** the path with the lowest cost on the frontier.
- The **frontier** is implemented as a priority queue ordered by path cost.

Let's see how this works in Alspace: in the Search Applet toolbar
- select the “Vancouver Neighborhood Graph” problem
- set “Search Options -> Search Algorithms” to “Lowest-Cost-First ”.
- select “Show Edge Costs” under “View”
- Create a new arc from UBC to SP with cost 20 and run LCFS
Example of one step for LCFS:

- Let’s use \((p_i, c_i)\) to indicate a path \(p_i\) and its cost
- the frontier is \([(p_2, 5), (p_3, 7), (p_1, 11)]\)
- \(p_2\) is the lowest-cost node in the frontier:
- Paths obtained by adding neighbor nodes to the end node of \(p_2\) are: \(\{(p_9, 10), (p_{10}, 15)\}\)
- What happens?
 - \(p_2\) is selected, and tested for being a goal: \textit{false}
 - Neighbor paths of \(p_2\) are inserted into the frontier, which is then sorted by cost
 - Thus, the frontier is now \([(p_3, 7), (p_9, 10), (p_1, 11), (p_{10}, 15)]\).
 - \((p_3, 7)\) is selected next.
When arc costs are equal LCFS is equivalent to:

A. DFS
B. BFS
C. IDS
D. None of the Above
• When arc costs are equal LCFS is equivalent to..

A. DFS

B. BFS

C. IDS

D. None of the Above
Analysis of Lowest-Cost Search (1)

• Is LCFS complete?
 • not in general: for instance, a cycle with zero or negative arc costs could be followed forever.

see how this works in Alspace:
 • e.g., add arc with cost -20 to the simple search graph from N4 to S in Simple Search Tree

 • yes, as long as arc costs are strictly positive, greater than a given constant ε*

*If costs along an infinite path can become infinitively small, their sum can be finite (e.g. series $\sum_{i=1}^{\infty} \frac{1}{2^i} < 1$)
Analysis of Lowest-Cost Search (1)

• Is LCFS complete?
 • not in general: for instance, a cycle with zero or negative arc costs could be followed forever.

 see how this works in Alspace:
 • e.g, add arc with cost -20 to the simple search graph from N4 to S

 • yes, as long as arc costs are strictly positive yes, greater than a given constant \(\varepsilon \) *

• Is LCFS optimal?

*If costs along an infinite path can become infinitively small, their sum can be finite (e.g. series \(\sum_{i=1}^{\infty} \frac{1}{2^i} < 1 \))
Analysis of Lowest-Cost Search (1)

• Is LCFS complete?
 • not in general: for instance, a cycle with zero or negative arc costs could be followed forever.
 • yes, as long as arc costs are strictly positive yes, greater than a given constant ε *

see how this works in Alspace:
 • e.g, add arc with cost -20 to the simple search graph from N4 to S

• Is LCFS optimal?
 • Not in general.
 • Arc costs could be negative: a path that initially looks high-cost could end up getting a ``refund''.
 • However, LCFS is optimal if arc costs are guaranteed to be ≥ 0

*If costs along an infinite path can become infinitively small, their sum can be finite (e.g. series $\sum_{i=1}^{\infty} \frac{1}{2^i} < 1$)
Learning Goals for today’s class

• Select the most appropriate search algorithms for specific problems.
 • Depth-First Search vs. Breadth-First Search vs. Iterative Deepening vs LCFS

• Define/read/write/trace/debug different search algorithms

• Define search heuristic and provide examples
• Heuristic Search and A*: Ch 3.6, 3.6.1