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Abstract
We present unsupervised approaches to the prob-
lem of modeling dialog acts in asynchronous con-
versations; i.e., conversations where participants
collaborate with each other at different times. In
particular, we investigate a graph-theoretic deter-
ministic framework and two probabilistic conversa-
tion models (i.e., HMM and HMM+Mix) for mod-
eling dialog acts in emails and forums. We train and
test our conversation models on (a) temporal order
and (b) graph-structural order of the datasets. Em-
pirical evaluation suggests (i) the graph-theoretic
framework that relies on lexical and structural simi-
larity metrics is not the right model for this task, (ii)
conversation models perform better on the graph-
structural order than the temporal order of the
datasets and (iii) HMM+Mix is a better conversa-
tion model than the simple HMM model.

1 Introduction
Email and discussion fora are examples of social media that
have become extremely popular for allowing people to dis-
cuss events, issues, queries and personal experiences [Baron,
2008]. Although people communicate in writing (as opposed
to speech) in these media, the nature of the interaction is con-
versational, in the sense that once a participant initiated the
communication all the other contributions are replies to pre-
vious ones. That is, the participants take turns and each turn
consists of a joint action of writing and reading (though at
different times). In such conversations participants interact
with each other in complex ways, performing different dialog
acts (DA)1 (e.g., ‘question’, ‘answer’, ‘request’) to achieve
their communicative goals. The two-part structures across
messages (or posts) like ‘question-answer’, ‘request-grant’,
‘complement-downplayer’ (e.g., congrats-thanks), ‘greeting-
greeting’ (e.g., hi-hello) are called adjacency pairs.

Uncovering the rich conversational structure is an impor-
tant step towards deep conversation analysis in these media.
Annotating utterances with DAs (Figure 1) provides an initial
level of structure and has been shown to be useful for spoken

∗This work was conducted at Microsoft Research Asia.
1Also known as ‘speech act’ in the literature.

dialog, in many applications including meeting summariza-
tion [Murray et al., 2006; 2010], collaborative task learning
agents [Allen et al., 2007], artificial companions for people
to use the Internet [Wilks, 2006] and flirtation detection in
speed-dates [Ranganath et al., 2009]. We believe that similar
benefits will also hold for written asynchronous conversation.

Traditional approaches to DA tagging have been mostly su-
pervised [Stolcke et al., 2000; Bangalore et al., 2006]. This
learning strategy has been quite successful, but it is very do-
main specific and labor intensive. Arguably, as the number
of social media grows (e.g., email, blogs, Facebook) and the
number of communicative settings in which people interact
through these media also grows, the supervised paradigm of
‘label-train-test’ becomes too expensive and unrealistic. Ev-
ery novel use of a new media may require not only new anno-
tations, but possibly also new annotation guidelines and new
DA tagsets. In contrast, the approach we present in this pa-
per is to adopt an unsupervised paradigm, which is more ro-
bust across new forms of media and new domains. In particu-
lar, we investigate a graph-theoretic deterministic framework
and a set of probabilistic conversation models for DA tagging.
Note that our unsupervised models do not label each sentence
with a specific DA, but they cluster sentences so that each
cluster should contain sentences expressing the same DA. The
DA label for each cluster needs to be then determined through
other means, which we do not explore in this paper, but may
include minimal supervision.

The graph-theoretic framework, which has already been
successfully applied to several NLP tagging tasks (e.g.,
[Malioutov and Barzilay, 2006; Joty et al., 2010; Elsner and
Charniak, 2010]), clusters sentences that are similar to each
other by only relying on lexical and structural similarity be-
tween the sentences, without considering the sequential na-
ture of the conversation. At the end of this process, sentences
in the same cluster receive the same DA tag. The perfor-
mance of this model crucially depends on how one measures
the similarity between two sentences.

Quite differently, the conversation models frame DA tag-
ging as a sequence-labeling problem that can be solved with
variations of the Hidden Markov Model (HMM) paradigm,
by assuming that a conversation is a sequence of hidden DAs,
with each DA emitting an observed sentence. In this case, the
performance of a model depends on the accuracy of both the
sequence dependencies between hidden DAs (e.g., ‘question’



followed by ‘answer’, ‘request’ followed by ‘accept’) and the
act emission distribution. While the idea of using probabilis-
tic techniques for sequence labeling to perform DA tagging is
not new, we make several key contributions in showing how it
can be effectively applied to asynchronous conversations by
dealing with critical limitations in previous work.

Figure 1: Sample truncated email (top) and forum (down)
conversations from our corpora annotated with dialog acts
(right most column). The tags are defined in Table 1.

In synchronous conversations (e.g., meeting, telephone),
the conversational flow has a sequential structure (e.g., ‘ques-
tion’ followed by ‘answer’, ‘request’ followed by ‘grant’).
Therefore, one can accurately learn the sequence dependen-
cies in a sequence labeler from the temporal ordering (i.e.,
arrival time) of the utterances. But, in asynchronous conver-
sations (e.g., email, forum), the conversational flow is not se-
quential. Hence, the temporal ordering of the utterances is not
the only option and could even be misleading. For example,
consider the sample email and forum conversations shown in
Figure 1. One can notice that if we arrange the sentences
(excluding the quoted sentences) as they arrive, it is hard to
capture the referential relation between sentences of different
posts. This could lead to inaccurate sequential dependencies
when we apply a sequence-labeler on this (temporal) order
of the sentences. It is our key hypothesis that the graph struc-
ture of the conversations is rather more effective to accurately
learn the sequence dependencies. If two sentences are close
in the thread structure of the conversations, they are likely to
be related (and to express related DAs), independently from

their arrival time-stamp. We will show that this is the case
for both fora and email, in particular when for email we use a
finer level graph structure of the conversations (i.e., the Frag-
ment Quotation Graph (FQG) [Carenini et al., 2008]).

Previous work in unsupervised DA tagging mostly uses
only unigram language model as the act emission distribu-
tion [Ritter et al., 2010]. However, there are other features
that proved to be beneficial in the supervised settings, such
as ‘speaker’, ‘relative position’ and ‘sentence length’ [Jeong
et al., 2009; Kim et al., 2010]. In our work, we expand the
set of sentence features considered in the act emission dis-
tribution, including not only unigrams but also the speaker,
its relative position and length. Another limitation of the
approach presented in [Ritter et al., 2010] is that their con-
versation (HMM) model, with the unigram language model
as the emission distribution, tends to find topical clusters, in
addition to DA clusters. They address this problem with an
HMM+Topic model, which tries to separate the topic words
from the DA indicators. In this paper, we propose a more
adequate HMM+Mix model, which not only explains away
the topics, but also improves the act emission distribution by
defining it as a mixture model.

In what is to the best of our knowledge the first quantita-
tive evaluation of unsupervised DA tagging for asynchronous
conversations, we show that (i) graph-theoretic framework is
not the right model for this task, (ii) conversation models per-
form better on the graph-structural order than the temporal
order of the conversations and (iii) HMM+Mix is a better con-
versation model than the simple HMM model.

2 Related Work
There has been little work so far on DA recognition in asyn-
chronous conversation. [Cohen et al., 2004] was the first to
use the notion of ‘email speech act’ to classify the emails (not
sentences) in the office domain. However, their inventory of
DAs is specific to that domain (e.g., deliver, meeting) and
they use a supervised approach to identify them. [Ravi and
Kim, 2007] also use supervised learning methods to detect
the question and answer passages in email discussions.

[Jeong et al., 2009] use semi-supervised boosting to tag
the sentences in emails and forums with DAs by adapting
knowledge from annotated spoken conversations (i.e., MRDA
meeting and DAMSL telephone conversation). They derive a
coarse, domain-independent inventory of twelve DAs from
the MRDA tagset. Then, given an utterance represented as
a set of trees (i.e., dependency tree, n-gram tree and part of
speech (POS) tree), the boosting algorithm iteratively learns
the best feature set (i.e., sub-trees) that minimizes the errors
in the training data. Although, this work tries to adapt from
synchronous conversations to asynchronous conversations, it
still relies on annotated corpora. Furthermore, it does not con-
sider the sequential structure of conversations, something we
successfully exploit in this paper.

[Ritter et al., 2010] propose three HMM-based unsuper-
vised conversation models for DA recognition in Twitter. In
particular, they use HMM, Bayesian HMM and HMM+Topic
models to cluster the Twitter posts (not the sentences) into
DAs. Since, they use a unigram model to define the emission



distribution, their simple HMM model finds topical clusters
in addition to DA clusters (i.e., sentences are similar because
they talk about the same topic not because they play the same
discourse role). The HMM+Topic model tries to separate the
DA indicator from the topic words. By visualizing the type
of conversations found by the two models they show that the
output of the HMM+Topic model is more interpretable than
that of the HMM one, however, their classification accuracy
is not empirically evaluated. Therefore, it is not clear whether
these models are actually useful (i.e., beat the baseline), and
which of the two models is a better DA tagger.

Our conversation models were inspired by the models
of [Ritter et al., 2010], but, we improve on those by making
the following four key contributions: (i) We model at the finer
level of granularity of the sentence (as opposed to a whole
post) with a richer feature set including not only unigram but
also sentence relative position, sentence length and speaker.
(ii) Our models exploit the graph structure of the conversa-
tions. (iii) Our HMM+Mix model not only explains away the
topics (like HMM+Topic does), but also improves the emis-
sion distribution by defining it as a mixture model [Bishop,
2006]. (iv) We provide classification accuracy of the mod-
els on two corpora (email and forum) by applying the 1-to-1
metric from [Elsner and Charniak, 2010].

3 Data Preparation
3.1 Dataset Selection and Clean up
We have used the same DA tagset and test datasets used
in [Jeong et al., 2009]. The tagset containing 12 act categories
with their relative frequency in the email and forum test cor-
pora is shown in Table 1. This inventory of DAs is origi-
nally adopted from the MRDA tagset [Dhillon et al., 2004].
This tagset is different from the prior work on DA recogni-
tion in asynchronous conversations (e.g., [Cohen et al., 2004;
Ravi and Kim, 2007]), since it is domain independent and
suitable for sentence level annotation. Our test datasets in-
clude: (i) 40 email threads of the BC3 corpus [Ulrich et al.,
2008] which were originally taken from the W3C corpus,
and (ii) 200 forum threads from the TripAdvisor travel forum
site2. The act categories have similar distribution in the two
corpora. The κ agreements between two human annotators
were 0.79 for email dataset and 0.73 for forum dataset.

Due to privacy issues, there are only a few email corpora
available for training an unsupervised system (e.g., Enron,
W3C). Since it is preferable to train and test such a system
on similar data, we choose the W3C email corpus to train
our models3. W3C contains 23, 957 email threads, however,
the raw data is too noisy to directly inform our models, as it
contains system messages and signatures. We cleaned up the
data with the intention to keep only the headers, bodies and
quotations. By processing the headers, we then reconstruct
the thread structure of the email conversations. For the forum
data, we crawled 25, 000 forum threads from the same travel
forum site i.e., TripAdvisor. Our forum data is much less
noisy, but does not contain any thread structure.

2http://tripadvisor.com
3In contrast, [Jeong et al., 2009] train on Enron and test on BC3.

Tag Description Email Forum
S Statement 69.56% 65.62%
P Polite mechanism 6.97% 9.11%
QY Yes-no question 6.75% 8.33%
AC Action motivator 6.09% 7.71%
QW Wh-question 2.29% 4.23%
A Accept response 2.07% 1.10%
QO Open-ended question 1.32% 0.92%
AA Acknowledge and appreciate 1.24% 0.46%
QR Or/or-clause question 1.10% 1.16%
R Reject response 1.06% 0.64%
U Uncertain response 0.79% 0.65%
QH Rhetorical question 0.75% 0.08%

Table 1: Dialog act tag categories and their relative frequency.

3.2 Dealing with the Conversational Structure
In the probabilistic models, the sequence dependencies be-
tween DAs can be learned either from the simple temporal or-
der of the contributions to the conversation, or from the more
refined graph-structure of the conversation threads. We cre-
ate a temporal ordered conversation by simply arranging its
posts based on their temporal relation (i.e., arrival time). We
create the graph-structural order of the conversations in two
steps. First, we discover the graph structure of the conversa-
tions. Second, we derive our data from this structure. Below,
we describe these two steps for emails and fora.

We extract the finer level graph structure of email conver-
sations in the form of Fragment Quotation Graph (FQG). We
demonstrate how to build a FQG (Figure 2 (b)) through the
example email thread involving 7 emails (Figure 2 (a)) taken
from our corpus. For convenience we do not show the real
content but abbreviate them as a sequence of fragments.

In the first pass, by processing the whole thread, we iden-
tify the new (i.e., quotation depth 0) and quoted (i.e., quota-
tion depth > 0) fragments based on the usage of quotation
(e.g., ‘>’, ‘&gt’) marks. For instance, email E3 contains
two new fragments (f, g), and two quoted fragments (d, e)
of depth 1. E2 contains abc (quoted) and de (new) fragments.
Then in the second step, we compare the fragments with each
other and based on the overlap we find the distinct fragments.
If necessary we split the fragments in this step. For example,
de inE2 is divided into d and e distinct fragments when com-
pared with the fragments of E3. This process gives 15 dis-
tinct fragments which constitute the vertices of the FQG. In
the third step, we compute the edges, which represent refer-
ential relations between fragments. For simplicity we assume
that any new fragment is a potential reply to its neighbor-
ing quoted fragments. For example, for the fragments of E4

we create two edges from h ((h,a),(h,b)) and one edge from
i ((i,b)). We then remove the redundant edges. In E6 we
found the edges (n,h), (n,a) and (n,m). As (h,a) is already
there we exclude (n,a). If an email does not quote anything,
then its fragments are connected to the fragments of the email
to which it replies, revealing the original ‘reply-to’ relation.

TripAdvisor’s forum conversations do not contain any
thread structure and people hardly quote others’ utterances in
this forum. However, we have noticed that participants almost
always respond to the initial post of the thread, and mention



Figure 2: Fragment Quotation Graph for emails

other participants’ name to respond to their post. Therefore,
we create the graph structure of a forum conversation with the
simple assumption that a post usually responds to the initial
post unless it mentions other participants’ names.

In the graph structure of the conversations, one can notice
that the paths (e.g., c-d-f-j in Figure 2 (b)) capture the ad-
jacency relations between email fragments or forum posts.
And as we noted in the introduction, our assumption is that
if two sentences are close in the thread structure of the con-
versations, they are likely to be related (and to express re-
lated DAs). Based on this assumption, we prepare our graph-
structural conversations by arranging the sentences according
to the paths of the graph. Note that, in this order, the sen-
tences in the common nodes shared by multiple paths (e.g.,
c, e, g) are duplicated. In Section 5, we describe how our
conversational models deal with the duplicated sentences.

4 Graph-theoretic Framework
Our first model for dialog act tagging is built on a graph-
theoretic framework, which has been successfully used in
many NLP tasks, including topic segmentation of spoken lec-
tures [Malioutov and Barzilay, 2006] and emails [Joty et al.,
2010], and disentanglement of multi-party chat [Elsner and
Charniak, 2010]. We investigate whether the same frame-
work can be adapted to clustering sentences of a forum or
email conversation into dialog acts.

4.1 Algorithm Description
In this framework, at first we form a complete similarity
graph G = (V,E), where the nodes V represent the sen-
tences of a conversation and the edge-weights represent the
similarity between two nodes (i.e., for an edge (u, v) ∈ E,
edge-weight w(u, v) represents how similar the sentences u
and v are). We then formulate the clustering problem as a
N-mincut graph-partitioning problem with the intuition that
sentences in a cluster should be similar to each other, while
sentences in different clusters should be dissimilar. To do this,
we try to optimize the ‘normalized cut’ criterion:

Ncut(A,B) =
cut(A,B)
assoc(A, V )

+
cut(B,A)
assoc(B, V )

(1)

where cut(A,B) = Σu∈A,v∈Bw(u, v) is the total con-
nection from nodes in partition A to nodes in partition
B, assoc(A, V ) = Σu∈A,t∈V w(u, t) is the total connec-
tion from nodes in partition A to all nodes in the graph
and assoc(B, V ) is similarly defined. Previous research
on graph-based clustering (e.g., [Malioutov and Barzilay,
2006], [Shi and Malik, 2000]) has shown that the ‘normal-
ized cut’ criterion is more appropriate than just the ‘cut’ cri-
terion which accounts only for total edge weight connecting
A and B and therefore, favors cutting small sets of isolated
nodes in the graph. However, solving ‘normalized cut’ is NP-
complete. Hence, we approximate the solution following [Shi
and Malik, 2000], which is time efficient and has been suc-
cessfully applied to image segmentation. Note that, depend-
ing on the task, the performance of this framework depends
on how one measures the similarity between two sentences.

Unigrams or bag-of-words (BOW) features have been quite
extensively used in the previous work on DA recognition
(e.g., [Ritter et al., 2010; Kim et al., 2010]). To measure
the BOW-based similarity between two sentences we repre-
sent each as a vector of TF.IDF values of the words and com-
pute the cosine of the angle in between the vectors. Since
this framework with BOW features has been quite successful
for finding topical clusters [Malioutov and Barzilay, 2006],
even though we retain the stop-words and punctuations which
are arguably useful for finding DA clusters, it may still find
topical clusters in addition to DA clusters. In an attempt to
abstract away the topic words, we mask the nouns4 in the
sentences and measure the BOW-based similarity as before.

The BOW similarity metric described above does not con-
sider the order of the words. One can use n-gram co-
occurrences to account for the order of the words. The Word
Subsequence Kernel (WSK) [Cancedda et al., 2003], which
is an improvement over n-gram co-occurrences, considers the
order by transforming the sentences into higher dimensional
spaces and then measuring the similarity in that space. Ex-
tended String Subsequence Kernel (ESK) [Hirao et al., 2004]
which is a simple extension of WSK allows one to incorporate
word-specific syntactic and/or semantic (e.g., word sense,
part of speech (POS)) information into WSK. Since [Jeong
et al., 2009] found n-grams and POS-tags useful, we imple-
ment the WSK and the ESK with POS-tags of the words.

The work of [Jeong et al., 2009] also suggests that sub-
trees of the dependency tree are important features for DA
tagging. We measure the dependency similarity between two
sentences by extracting the Basic Elements (BE) and counting
the number of co-occurrences. The “head-modifier-relation”
triples, extracted from the dependency trees of the sentences
are considered as BEs in our experiment. The triples encode
some syntactic and semantic information and one can quite
easily decide whether any two units match considerably more
easily than with longer units [Hovy et al., 2005].

Like dependency tree, the sub-trees of the syntactic tree
may also be important indicators for DA tagging. To measure
the syntactic similarity between two sentences we first parse
the sentences into the syntactic trees using Charniak parser
and then compute the similarity between the two trees using

4Since nouns are arguably the most indicative for topics.



the Tree Kernel (TK) function [Collins and Duffy, 2001].
We also measure a combined similarity (All in Table 2)

between two sentences by taking a linear combination of the
above mentioned similarity metrics.

4.2 Evaluation of the Graph-theoretic Clustering
We wish to compare the DAs automatically discovered by our
models with the human annotations. However, unsupervised
clustering techniques do not assign any label to the clusters.
Therefore, metrics widely used in supervised classification,
such as κ statistic, F1 score, are not applicable. In this paper,
we propose to use the 1-to-1 metric introduced recently by
[Elsner and Charniak, 2010]. Given two annotations (model’s
output and human annotation), it pairs up the clusters from the
two annotations in a way that maximizes (globally) the total
overlap and then reports the percentage of overlap.

The number of DAs (clusters) available to the systems was
fixed to 12. Table 2 shows the 1-to-1 accuracy of the graph-
theoretic framework with various similarity metrics. At the
right most column we show the baseline (BL) system that
considers all the utterances of a corpus as ‘statement’, since
‘statement’ is the majority class in both corpora.

BOW BOW-M WSK ESK-P BE TK All BL
Email 62.6 34.3 64.7 24.8 39.1 22.5 26.0 69.6
Forum 65.0 38.2 65.8 36.3 46.0 30.1 32.2 65.6

Table 2: 1-to-1 accuracy for different similarity metrics in
the graph-theoretic framework. BOW-M refers to BOW with
masking the nouns and ESK-P refers to ESK with POS.

One can notice that all the systems fail to beat the baseline
indicating that this framework is not the right model for rec-
ognizing DAs in these corpora. When we compare the BOW
and the BOW-M (i.e., BOW with masking the nouns) sys-
tems, we can observe that BOW performs way better than the
BOW-M. This indicates that masking the nouns in an attempt
to abstract away the topic words degrades the performance
substantially. The WSK system performs slightly better than
the BOW system meaning that considering the order of the
words in the similarity metric is useful. However, when we
add the POS of the words in the ESK (ESK-P in table 2), we
get large decrease in the accuracy. This means that the POS
similarity between sentences has adverse effect on clustering
sentences into DAs. The results of the BE and TK systems
indicate that the shallow syntactic (i.e., dependency) and the
deep syntactic similarity between sentences also are not use-
ful for recognizing DAs in this framework.

5 Probabilistic Conversation Models
The graph-theoretic clustering framework discussed above
has three main limitations when applied to find DAs in con-
versations. First, this framework does not model the po-
tentially informative sequential structure of the conversation
(e.g., ‘question’ followed by ‘answer’, ‘request’ followed by
‘accept’). Second, this framework seems to be still confused
by topical clusters even when nouns are masked, word order,
POS and syntactic features are considered. Third, unlike our

conversation models (discussed below), this framework does
not allow us to incorporate other important features (speaker,
relative position, length) in a principled way. To address these
limitations we propose two probabilistic conversation models
which assume that a conversation is a Markov sequence of
hidden DAs, with each DA emitting an observed sentence.

5.1 HMM Conversation Model
Figure 3 shows our first conversation model in plate notation.
A conversation Ck is a sequence of hidden DAs Di, and each
DA produces an observed sentence Xi, represented by its (i)
bag-of-words (i.e., unigrams) shown in the Wi plate, (ii) au-
thor or speaker Si, (iii) relative position Pi, and (iv) length
Li. These features are discrete valued, therefore, we model
them as multinomial distributions. Following [Ritter et al.,
2010], for unigrams, we limit our vocabulary to the 5, 000
most frequent words in the corpus. The relative position of a
sentence is computed by dividing its position in the post with
the number of sentences in the post. We then convert the rel-
ative positions and lengths to a sequence of natural numbers.

Figure 3: HMM conversation model

We place a symmetric Dirichlet prior with hyperparameter
α = 2 over each of the six multinomials (i.e., distributions
over initial states, transitions, unigrams, speakers, positions
and lengths)5. We compute maximum a posterior (MAP) es-
timate of the parameters using the Baum-Welch (EM) algo-
rithm with forward-backward providing the smoothed node
and edge marginals for each sequence in E-step. Specifically,
given n-th sequence Xn,1:Tn

, forward-backward computes:

γn,i(j) := p(Di = j|Xn,1:Tn , θ) (2)
ξn,i(j, k) := p(Di−1 = j,Di = k|Xn,1:Tn , θ) (3)

Where the local evidence is given by:

p(Xi|Di) =

[∏
j

p(Wi,j |Di)

]
p(Si|Di)p(Pi|Di)p(Li|Di) (4)

5.2 HMM+Mix Conversation Model
Our HMM conversation model described above is similar to
the conversation model of [Ritter et al., 2010] except that, in
addition to the unigrams of a sentence, we also use its relative

5We do not show the parameters and the hyperparameters in fig-
ure 3 and 4 to reduce visual clutter.



position, speaker and length to define the emission distribu-
tions. However, as they describe, without additional guidance
an unsupervised clustering model may find clusters which are
not desired. For example, their model with unigrams finds
some topical clusters. The features (i.e., unigrams, speaker,
relative position, length) used in our model are also indica-
tors for finding topical clusters [Joty et al., 2011]. There-
fore, our model with the above features may also find some
unwanted clusters. Like them we have also noticed in our
graph-theoretic framework that masking nouns in an attempt
to abstract away the topics even degrades the performance.
As a solution [Ritter et al., 2010] propose the HMM+Topic
model to separate the topic words from the DA indicators. In
this model, a word is generated from one of these three hid-
den sources: (i) DA, (ii)Topic and (iii) General English. In
contrast, we propose the HMM+Mix model where the emis-
sion distribution is defined as a mixture model. This model
has two main advantages over the HMM+Topic model: (a)
By defining the emission distribution as a mixture model we
not only indirectly explain away the topic but also enrich
the emission distribution, since the mixture models (i.e., ob-
served W, S, P, L conditioned on hidden M) can define finer
distributions [Bishop, 2006] and (b) Learning and inference
in this model is much easier (using EM) without requiring
approximate inference techniques such as Gibbs sampling.

Figure 4: HMM+Mix conversation model

Figure 4 shows the extended HMM+Mix model. In this
model, emission distributions are mixtures of multinomials
with Mi ∈ {1, . . . ,M} representing the mixture component.

One can use EM to compute the MAP estimate of the pa-
rameters in this model, where the local evidence is given by:

p(Xi|Di) =
∑
Mi

p(Mi|Di)p(Xi|Di,Mi) (5)

Where p(Xi|Di,Mi) =[∏
j p(Wi,j |Di,Mi)

]
p(Si|Di,Mi)p(Pi|Di,Mi)p(Li|Di,Mi)

In this model, in E-step, in addition to γn,i(j) and ξn,i(j, k)
(equation 2, 3), for each sequence we also need to compute:

τn,i(j, k) := p(Di = j,Mi = k|Xn,1:Tn , θ) (6)

One can show that this is given by the following expression:

τn,i(j, k) := γn,i(j)
p(Mi = k|Di = j)p(Xi|Di = j,Mi = k)∑

m p(Mi = m|Di = j)p(Xi|Di = j,Mi = m)

In EM, we must ensure that we initialize the parameters
carefully, to minimize the chance of getting stuck in poor lo-
cal optima. We use multiple (10) restarts and pick the best so-
lution based on the likelihood of the data. For the first restart
we ignore the Markov dependencies, and estimate the obser-
vation parameters using the standard mixture model estima-
tion method (EM) and use it to initialize other parameters.
For the other 9 restarts we randomly initialize the parameters.
We use this process of initialization in an attempt to ensure
that our models are at least as good as the mixture model
which ignores the sequential structure of a conversation.

With the learned parameters, given an observed test se-
quence (i.e., conversation), we use Viterbi decoding to infer
the most probable DA sequence. As described in section 3, in
the graph-structural order of the conversations, the sentences
in the common nodes are duplicated in the sequence. As a
result, when we run Viterbi decoding on it, for the same sen-
tence we get multiple DA assignments (one for each posi-
tion). We take the maximum vote to finally assign its DA.

6 Evaluation of the Conversation Models
For all experiments we train our models on a set of 12, 000
conversations having at least two posts. These are randomly
sampled from each of the corpora. We do this 50 times, evalu-
ating performance on the test sets at each time. The number of
DAs available to the models was set to 12. In the HMM+Mix
model, the number of mixture component (M)6 was set to 3.

Table 3 presents the mean 1-to-1 accuracy of the conver-
sation models and the baseline on the temporal order and the
graph-structural order of the datasets. Notice that the conver-
sation models beat the baseline in both corpora, proving their
effectiveness in DA recognition. We get similar results for
the models when applied to email and forum corpora. Both
models benefit from the graph-structural order of the conver-
sations (p<0.05). We can conclude that our models learn bet-
ter sequential dependencies with the graph-structural order of
the conversations. Therefore, the finer referential structure of
email conversations in the form of FQG and the assumed ref-
erential structure of forum conversations have been proved to
be beneficial for recognizing DAs in these corpora. By com-
paring the performance of the models on the datasets we can
see that the HMM+Mix model outperforms the HMM model
(p<0.05). This indicates that the mixture model as the act
emission distribution not only explains the topics away but
also defines a finer observation model.

Email Forum
Temporal Graph Temporal Graph

Baseline 70.00 70.00 66.00 66.00
HMM 73.45 76.81 69.67 74.41
HMM+Mix 76.73 79.66 75.61 78.35

Table 3: Mean 1-to-1 accuracy of the conversation models

6We experimented with M={1, 2, 3, 4, 5}, and got the highest
accuracy with M=3.



7 Conclusion and Future Work
In our investigation of approaches for modeling DAs in asyn-
chronous conversations we have made several key contribu-
tions. We apply a graph-theoretic framework to the DA tag-
ging task and compare it with probabilistic sequence-labeling
models. Then, we show how in the probabilistic models the
sequence dependencies can be more effectively learned by
taking the conversational structure into account. After that,
we successfully expand the set of sentence features consid-
ered in the act emission distribution. Finally, we improve the
act emission distribution by applying a mixture model. Quan-
titative evaluation with human annotations shows that while
the graph-theoretic framework is not the right model for this
task, the probabilistic conversation models (i.e., HMM and
HMM+Mix) are quite effective and their benefits are more
pronounced with graph-structural conversational order as op-
posed to the temporal one. Comparison of the outputs of these
models reveals that HMM+Mix model can predict the DAs
better than the HMM model. In the future, we wish to experi-
ment with the Bayesian versions of these conversation models
and also apply our models to other conversational modalities.
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