Projectagon-Based Reachability Analysis for Circuit-Level Formal Verification

Chao Yan

The University of British Columbia
Motivation

- Circuit-Level Verification: verifying circuits using non-linear ODE models
 - Analog and mixed signal (AMS) circuits
 - Deep-submicron circuit effects undermine digital abstractions

- Analog Bugs
 - Account for large percentage of critical bugs
 - Analog design lacks systematic design flow and test methodologies
 - Analog design relies on designer intuition and expertise
 - Intel Sandy Bridge Chipset.
 - Lost: one billion $!
 - Passed all Intel’s internal tests and all of OEM tests.

- Simulations cannot find all critical bugs before fabrication.
 - Incomplete coverage: difficult to cover all corner cases.
 - Inaccurate models: ideal working conditions and input signals.

- Problem Statement

 We need formal methods to circuit-level design errors.
Contributions

This thesis demonstrates the feasibility of formally verifying behaviors for circuits modeled by non-linear, ordinary differential equations.

- Verification as Reachability
 - Methodology for specifying circuit properties
 - Table-based methods for modeling circuits
 - Circuit verification \rightarrow reachability analysis

- Reachability Analysis
 - Projectagon-based reachability analysis
 - Solve nonlinear ODEs by maximum principle
 - Improvements: robustness, efficiency, accuracy, usability

- Practical Circuit Verification Examples
 - Yuan-Svensson toggle circuit,
 - A flip-flop circuit
 - An arbiter circuit
 - The Rambus ring oscillator
Circuit-Level Formal Verification

Limitations of Prior Work
- Small circuits: \textit{e.g.}, 2-3 variables
- Simplistic dynamics: \textit{e.g.}, (piecewise) linear
- Verify simple properties

Our Goal
- Real circuits (\textasciitilde 10-dim)
- Nonlinear models
- Verification need of designers
Outline

- Motivation and Contributions
- Verification as Reachability
- COHO: Reachability Analysis
- Circuit Verification Examples
- Conclusion
Formal Verification

- Goal: show Model |= Specification

- Model: nonlinear ordinary differential inclusion
 - Nonlinear
 - Real circuits are nonlinear
 - Linear dynamics can be analyzed by simulations or other methods
 - Inclusion
 - Deterministic models are approximations of reality
 - Non-deterministic behaviors: e.g., input uncertainty, PVT variation, noise

- Specification
 - Continuous extension of LTL
 - Continuous variables
 - Dense time
 - Brockett's annulus
 - Specifying analog signals
 - Providing propositions over continuous spaces
 - Probability
 - Specify analog properties
 - Metastability behaviors are common
Example: 2-input Arbiter

- A Black-Box View

Request signals: r_1, r_2; grant signals: g_1, g_2

- Mutually exclusive access
- Handshake protocol
- Liveness

Initially:

\[\forall i \in \{1, 2\}. \neg r_i \land \neg g_i \]

Assume (environment controls r_1 and r_2):

\[\forall i \in \{1, 2\}. \Box (r_i \implies g_i) \land \Box (\neg r_i \implies \neg g_i) \land \Box (g_i \implies \neg r_i) \]

Guarantee (arbiter controls g_1 and g_2):

Handshake:

\[\forall i \in \{1, 2\}. \Box (\neg g_i \implies r_i) \land \Box (g_i \implies \neg r_i) \]

Mutual Exclusion:

\[\Box \neg (g_1 \land g_2) \]

Liveness:

\[\forall i \in \{1, 2\}. (\Box (r_i \implies g_i)) \land (\Box (\neg r_i \implies \neg g_i)) \]
Specification

- Continuous LTL
 - Continuous variables & trajectories
 - Dense time
 - p: p holds for the current time.
 - $\square p$: p holds for this and all subsequent time.
 - $p U q$: p holds until a time for which q holds.
 - $p W q$: p holds forever or until a time for which q holds.

- Brockett’s Annulus

- Continuous Specification
Brockett's annulus allows entire families of signals to be specified.

Region 1 represents a logical low signal.

Region 2 represents a monotonically rising signal.

Region 3 represents a logical high signal.

Region 4 represents a monotonically falling signal.

Map continuous trajectories to discrete sequences.
Specification

- Continuous LTL
- Brockett’s Annulus
- Continuous Specification

Initially:
\[\forall i \in \{1, 2\}. B_1(r_i) \land B_1(g_i) \]

Assume (environment controls \(r_1 \) and \(r_2 \)):
\[\forall i \in \{1, 2\}. \Box (B_3(r_i) \Rightarrow B_{2,3}(g_i)) \land \Box (B_1(r_i) \Rightarrow B_{4,1}(g_i)) \land \\
\Box (B_3(g_i) \Rightarrow B_{4,1}(r_i)) \]

Guarantee (arbiter controls \(g_1 \) and \(g_2 \)):

Handshake:
\[\forall i \in \{1, 2\}. \Box (B_1(g_i) \Rightarrow B_{2,3}(r_i)) \land \Box (B_3(g_i) \Rightarrow B_{4,1}(r_i)) \]

Mutual Exclusion:
\[\Box \neg (B_{2,3}(g_1) \land B_{2,3}(g_2)) \]

Liveness:
\[\forall i \in \{1, 2\}. (\Box (B_3(r_i) \Rightarrow B_{2,3}(g_i)) \land (\Box (B_1(r_i) \Rightarrow B_{4,1}(g_i)))) \]
Liveness and Probability

- **Metastability**
 - There must exist trajectories where contested request are never granted
 - Liveness is not “always” satisfied
 - No ideal arbiter

- **Almost Surely**
 - Liveness is not always satisfied, but it may be satisfied with probability 1.
 - Solution: introduce probability theory to logic
 - *Almost-surely* version of LTL “always” operator
 - A trajectory ϕ satisfies $\square Z S$ iff S holds everywhere along ϕ, or if ϕ is in a negligible set, Z.
 - The probability of S holding everywhere along ϕ is equal to 1.
 - Z is the same for all trajectories.

- **Continuous Specification**
 \[
 \forall i \in \{1, 2\}. \quad \alpha\text{-ins} \Rightarrow (\square Z (B_3(r_i) \cup B_{2,3}(g_i)))
 \land (B_3(r_i) \cup (B_{2,3}(g_i) \lor B_3(r_{\sim i}))) \land (\square (B_1(r_i) \cup B_4(g_i)))
 \]
Outline

- Motivation and Contributions
- Verification as Reachability
- СОНО: Reachability Analysis
- Circuit Verification Examples
- Conclusion
Representing and manipulating high-dimensional regions: projectagons

Projectagons are efficiently manipulated using two-dimensional computational geometry algorithms.

COHO projects high-dimensional polyhedra onto two-dimensional subspaces.

COHO uses both geometrical and inequality representations.

Projectagon faces correspond to edges of the projection polygons.

Solving dynamic systems: linear differential inclusions.

Basic step of COHO
COHO: Basic Ideas and Algorithms

- Representing and manipulating high-dimensional regions: **projectagons**
- Solving dynamic systems: **linear differential inclusions**.
 - Approximate the ODEs by linear differential inclusions.
 - least squares method
 - linear programming
 - Compute forward reachable region using the **Maximum Principle**
 - Efficient: matrix computations
 - Accurate: work on each face rather than the whole projectagon.

- Basic step of **COHO**
COHO: Basic Ideas and Algorithms

- Representing and manipulating high-dimensional regions: **projectagons**
- Solving dynamic systems: **linear differential inclusions**.
- Basic step of COHO

A bounding projectagon is obtained by moving each face forward in time.

The advanced face is projected onto two-dimensional subspaces to maintain the structure of projectagon.

Computation continues until no new reachable region found.
COHO: Basic Ideas and Algorithms

- Representing and manipulating high-dimensional regions: *projectagons*
- Solving dynamic systems: *linear differential inclusions.*
- Basic step of COHO
- All approximations over-approximate the reachable space: COHO is sound.
- Available at http://coho.sourceforge.net
Coho: Improvements

- Robustness
 - Arbitrary precision rational (APR)
 - ill-conditioned problems
 - simple implementation
 - Remove infeasible regions
 - incomplete boundary
 - guarantee non-empty projectagon faces
- Efficiency
- Accuracy
- Usability
COHO: Improvements

- **Robustness**
- **Efficiency**
 - Guess-verify strategy
 - step-size is much smaller than necessary
 - guess a larger step-size based on previous step
 - verify the step-size and model is correct
 - Approximation algorithms
 - linear programming
 - projection algorithm
 - Hybrid computation
 - APR is expensive
 - floating point, interval, APR
- **Accuracy**
- **Usability**
COHO: Improvements

- Robustness
- Efficiency
- Accuracy
 - Interval closure
 - over-approximation by using convex hull
 - non-convex polygons are constraints of variables
 - interval propagation
 - Reduce model error
 - asymmetric bloating
 - anisotropic bloating
 - multiple models
 - Reduce projection error
- Usability
CoHO: Improvements

- **Robustness**
- **Efficiency**
- **Accuracy**
- **Usability**
 - Interface based on hybrid automata
 - Templates for reachability computations
 - Options for trade-off of performance and accuracy
Infeasible Regions

- Infeasible regions
 - Projection polygons are computed independently
 - Infeasible regions: the prism from this region does not intersect with other prisms
 - Leads to incomplete boundaries in the next step

- Clipping infeasible regions
 - The problem of determining if a projectagon is non-empty is NP-complete
 - Approximation techniques must be applied
 - Make a projectagon feasible to its convex hull
Infeasible Regions

Algorithm
- Construct the convex hull of the projectagon
- Project onto all planes to obtain an updated convex hull
- Compute the intersection of the projectagon and the updated convex hull
- Repeat until the result converges

Projectagon Faces
- Use interval closure to find an accurate projectagon face if it is feasible

\[\text{prism}(e) \cap \text{convexhull}(P) \cap \text{intervalClosure}(e, P) \]

- Use convex hull to find an over-approximated projectagon face otherwise

\[\text{prism}(e) \cap \text{convexhull}(P) \]
Hybrid Computation

- Arbitrary precision rational numbers (APR)
 - Expensive
 - Only necessary for ill-conditioned problems
- Hybrid computation
 - Use double-precision arithmetic for general computation
 - Use interval computation to validate the result
 - Use APR to repeat the computation if failed
- Applications
 - Linear programming
 - Geometric computations
 - Projection algorithms
Outline

- Motivation and Contributions
- Verification as Reachability
- \(\text{CNO} \): Reachability Analysis
- Circuit Verification Examples
- Conclusion
Example: Arbiter

Based on cross-couple NANDs

The *metastability filters* ensure that no grant is asserted until metastability has resolved.
Reachability Computation

- **Stiffness**
 - Vastly different node capacitances: z_1, z_2
 - Ill-conditioned Jacobian matrix for ODE $\dot{x} = f(x)$
 - Difficult to find a good time-step
 - Large: large model error
 - Small: large projection and simplification errors

- **Solution**
 - Changing variables: converge much more rapidly
 - Additional invariants: reduce over-approximation

- **Performance**
 - 6-dimensional non-convex regions
 - ~ 90 hours
 - large number of steps
 - circuit modeling, projection, linear programming
 - $1 \sim 2G$ memory
 - large tables for circuit models
Results

- Safety Properties
 - Mutual Exclusion
 - Handshake Protocol
 - Brockett Annuli

- Liveness Properties

Mutual Exclusion
Results

- Safety Properties
 - Mutual Exclusion
 - Handshake Protocol
 - Brockett Annuli

- Liveness Properties

Ph.D. Oral Examination 30th August, 2011 Reachability Analysis for Circuit-Level Formal Verification – p.18/22
Results

- Safety Properties
 - Mutual Exclusion
 - Handshake Protocol
 - Brockett Annuli

\[\dot{x} \text{ vs. } x \]

\[\dot{y} \text{ vs. } y \]

Brockett Annuli

- Liveness Properties
Results

- Safety Properties
 - Mutual Exclusion
 - Handshake Protocol
 - Brockett Annuli

- Liveness Properties
 - Initialization: stable within 200ps
 - Uncontested Requests: grant the client within 350ps
 - Contested Requests: metastability within hyper-rectangle
 - Reset: withdraw grants within 270ps
 - Fairness: grant the other client within 420ps
Metastability and Liveness

- **Metastable Behaviours**
 - Fail to show a client is eventually granted when both requests asserted concurrently
 - Trajectories cannot leave the metastable region M because of over-approximation
 - Cannot be solved by reachability analysis

- **Almost-Surely Verification**
 - Bound the metastable region M by COHO
 - Compute interval Jacobian matrix in M
 - Show divergence holds everywhere in M using dynamical system theory [Mitchell96]
Other Circuits

- The Yuan-Svensson Toggle Circuit
 - Revealed a leakage current bug
 - The period of output is twice that of the input
 - Verify that the output and input signals satisfy the same Brockett’s annulus

- A Flip-Flop Circuit
 - Showed the output satisfies the specification
 - Modeled circuit with multiple inputs with timing constraints

- The Rambus Ring Oscillator
 - Real problem from industry
 - Space reduction to improve performance of reachability analysis
 - Combine reachability analysis with other methods (e.g., static analysis) to solve practical problems
 - Find sufficient conditions that guarantee oscillation from all initial conditions except for a set of measure zero.
Conclusions

- Circuit Verification as Reachability Analysis
 - A systematic way of translating verification problems to reachability analysis problems
 - Modeling: modified nodal analysis, table-based models from simulations.
 - Specification: Brockett annulus, LTL and probability theory
 - Efficient reachability analysis
 - Projectagon-based reachability analysis
 - Improvements: robustness, efficiency, accuracy, etc.

- Correctness and Efficiency Demonstrated by Circuit Verification Examples
 - Synchronous: Flip-flop, toggle
 - Asynchronous: Arbiter
 - Analog: Rambus ring oscillator

- Verification of Practical Circuits
 - Stiffness: challenges of reachability analysis
 - Metastability: cannot be solved by reachability analysis alone

- Analog Properties of Practical Circuits Can be Formally Verified Based on Reachability Analysis.
Future Work

- Verify Larger, Practical AMS Circuits
 - Parameterized verification
 - Point verification: specialized tools for common circuit classes

- Combine Reachability Analysis with Other Methods
 - Small-signal analysis
 - Static invariant computations: HYSAT, HSOLVER
 - Almost-surely verification

- Specification
 - Check properties automatically
 - Integrate with other verification tools

- Improve Performance of COHO
 - Parallel computation
 - More efficient approximation algorithms

- More applications
 - Apply to other hybrid system problems
 - Compare with other reachability analysis tools