<table>
<thead>
<tr>
<th>Event</th>
<th>Date/Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deloitte Info Session</td>
<td>Mon., Sept 14, 6–7 pm</td>
<td>DMP 310</td>
</tr>
<tr>
<td>Google Info Table</td>
<td>Mon., Sept 14, 10–11:30 am; 2–4 pm</td>
<td>Reboot Cafe</td>
</tr>
<tr>
<td>Google Alkumni/Intern Panel</td>
<td>Tues., Sept 15, 6–7:30 pm</td>
<td>DMP 310</td>
</tr>
<tr>
<td>Co-op Info Session</td>
<td>Thurs., Sept 17, 12:30–1:30 pm</td>
<td>MCLD 202</td>
</tr>
<tr>
<td>Simba Technologies Tech Talk/Info Session</td>
<td>Mon., Sept 21, 6–7 pm</td>
<td>DMP 310</td>
</tr>
<tr>
<td>EA Info Session</td>
<td>Tues., Sept 22, 6–7 pm</td>
<td>DMP 310</td>
</tr>
</tbody>
</table>
Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 3

Sep, 14, 2015
Lecture Overview

Markov Decision Processes

• Formal Specification and example
• Policies and Optimal Policy
• Intro to Value Iteration
Markov Models

Markov Chains

Hidden Markov Model

Partially Observable Markov Decision Processes (POMDPs)

Markov Decision Processes (MDPs)

Noisy Observations

Noisy Actions Rewards
Summary Decision Processes: MDPs

To manage an ongoing (indefinite… infinite) decision process, we combine….

Markovian Chains & Decision Networks

Markovian
Stationary

Utility not just at the end
But
Sequence of rewards

Fully Observable
Agent moves in the above grid via actions Up, Down, Left, Right.

Each action has:

- 0.8 probability to reach its intended effect
- 0.1 probability to move at right angles of the intended direction
- If the agent bumps into a wall, it says there

How many states? \(\{(11), (12), \ldots, (24), (34)\} \)

There are two terminal states (3,4) and (2,4)
Example MDP: Rewards

\[
R(s) = \begin{cases}
-0.04 & \text{(small penalty) for nonterminal states} \\
\pm 1 & \text{for terminal states}
\end{cases}
\]
Example MDP: Underlying info structures

Four actions *Up, Down, Left, Right*

Eleven States: \{(1,1), (1,2)\ldots (3,4)\}

Table $4 \times 11 \times 11$ $P(S_{t+1} \mid S_t, A_t)$

<table>
<thead>
<tr>
<th>Up</th>
<th>1,1</th>
<th>2,1</th>
<th>3,1</th>
<th>3,2</th>
<th>3,3</th>
<th>3,4</th>
<th>3,5</th>
<th>3,6</th>
<th>3,7</th>
<th>3,8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1</td>
<td>0.1</td>
<td>0.8</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2,1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.8</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Costs:
- $R(1) = -1$
- $R(3) = +1$

CPSC 422, Lecture 3
Slide 8
Example MDP: Sequence of actions

The sequence of actions \([Up, Up, Right, Right, Right]\) will take the agent in terminal state \((3,4)\)…

A. always
B. never
C. Only sometimes

With what probability?

A. \((0.8)^5\)
B. \((0.8)^5 + ((0.1)^4 \times 0.8)\)
C. \(((0.1)^4 \times 0.8)\)

CPSC 422, Lecture 3
Can the sequence \([\textbf{Up, Up, Right, Right, Right}]\) take the agent in terminal state (3,4)?

\[(.8)^5\]

Can the sequence reach the goal in any other way?

\[(.1)^4 .8 \text{ with prob } \] with prob

\[\text{yes no}\]
MDPs: Policy

- The robot needs to know what to do as the decision process unfolds…
- It starts in a state, selects an action, ends up in another state selects another action….

- Needs to make **the same decision over and over**: Given the current state what should I do?

- So a **policy for an MDP** is a single decision function $\pi(s)$ that specifies what the agent should do for each state s.
How to evaluate a policy

A policy can generate a set of state sequences with different probabilities

Each state sequence has a corresponding reward. Typically the \((\text{discounted})\) sum of the rewards for each state in the sequence

\[
\sum (1, 1) \rightarrow (1, 1) \rightarrow (2, 1) \rightarrow (3, 1) \rightarrow (3, 1) \rightarrow (3, 2) \rightarrow (3, 3) \rightarrow (3, 4) + 1
\]

\[
+ \cdot 72
\]
MDPs: expected value/total reward of a policy and optimal policy

Each sequence of states (environment history) associated with a policy has

• a certain probability of occurring
• a given amount of total reward as a function of the rewards of its individual states

Expected value /total reward

\[\sum P(s_0, s_1, \ldots, s_{\text{terminal}}) \times \sum R(s_0) \ldots R(s_T) \]

For all the sequences of states generated by the policy, we sum the product of its probability times its reward.

Optimal policy is the policy that maximizes expected total reward.
Lecture Overview

Markov Decision Processes

• Formal Specification and example
• Policies and Optimal Policy
• Intro to Value Iteration
Sketch of ideas to find the optimal policy for a MDP (Value Iteration)

We first need a couple of definitions

- $V^\pi(s)$: the expected value of following policy π in state s
- $Q^\pi(s, a)$, where a is an action: expected value of performing a in s, and then following policy π.

Can we express $Q^\pi(s, a)$ in terms of $V^\pi(s)$?

- $Q^\pi(s, a) = V^\pi(s) + R(s)$
- $Q^\pi(s, a) = R(s) + \sum_{s' \in X} P(s'|s, a) \cdot V^\pi(s')$
- $Q^\pi(s, a) = R(s) + \sum_{s' \in X} V^\pi(s')$

X: set of states reachable from s by doing a
Discounted Reward Function

Suppose the agent goes through states $s_1, s_2, ..., s_k$ and receives rewards $r_1, r_2, ..., r_k$

We will look at discounted reward to define the reward for this sequence, i.e. its utility for the agent

$$\gamma \text{ discount factor}, \ 0 \leq \gamma \leq 1$$

$$R_{\text{max}} \text{ bound on } R(s) \text{ for every } s$$

$$U[s_1, s_2, s_3, ...] = r_1 + \gamma r_2 + \gamma^2 r_3 +$$

$$= \sum_{i=0}^{\infty} \gamma^i r_{i+1} \leq \sum_{i=0}^{\infty} \gamma^i R_{\text{max}} = \frac{R_{\text{max}}}{1 - \gamma}$$
Sketch of ideas to find the optimal policy for a MDP (Value Iteration)

We first need a couple of definitions

- $V^\pi(s)$: the expected value of following policy π in state s
- $Q^\pi(s, a)$, where a is an action: expected value of performing a in s, and then following policy π.

We have, by definition

$$Q^\pi(s, a) = R(s) + \gamma \sum_{s'} P(s'|s, a) V^\pi(s')$$
Value of a policy and Optimal policy

We can also compute $V^\pi(s)$ in terms of $Q^\pi(s, a)$

$$V^\pi(s) = Q^\pi(s, \pi(s))$$

Expected value of performing the action indicated by π in s and following π after that

Expected value of following π in s

For the optimal policy π^* we also have

$$V^{\pi^*}(s) = Q^{\pi^*}(s, \pi^*(s))$$

STOP HERE
Value of Optimal policy

\[V^{\pi^*}(s) = Q^{\pi^*}(s, \pi^*(s)) \]

Remember for any policy \(\pi \)

\[Q^{\pi}(s, \pi(s)) = R(s) + \gamma \sum_{s'} P(s'|s, \pi(s)) \times V^{\pi}(s') \]

But the Optimal policy \(\pi^* \) is the one that gives the action that maximizes the future reward for each state

\[Q^{\pi^*}(s, \pi^*(s)) = R(s) + \gamma \max_a \sum_{s'} P(s'|s, a) \times V^{\pi^*}(s') \]

So...

\[V^{\pi^*}(s) = R(s) + \gamma \max_a \sum_{s'} P(s'|s, a) \times V^{\pi^*}(s') \]
Value Iteration Rationale

- Given \(N \) states, we can write an equation like the one below for each of them:

\[
V(s_1) = R(s_1) + \gamma \max_a \sum_{s'} P(s'|s_1, a)V(s') \\
V(s_2) = R(s_2) + \gamma \max_a \sum_{s'} P(s'|s_2, a)V(s')
\]

- Each equation contains \(N \) unknowns – the \(V \) values for the \(N \) states

- \(N \) equations in \(N \) variables (Bellman equations): It can be shown that they have a unique solution: the values for the optimal policy

- Unfortunately the \(N \) equations are non-linear, because of the max operator: Cannot be easily solved by using techniques from linear algebra

- **Value Iteration Algorithm**: Iterative approach to find the optimal policy and corresponding values
Learning Goals for today’s class

You can:

• Compute the probability distribution on states given a sequence of actions in an MDP
• Define a policy for an MDP
• Define and Justify a discounted reward function
• Derive the Bellman equations on which Value Iteration is based (we will likely finish this in the next lecture)
Read textbook
 • 9.5.3 Value Iteration