Lecture Overview

Finish Reinforcement learning

- Exploration vs. Exploitation
- On-policy Learning (SARSA)
- Scalability
$Q(s, a) = r + \gamma \max_{a'} Q(s', a')$

TD

$A^t = A^{t-1} + \alpha_k \left(r^t + \gamma \max_{a'} Q(s', a') - A^{t-1} \right)$

$Q(s, a) = Q(s, a) + \alpha_k \left(r^t + \gamma \max_{a'} Q(s', a') - Q(s, a) \right)$
Clarification on the $\alpha_{K_{sa}} = \frac{1}{K_{sa}}$

Diagram:
- K_{sa}
- s
- K_{sa}
- # of experiences $s_{a \ldots}$
What Does Q-Learning learn

- Q-learning does not explicitly tell the agent what to do.

- Given the Q-function the agent can...

 ... either exploit it or explore more.

Any effective strategy should

- Choose the predicted best action in the limit
- Try each action an unbounded number of times
- We will look at two exploration strategies
 - \(\varepsilon \)-greedy
 - soft-max
Soft-Max

- When in state \(s \), takes into account improvement in estimates of expected reward function \(Q[s,a] \) for all the actions.
 - Choose action \(a \) in state \(s \) with a probability proportional to current estimate of \(Q[s,a] \)

\[
\frac{e^{Q[s,a]}}{\sum_a e^{Q[s,a]}} \quad \frac{e^{Q[s,a]/\tau}}{\sum_a e^{Q[s,a]/\tau}}
\]

- \(\tau \) (tau) in the formula above influences how randomly values should be chosen.
 - If \(\tau \) is high, \(>> Q[s,a] \)?

A. It will mainly exploit

B. It will mainly explore

C. It will do both with equal probability
Soft-Max

- Takes into account improvement in estimates of expected reward function $Q[s,a]$
 - Choose action a in state s with a probability proportional to current estimate of $Q[s,a]$
 $$\frac{e^{Q[s,a]/\tau}}{\sum_a e^{Q[s,a]/\tau}}$$

- τ (tau) in the formula above influences how randomly values should be chosen
 - if τ is high, the exponentials approach 1, the fraction approaches $1/(\text{number of actions})$, and each action has approximately the same probability of being chosen (exploration or exploitation?)
 - as $\tau \to 0$, the exponential with the highest $Q[s,a]$ dominates, and the current best action is always chosen (exploration or exploitation?)
\[e^{Q[s,a]/\tau} \]
\[\sum_{a} e^{Q[s,a]/\tau} \]

- \(\tau \) (tau) in the formula above influences how randomly values should be chosen

 - **if \(\tau \) is high**, the exponentials approach 1, the fraction approaches \(1/(\text{number of actions}) \), and each action has approximately the same probability of being chosen (exploration or exploitation?)

 - **as \(\tau \to 0 \)**, the exponential with the highest \(Q[s,a] \) dominates, and the current best action is always chosen (exploration or exploitation?)
Lecture Overview

Finish Reinforcement learning

- Exploration vs. Exploitation
- On-policy Learning (SARSA)
- RL scalability
Learning before vs. during deployment

- Our learning agent can:
 - A. act in the environment to learn how it works (before deployment)
 - B. Learn as you go (after deployment)

- If there is time to learn before deployment, the agent should try to do its best to learn as much as possible about the environment
 - even engage in locally suboptimal behaviors, because this will guarantee reaching an optimal policy in the long run

- If learning while “at work”, suboptimal behaviors could be costly
Consider, for instance, our sample grid game:

- the optimal policy is to go up in S_0
- But if the agent includes some exploration in its policy (e.g. selects 20% of its actions randomly), exploring in S_2 could be dangerous because it may cause hitting the -100 wall
- No big deal if the agent is not deployed yet, but not ideal otherwise

Q-learning would not detect this problem

- It does *off-policy learning*, i.e., it focuses on the optimal policy

On-policy learning addresses this problem
On-policy learning: SARSA

- On-policy learning learns the value of the policy being followed.
 - e.g., act greedily 80% of the time and act randomly 20% of the time
 - Better to be aware of the consequences of exploration has it happens, and avoid outcomes that are too costly while acting, rather than looking for the true optimal policy

- SARSA
 - So called because it uses \(<\text{state, action, reward, state, action}>\) experiences rather than the \(<\text{state, action, reward, state}>\) used by Q-learning
 - Instead of looking for the best action at every step, it evaluates the actions suggested by the current policy
 - Uses this info to revise it
On-policy learning: SARSA

- Given an experience \(<s, a, r, s', a'>\), SARSA updates \(Q[s, a]\) as follows

\[
Q[s, a] \leftarrow Q[s, a] + \alpha((r + \gamma Q[s', a']) - Q[s, a])
\]

What’s different from Q-learning?
On-policy learning: SARSA

- Given an experience \(<s, a, r, s', a'>\), SARSA updates \(Q[s, a]\) as follows

\[
Q[s, a] \leftarrow Q[s, a] + \alpha ((r + \gamma Q[s', a']) - Q[s, a])
\]

- While Q-learning was using

\[
Q[s, a] \leftarrow Q[s, a] + \alpha ((r + \gamma \max_{a'} Q[s', a']) - Q[s, a])
\]

- There is no more \(\max\) operator in the equation, there is instead the Q-value of the action suggested by the current policy
\[Q[s, a] \leftarrow Q[s, a] + \alpha (r + \gamma Q[s', a'] - Q[s, a]) \]

<table>
<thead>
<tr>
<th>Q[s,a]</th>
<th>s_0</th>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>s_4</th>
<th>s_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>upCareful</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Left</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Right</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Up</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
Q[s_0, right] \leftarrow Q[s_0, right] + \alpha_k (r + 0.9Q[s_1, UpCareful] - Q[s_0, right]);
\]
\[
Q[s_0, right] \leftarrow \]

\[
Q[s_1, upCarfull] \leftarrow Q[s_1, upCarfull] + \alpha_k (r + 0.9Q[s_3, UpCareful] - Q[s_1, upCarfull]);
\]
\[
Q[s_1, upCarfull] \leftarrow \]

\[
Q[s_3, upCarfull] \leftarrow Q[s_3, upCarfull] + \alpha_k (r + 0.9Q[s_5, Left] - Q[s_3, upCarfull]);
\]
\[
Q[s_3, upCarfull] \leftarrow 0 + 1(-1 + 0.9*0 - 0) = -1
\]

\[
Q[s_5, Left] \leftarrow Q[s_5, Left] + \alpha_k (r + 0.9Q[s_4, left] - Q[s_5, Left]);
\]
\[
Q[s_5, Left] \leftarrow 0 + 1(0 + 0.9*0 - 0) = 0
\]

\[
Q[s_4, Left] \leftarrow Q[s_4, Left] + \alpha_k (r + 0.9Q[s_0, Right] - Q[s_4, Left]);
\]
\[
Q[s_4, Left] \leftarrow 0 + 1(10 + 0.9*0 - 0) = 10
\]

Only immediate rewards are included in the update, as with Q-learning
\[Q[s, a] \leftarrow Q[s, a] + \alpha (r + \gamma Q[s', a'] - Q[s, a]) \]

<table>
<thead>
<tr>
<th>k=2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q[s_0, right] \leftarrow Q[s_0, right] + \alpha_k (r + 0.9Q[s_1, upCareful] - Q[s_0, right]));</td>
</tr>
<tr>
<td>(Q[s_0, right] \leftarrow -1 + 1/2(-1 + 0.9*0 + 1) = -1)</td>
</tr>
<tr>
<td>(Q[s_1, upCarfull] \leftarrow Q[s_1, upCarfull] + \alpha_k (r + 0.9Q[s_3, upCareful] - Q[s_1, upCarfull]));</td>
</tr>
<tr>
<td>(Q[s_1, upCarfull] \leftarrow -1 + 1/2(-1 + 0.9*0 + 1) = -1)</td>
</tr>
<tr>
<td>(Q[s_3, upCarfull] \leftarrow Q[s_3, upCarfull] + \alpha_k (r + 0.9Q[s_5, Left] - Q[s_3, upCarfull]));</td>
</tr>
<tr>
<td>(Q[s_3, upCarfull] \leftarrow -1 + 1/2(-1 + 0.9*0 + 1) = -1)</td>
</tr>
<tr>
<td>(Q[s_5, Left] \leftarrow Q[s_5, Left] + \alpha_k (r + 0.9Q[s_4, left] - Q[s_5, Left]));</td>
</tr>
<tr>
<td>(Q[s_5, Left] \leftarrow 0 + 1/2(0 + 0.9*10 - 0) = 4.5)</td>
</tr>
<tr>
<td>(Q[s_4, Left] \leftarrow Q[s_4, Left] + \alpha_k (r + 0.9Q[s_0, Right] - Q[s_4, Left]));</td>
</tr>
<tr>
<td>(Q[s_4, Left] \leftarrow 10 + 1/2(10 + 0.9*0 - 10) = 10)</td>
</tr>
</tbody>
</table>

SARSA backs up the expected reward of the next action, rather than the max expected reward.
Comparing SARSA and Q-learning

- For the little 6-states world

- Policy learned by Q-learning 80% greedy is to go up in s_0 to reach s_4 quickly and get the big +10 reward

<table>
<thead>
<tr>
<th>Iterations</th>
<th>$Q[s_0, Up]$</th>
<th>$Q[s_1, Up]$</th>
<th>$Q[s_2, UpC]$</th>
<th>$Q[s_3, Up]$</th>
<th>$Q[s_4, Left]$</th>
<th>$Q[s_5, Left]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>40000000</td>
<td>19.1</td>
<td>17.5</td>
<td>22.7</td>
<td>20.4</td>
<td>26.8</td>
<td>23.7</td>
</tr>
</tbody>
</table>

• Verify running full demo, see http://www.cs.ubc.ca/~poole/aibook/demos/rl/tGame.html
Comparing SARSA and Q-learning

- Policy learned by SARSA 80% greedy is to go right in s_0.
- Safer because avoid the chance of getting the -100 reward in s_2.
- But non-optimal => lower q-values.

<table>
<thead>
<tr>
<th>Iterations</th>
<th>$Q[s_0, \text{Right}]$</th>
<th>$Q[s_1, \text{Up}]$</th>
<th>$Q[s_2, \text{UpC}]$</th>
<th>$Q[s_3, \text{Up}]$</th>
<th>$Q[s_4, \text{Left}]$</th>
<th>$Q[s_5, \text{Left}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>40000000</td>
<td>6.8</td>
<td>8.1</td>
<td>12.3</td>
<td>10.4</td>
<td>15.6</td>
<td>13.2</td>
</tr>
</tbody>
</table>

Verify running full demo, see http://www.cs.ubc.ca/~poole/aibook/demos/rl/tGame.html
SARSA Algorithm

begin
initialize $Q[S, A]$ arbitrarily
observe current state s
select action a using a policy based on Q
repeat forever:
 carry out an action a
 observe reward r and state s'
 select action a' using a policy based on Q
 $Q[s, a] \leftarrow Q[s, a] + \alpha (r + \gamma Q[s', a'] - Q[s, a])$
 $s \leftarrow s'$;
 $a \leftarrow a'$;
end-repeat
end

This could be, for instance any ε-greedy strategy:
- Choose random ε times, and max the rest

If the random step is chosen here, and has a bad negative reward, this will affect the value of $Q[s,a]$.

Next time in s, a may no longer be the action selected because of its lowered Q value.
Another Example

- Gridworld with:
 - Deterministic actions *up, down, left, right*
 - Start from **S** and arrive at **G** (terminal state with reward > 0)
 - **Reward is -1 for all transitions**, except those into the region marked “Cliff”

✓ Falling into the cliff causes the agent to be sent back to start: $r = -100$
With an ε-greedy strategy (e.g., $\varepsilon = 0.1$)

A. SARSA will learn policy p_1 while Q-learning will learn p_2
B. Q-learning will learn policy p_1 while SARSA will learn p_2
C. They will both learn p_1
D. They will both learn p_2
Because of **negative reward for every step taken**, the optimal policy over the four standard actions is to take the shortest path along the cliff.

But if the agents adopt an ϵ-greedy action selection strategy with $\epsilon=0.1$, walking along the cliff is dangerous.

- The optimal path that considers exploration is to go around as far as possible from the cliff.
Q-learning vs. SARSA

- Q-learning learns the optimal policy, but because it does so without taking exploration into account, it does not do so well while the agent is exploring
 - It occasionally falls into the cliff, so its reward per episode is not that great

- SARSA has better on-line performance (reward per episode), because it learns to stay away from the cliff while exploring
 - But note that if $\epsilon \to 0$, SARSA and Q-learning would asymptotically converge to the optimal policy
422 big picture: Where are we?

Deterministic

Logics
- First Order Logics

Ontologies
- Temporal rep.

- Full Resolution
- SAT

Stochastic

Belief Nets
- Approx. : Gibbs

Markov Chains and HMMs
- Forward, Viterbi....
- Approx. : Particle Filtering

Undirected Graphical Models
- Conditional Random Fields

Markov Decision Processes and Partially Observable MDP
- Value Iteration
- Approx. Inference

Reinforcement Learning

Hybrid: Det + Sto

Prob CFG

Prob Relational Models

Markov Logics

Query

Planning

Applications of AI

CPSC 322, Lecture 34
Slide 30
Learning Goals for today’s class

➤ You can:

• Describe and compare techniques to combine exploration with exploitation

• On-policy Learning (SARSA)

• Discuss trade-offs in RL scalability (not required)
• Read textbook 6.4.2
• Next research paper will be next Wed
• Practice Ex 11.B
Problem with Model-free methods

- Q-learning and SARSA are model-free methods

What does this mean?
Problems With Model-free Methods

Q-learning and SARSA are model-free methods

- They do not need to learn the transition and/or reward model, they are implicitly taken into account via experiences

Sounds handy, but there is a main disadvantage:

- How often does the agent get to update its Q-estimates?
Problems with Model-free Methods

- Q-learning and SARSA are model-free methods
 - They do not need to learn the transition and/or reward model, they are implicitly taken into account via experiences

- Sounds handy, but there is a main disadvantage:
 - How often does the agent get to update its Q-estimates?
 - Only after a new experience comes in
 - Great if the agent acts very frequently, not so great if actions are sparse, because it wastes computation time
Model-based methods

Idea

• learn the MDP and interleave acting and planning.

After each experience,

• update probabilities and the reward,
• do some steps of value iteration (asynchronous) to get better estimates of state utilities $U(s)$ given the current model and reward function.
• Remember that there is the following link between Q values and utility values

$$U(s) = \max_a Q(a, s) \quad (1)$$

$$Q(s, a) = R(s) + \gamma \sum_{s'} P(s'| s, a) U(s') \quad (2)$$

$$Q(s, a) = R(s) + \gamma \sum_{s'} P(s'| s, a) \max_{a'} Q(s', a')$$
VI algorithm

function VALUE-ITERATION(mdp, ε) returns a utility function

inputs: mdp, an MDP with states S, actions $A(s)$, transition model $P(s' \mid s, a)$, rewards $R(s)$, discount γ

ϵ, the maximum error allowed in the utility of any state

local variables: U, U', vectors of utilities for states in S, initially zero

δ, the maximum change in the utility of any state in an iteration

repeat

$U \leftarrow U'$; $\delta \leftarrow 0$

for each state s in S do

$U'[s] \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s' \mid s, a) U[s']$

if $|U'[s] - U[s]| > \delta$ then $\delta \leftarrow |U'[s] - U[s]|$

until $\delta < \epsilon(1 - \gamma)/\gamma$

return U
Asynchronous Value Iteration

- The “basic” version of value iteration applies the Bellman update to all states at every iteration.

- This is in fact not necessary:
 - On each iteration we can apply the update only to a chosen subset of states.
 - Given certain conditions on the value function used to initialize the process, asynchronous value iteration converges to an optimal policy.

- Main advantage:
 - One can design heuristics that allow the algorithm to concentrate on states that are likely to belong to the optimal policy.
 - Much faster convergence.
Asynchronous VI algorithm

function VALUE-ITERATION (mdp, ε) returns a utility function

inputs: mdp, an MDP with states S, transition model T, reward function R, discount γ
 ε, the maximum error allowed in the utility of any state

local variables: U, U', vectors of utilities for states in S, initially zero
 δ, the maximum change in the utility of any state in an iteration

repeat
 U ← U'; δ ← 0
 for some state s in S do
 U'[s] ← R[s] + γ max_a Σ_s' T(s, a, s') U[s']
 if |U'[s] - U[s]| > δ then δ ← |U'[s] - U[s]|
 until δ < ε(1 − γ)/γ
return U
Model-based RL algorithm

Model Based Reinforcement Learner
inputs:
S is a set of states, A is a set of actions, γ the discount, c is a prior count

internal state:
real array $Q[S,A]$, $R[S,A, S']$
integer array $T[S,A, S']$
previous state s
previous action a
Counts of events when action a performed in s generated s'

TD-based estimate of $R(s,a,s')$

Asynchronous value iteration steps

What is this c for?

Why is the reward inside the summation?

Frequency of transition from s_1 to s_2 via a_1

initialize $Q[S,A]$ arbitrarily
initialize $R[S,A,S]$ arbitrarily
initialize $T[S,A,S]$ to zero
observe current state s
select and carry out action a
repeat forever:

observe reward r and state s'
select and carry out action a

$T[s,a,s'] \leftarrow T[s,a,s'] + 1$
$R[s,a,s'] \leftarrow R[s,a,s'] + \frac{r - R[s,a,s']}{T[s,a,s']}$
$s \leftarrow s'$
repeat

select state s_1, action a_1
let $P = \sum_{s_2} (T[s_1,a_1,s_2] + c)$

$Q[s_1,a_1] \leftarrow \sum_{s_2} \frac{T[s_1,a_1,s_2] + c}{P} \left(R[s_1,a_1,s_2] + \gamma \max_{a_2} Q[s_2,a_2] \right)$

until an observation arrives
Discussion

- Which Q values should asynchronous VI update?
 - At least s in which the action was generated
 - Then either select states randomly, or
 - States that are likely to get their Q-values changed because they can reach states with Q-values that have changed the most

- How many steps of asynchronous value-iteration to perform?
Discussion

- Which states to update?
 - At least s in which the action was generated
 - Then either select states randomly, or
 - States that are likely to get their Q-values changed because they can reach states with Q-values that have changed the most

- How many steps of asynchronous value-iteration to perform?
 - As many as can be done before having to act again
Q-learning vs. Model-based

➢ Is it better to learn a model and a utility function or an action value function with no model?
 • Still an open-question

➢ Model-based approaches require less data to learn well, but they can be computationally more expensive (time per iteration)

➢ Q-learning takes longer because it does not enforce consistency among Q-values via the model
 • Especially true when the environment becomes more complex
 • In games such as chess and backgammon, model-based approaches have been more successful than q-learning methods

➢ Cost/ease of acting needs to be factored in