
Integration of Supercubing and Learning in a SAT Solver

Domagoj Babić and Alan J. Hu

Department of Computer Science
University of British Columbia
{babic,ajh}@cs.ubc.ca

Abstract— Learning is an essential pruning tech-

nique in modern SAT solvers, but it exploits a rela-

tively small amount of information that can be de-

duced from the conflicts. Recently a new pruning

technique called supercubing was proposed [1]. Su-

percubing can exploit functional symmetries that are

abundant in industrial SAT instances. We point out

the significant difficulties of integrating supercubing

with learning and propose solutions. Our experimen-

tal solver is the first supercubing-based solver with

performance comparable to leading edge solvers.

I. Introduction

The problem of satisfiability of boolean formulas (SAT)
is a well-known NP-complete problem. In short, given a
boolean function f , one needs either to find a satisfy-
ing assignment or to prove that such doesn’t exist. SAT
has been intensively used in many domains. Our focus
is the application of SAT to EDA problems, like FPGA
routing [2], ATPG [3], processor verification [4], and espe-
cially bounded model checking [5]. Such industrial appli-
cations require complete SAT solvers, meaning that the
solver must be capable of proving that problem is either
satisfiable or definitely unsatisfiable.

A. Previous work

Zhang et al. [6] have analyzed different learning
schemes, and found that first Unique Implication Point (1-
UIP) learning is superior to other schemes. In general, a
common belief is that the shorter the learned clause is, the
more information it contains, and therefore it’s supposed
to be more useful. Ryan [7] has correctly pointed out that
1-UIP clauses are often longer than all-UIP clauses, which
are not that efficient in search space pruning. He conjec-
tured that 1-UIP clauses are working that well because
fewer resolutions are needed for their generation.

This work was supported in part by a research grant from the
Natural Science and Engineering Research Council of Canada and
a graduate fellowship from the University of British Columbia.

Although much work remains to be done on different
learning schemes, it is clear that learning schemes pro-
posed so far can use only a fraction of information in-
ferrable from the conflicts. Due to memory constraints,
it is impossible to add all the clauses that can be learned
to the clause database. Recently, a theory of essential
points [1] has been proposed. The theory unifies many ex-
isting search space pruning schemes (like pure literal rule,
Conflict Directed Backtracking (CDB) [8], and learning)
under a single framework and serves as a tool for devel-
oping new pruning techniques. A new pruning technique
called supercubing was proposed as an example of appli-
cation of the theory of essential points. Their solver was
a proof of concept, and although supercubing reduced the
number of decisions, no actual speedup has been reported.

Reducing the number of decisions, although certainly
desirable, doesn’t necessarily mean that the total runtime
has been decreased. First, the new technique might be
too expensive to be performed after every conflict. And
second, it might be incompatible with existing efficient
pruning schemes. In the case of supercubing, it turns out
that it is a bit more expensive than previously mentioned
schemes, but the major issue is actually the incompatibil-
ity with learning.

Supercubing reduces the number of decisions during
the SAT solving process by exploiting inherent functional
symmetries in the problem. When SAT symmetries are
mentioned, a reader familiar with SAT solving will first
think of breaking structural symmetries by introducing
additional clauses as presented in [9, 10]. Introducing
new symmetry-breaking predicates prevents the solver
from exploring multiple symmetrical regions of the search
space. If the instance is unsatisfiable, it will remain so,
and if it is satisfiable, symmetry-breaking will reduce the
number of solutions. A new tool by the same authors,
Saucy [11], is very efficient in breaking structural symme-
tries. It is used as a preprocessing step that can result
in a speedup of several orders of magnitude on highly
symmetrical instances. But there is a class of functional
symmetries that symmetry-breaking tools based on graph
isomorphism can’t detect.

On the other hand, supercubing can detect functional



symmetries, and guide the solver to stay within a cluster
of related variables, thus effectively localizing the search.
Hence, we see supercubing as complementary to the pre-
vious research on SAT symmetries.

A solver which could take advantage of both supercub-
ing and traditional learning would be of great interest to
the EDA community. But there are significant obstacles
in integrating supercubing with existing techniques. After
explaining the integration issues from a new perspective,
we offer innovative solutions and present experimental re-
sults. Our work lays down the foundations for using far
more advanced techniques than supercubing and encour-
ages further research.

II. Supercubing

This section explains the theory and implementation of
supercubing [1, 12]. We discuss the essential difference be-
tween supercubing and structural symmetries, providing
the reader with deeper insight into the problem. Finally,
we propose an algorithm for efficient computation.

A. Essential points

The theory of essential points is a formalization of the
symmetries present in the search space. It is a basic for-
malism behind the supercubing technique. Here we give
shortened versions of the most important definitions and
a theorem from [1, 12].

Definition II.1 Let ψ be a partial or complete assign-
ment of a set of variables in some CNF formula f , such
that ψ doesn’t satisfy f . ψ can be seen as a point in a
multidimensional space. Also, let C denote a set of all
unsatisfied clauses of f by assignment ψ. Then, point
ψ is called l-essential if ∀c ∈ C, l ∈ L(c), where l
is some literal and L() represents a set of all literals in
some clause.

For example, given f = (−2 ∨ 1 ∨ 4)(−2 ∨ 1 ∨ −4)(4 ∨
−3∨ 2)(1∨ 4∨−3), and ψ = {−1, 2, 3,−4}, there are two
unsatisfied clauses (−2 ∨ 1 ∨ 4) and (1 ∨ 4 ∨ −3), hence
point ψ is 1- and 4-essential.

Definition II.2 Let ψ and ψ∗ be two assignments in 2n

Boolean space. Those two are said to be l-symmetric if
one is obtained from the other by flipping literal l.

Theorem II.1 If a DPLL algorithm has explored one
branch of some decision variable x finding no solutions,
then if there are any solutions under the second branch,
they must lie in the set of points that are x-symmetric to
the set of essential points under the first branch.

The proof is given in [12].

B. Supercubing algorithm

For every decision variable in the current search space,
the algorithm maintains an array that we will call a super-
cube. The supercube is initially empty when the variable
is first chosen for branching.

After every conflict, the algorithm resolves the conflict,
following implication edges in the implication graph back-
wards until the resolvent consists only of decision vari-
ables. If we flip the sign of all literals in such a resolvent,
we get a decision conflict clause. Adding a decision con-
flict clause to the clause database is known as a decision
learning scheme, and it is usually inferior to 1-UIP

Definition II.3 Let S be a supercubing operator over two
resolvents, say s1 and s2, which computes their minimum
cube. S(s1, s2) is called the supercube of s1 and s2. If
some variable doesn’t have a supercube at all, we say it
has an empty supercube.

For example, given two resolvents s1 = {−1, 2, 3,−4}
and s2 = {1, 2, 3, 5}, their supercube would be S(s1, s2) =
{2, 3}.

Let’s assume that a resolvent contains all the decision
variables involved in the conflict. For all those variables,
the algorithm computes the supercube of their current
supercubes and the newest resolvent. If some decision
variable has an empty supercube, meaning that it has
been involved in some conflict for the first time, we can
initialize its supercube to the current resolvent.

Finally, when the algorithm backtracks to some decision
variable x, of which only one branch has been explored so
far, it examines its supercube. Based on the supercube,
the algorithm can make two decisions:

• If x has a supercube, that means that literals present
in the supercube were essential in all the resolvents
under the first branch of x. Hence the solver can
immediately assign them appropriate values, with-
out exploring their second branch, as it is definitely
void of solutions. For example if the supercube of
x contains literals {1,−3}, than after flipping x, the
algorithm can immediately assign 1 to true and 3 to
false. If the supercube doesn’t contain any elements,
the solver proceeds by standard means (making a new
decision or solving implied variables).

• An empty supercube means that x wasn’t involved in
any conflicts under its first branch. Therefore, x was
not responsible for the conflict, so flipping x will not
lead to the solution either. Thus, the algorithm can
safely backtrack over x, by the same principles as in
CDB. It is worth mentioning that CDB can also be
formalized through the theory of essential points.

Two questions come naturally. First, isn’t it possible to
prune the same search space through some kind of learn-
ing? And second, how much can we gain by supercubing?



The first question is answered in [1] by a small example
that clearly demonstrates that there are cases where su-
percubing can prune some part of the search space, while
learning can’t. We offer the answer to the second question
in Section IV.

C. What are we actually pruning ?

Supercubing doesn’t prune structural symmetries, as
Saucy and Shatter [9] tools do. Rather, it detects a set
of essential points lying under the first branch of some
decision variable x, and prunes its counterpart under the
second branch of x. Here we give a small example, which
not only serves the purpose of illustrating the supercub-
ing technique, but also demonstrates the significant dif-
ferences between the mechanisms of traditional CDB and
supercubing. The goal is to nudge the reader to think
about the integration — the main topic of the paper.

Let’s consider a formula f = (1∨−2∨4)(1∨−2∨−4)(1∨
2∨ 4)(1∨ 2∨−4)(−1∨−2∨−4)(−1∨ 3∨−4)(−1∨−3∨
−4)(2∨−3∨4)(2∨3∨4), and the search tree in Fig.1. Deci-
sion nodes are represented by white squares. The variable
is in the central box, and the assigned phase of the literal
is to the left and right of the variable. For example, first
we branch on variable 1, and assign it false (0), following
the edge to variable 2, which is a new decision. Conflicts
are marked as X, while implied variable 4 is represented
as a gray box with two compartments, the right contains
the variable and left its value. Supercubes can be asso-
ciated only with decision variables. If there are one or
more variables in the supercube, they will be represented
in brackets above the associated decision variable.

0 1 1

0 2 1
[-4]

0 2 1

X X 0 4 1 0 4

X X 1 3 0

Fig. 1. Supercubing search process

Let’s consider the more interesting right branch of the
search tree. The resolvents of the first two conflicts under
the right branch are {−2,−4}, {4, 1}. From those two,
the the algorithm can infer that after flipping decision
variable 2, it can immediately assign false to variable 4,
satisfying the formula.

The dynamics of solving the same problem is signif-
icantly different for classical solvers. After assignment
{1,−2,−4}, classical learning would construct learned
clause (2∨4), and backtrack to decision level two, without
flipping variable 2. At that point, the new learned clause
would be a unit clause, implying assignment 4. Solving 4
as an implied literal would result in a new conflict clause
(−4∨−1) that would force the solver to backtrack to deci-
sion level one, and then solve 4 as an implied unit literal.
At that point the first learned clause will imply 2 and the
formula is satisfied.

A learned clause that causes a flip of the variable is
called an asserting clause. It is important to notice that
decision variables are never directly flipped, but rather
forced to the opposite value by the asserting learned clause
after backtracking.

Pruning by supercubing has one significant shortcom-
ing. It can be applied only in the second branch of some
decision variable, while learned clauses can be useful long
after the solver leaves the current search space. In spite of
this limitation, supercubing effectively reduces the num-
ber of decisions. In addition, the decision variable and the
variables in the associated supercube are most likely in
the same cluster of related variables. Thus, immediately
after flipping a decision variable, the solver will continue
solving variables in the same cluster, localizing the search
and increasing the probability of getting more unit literals
related to the most recent decision variable.

Seemingly, the larger the supercubes are, the more we
can gain by the technique. This is only partially correct.
Interaction between learning, decision heuristics and su-
percubing is extremely complex. Heuristics that tend to
increase the priority of implied variables [7] result in a dif-
ferent sequence of decisions in two adjacent branches of
decision variables, reducing the size of constructed super-
cubes. Increasing the priority of decision variables in re-
solvents yields much longer supercubes, but doesn’t work
that well with learning. Hence, it is important to find a
balance. The heuristic that we are currently using is sim-
ilar to BerkMin’s heuristic [13], with the difference that
we scale the priorities rarely and only by a factor of two.

Every decision variable that has participated in at least
one conflict will have a supercube. If we compute a cu-
mulative size of all supercubes and divide the sum by the
number of decision variables of which we have explored
both branches (flipped variables), we get a density of su-
percubes. This factor tells us the average size of super-
cubes that we can expect. As suggested before, the factor
depends on the heuristics and learning used in combina-
tion with supercubing.

The benchmarks used in Table I are mostly well-known
industrial SAT instances. Instance rand3 is a random 3-
SAT benchmark with 200 variables, and SAT dat.k20 is
from the IBM formal verification benchmark suite1. Cho-

1Available at http://www.haifa.il.ibm.com/projects/verification/
RB Homepage/bmcbenchmarks.html



TABLE I
Supercubing statistics

Benchmark # dec.SC # flips.SC density dec.NSC flips.NSC

barrel6 7805 6928 2.817 11759 8711

longmult7 14127 13845 0.027 14147 13862

rand3 123251 105467 0.200 127347 108881

fpga10 11 872061 761401 0.047 1038014 896738

SAT dat.k20 7958 4582 0.203 8173 4360

sen instances are representable for their class as far as su-
percube densities are considered. Columns marked with
SC denote runs of our experimental solver during which
the supercubing was turned on. On all instances, except
for SAT k202, supercubing reduces the number of deci-
sions and flips needed to solve the problem.

Densities are rather small on average, but every used
variable from a supercube cuts the search subspace un-
der the associated decision variable in half. Hence, even
a small number of variables in supercubes can result in
significant speedups.

Table II presents supercubing statistics after the prob-
lems were preprocessed with Shatter and Saucy. The
densities remain roughly the same. The reduction of the
number of decisions and flips achieved by supercubing is
consistent too. We believe that the increase of the density
for FPGA benchmark is due to better decisions as a result
of additional implicates introduced by symmetry-breaking
tools.

TABLE II
Supercubing statistics after preprocessing with Saucy

Benchmark # dec.SC # flips.SC density dec.NSC flips.NSC

barrel6 1540 1265 2.673 2386 1673

longmult7 18557 18203 0.040 18473 17591

rand3 123251 105467 0.200 127347 108881

fpga10 11 21689 16740 0.225 25624 19947

SAT dat.k20 7687 4196 0.176 6742 3903

As mentioned previously, the relation between deci-
sion heuristics, learning, and supercubing is rather tan-
gled. Many different decision heuristics have been pro-
posed so far, e.g. [13, 7, 14]. Many of them are based
on increasing the priorities of the variables involved in
conflicts. Most modern solvers resolve the conflict until
the first UIP is reached, and then increase the priorities
of all or some number of variables present in the resol-
vent. Such resolvents tend to contain more implied then
decision variables3. Increasing the priorities of implied

2Explanation of this exception will be given later.
3We have checked this statement empirically, but we omit the

results as those are not crucial for further discussion.

variables means that those variables will be more likely
candidates for new decisions after we flip some decision
variable. The immediate consequence is that supercubes
will be shorter on average, as resolvents will contain a
more dispersed set of variables. Heuristics that boost the
priorities of decision variables result in larger supercubes,
but after all the variables from some supercube have been
assigned, the solver has to make a new decision. And for
highly dynamic problems it is usually preferable to select
the variables that were recently involved in conflicts (most
often those were implied variables).

Benchmark SAT dat.k20 in Table I is an example of
this phenomenon. The preference towards variables which
were involved in recent conflicts is so strong, that even
starting a new branch with supercubed variables results
in slightly larger number of decisions. According to ex-
pectations, changing the heuristics to increase only the
priorities of variables used for constructing UIP conflict
clause, decreases the density of supercubes, but results in
a smaller number of decisions, as shown in Table III.

TABLE III
Supercubing statistics with a heuristic that favors implied

variables

Benchmark # dec.SC # flips.SC density dec.NSC flips.NSC

SAT dat.k20 4296 2989 0.110 5776 4225

SAT dat.k20
+Saucy

3997 2584 0.121 5755 3805

D. Computation

The resolvents used for supercubing contain only deci-
sion variables. In most problems, the percentage of de-
cision variables in assignment ψ is relatively small. In
addition, the algorithm can skip over flipped decision vari-
ables, because their supercubes will not be used later. For
each remaining variable v, its new supercube is computed
by applying S operator to its current supercube and an
array containing all the variables from R with higher de-
cision level than the decision level of v.

The algorithm is simple and efficient. If resolvent R
and v.scube are sorted arrays of literals, then S operator
can be computed in linear time.

for all v = var(l) | l ∈ R do
if !isBranchable(v) then
continue

else
tmpa← ∅
for all x ∈ R do

if dlev(var(x)) > dlev(v) then
tmpa← tmpa ∪ x

end if
end for
v.scube← S(v.scube, tmpa)



end if
end for

In the given pseudocode listing function var() returns a
variable for a given literal. dlev() function returns the de-
cision level of a given variable. Function isBranchable()
returns TRUE for decision variables for which only one
branch has been explored so far.

In our experimental solver construction of the resolvent
and supercubing take a negligible amount of time (typi-
cally under 1%).

III. Integration with learning

A. Backtracking

Traditional CDB is tightly interwoven with learning.
The 1-UIP [6] learning scheme adds only one literal (UIP)
from the last decision level to the conflict. That literal is
a dominator of the conflicting nodes in the implication
graph and most often an implied variable. The solver
backtracks to the penultimate decision level of all the lit-
erals in the conflict. At that point, the new learned clause
will imply the opposite of the previous assignment of the
UIP variable, indirectly flipping it.

Now, let’s try to add supercubing to such a solver. Af-
ter each conflict, the algorithm constructs a resolvent con-
sisting only of decision variables. Such a resolvent is than
used, as previously described, for computation of super-
cubes. Thus, the computation of the supercubes remains
the same.

UIP variables are the only variables that are actually
being flipped through learned assertion clauses. If the
flipped variable was an implied variable prior to back-
tracking, it can’t have a supercube, hence no additional
pruning can be achieved. In the case when it was a de-
cision variable, it had the highest decision level when the
conflict was discovered and therefore the resolvent R of
that conflict will not include any decision variables with a
higher decision level4. A new supercube of the flipped de-
cision variable x is S(x.scube, tmpa). As the flipped vari-
able had the highest decision level, tmpa will be empty,
and the solver will effectively delete all the variables cur-
rently existing in the supercube. So, the flipped variable
has a supercube, but no elements in it.

Obviously, although computation of the supercubes re-
mains the same, supercubing can’t be exploited in the
same way. Note that the last resolvent must be taken
into account, as otherwise the supercube of x wouldn’t
represent the set of essential points in all the conflicts
under the first branch of x.

The only way we found to integrate supercubing and
UIP learning is to backtrack to the last branchable deci-
sion variable with a supercube, flip it and continue the
computation with supercubed and implied variables.

4See the previously given algorithm.

B. Assertion clauses

Let’s denote the decision level to which the supercubing
based solver backtracks as sc bdl, and the corresponding
level for CDB solver as cdb bdl. In general, those two lev-
els are different. In addition, the mechanics of backtrack-
ing are different. A supercubing based solver will unassign
all the literals having a decision level that is higher or the
same as sc bdl. Conversely, a CDB solver will only unas-
sign literals whose decision level is higher than cdb bdl
and continue the computation at decision level cdb bdl, at
which UIP literal from the last learned clause will become
a unit literal.

If cdb bdl > sc bdl, backtracking to the last branchable
decision variable will either satisfy the assertion clause or
leave at least two unassigned literals. A more interesting
case is when cdb bdl ≤ sc bdl. There can be multiple
branchable decision variables between those two levels and
we will call them intermediate variables. Flipping any
of them will not immediately satisfy the learned clause
because the UIP literal is implied by assignments at higher
decision levels, which do not change after backtracking to
any of the intermediate variables.

The solution we propose, is to schedule the computa-
tion of the implied UIP literal after every intermediate
variable. The scheduled implied variables can be assigned
immediately after flipping the associated decision vari-
able. Altogether, the order of computation is:

1. flipped decision variable

2. scheduled implied variables

3. all variables implied by either the last decision or
scheduled implied variables

4. supercubed variables.

Typically, the number of levels that get unassigned after
backtracking is small and the cases when there are many
intermediate variables are rare. In industrial benchmarks
the average number of scheduled implied variables is usu-
ally between one and two per decision node.

C. Implication graph

In this section we explain the order of computation
in more detail. As pointed out in [1], supercubed vari-
ables can be assigned immediately after flipping the as-
sociated decision variable, but the order of evaluation of
supercubed and implied variables is arbitrary in general.
Hence, it seems natural to consider supercubed variables
as implied, despite the fact that they have no antecedent
clause.

On the other hand, integration with learning seems to
demand that supercubed variables are handled as non-
branchable decision variables. Every supercubed vari-
able is assigned at a new decision level after all the im-
plied variables have been assigned. In the case when a



Fig. 2. Implication graph

conflict is found during Boolean Constraint Propagation
(BCP), some supercubed variables might not be used at
all. The percentage of the used supercubed variables de-
pends heavily on the type of the problem and decision
heuristics. Our solution is motivated by an example of
the implication graph at Fig.2.

Decision variables are shown as white boxes, super-
cubed variables as gray boxes, and implied variables are
represented by circles.

If supercubed and implied variables were computed at
the same decision level, the implication graph could have
two or more roots at the current decision level. It seems
that finding UIPs in such a multi-rooted graph is unde-
fined. For example, if all the variables in Fig.2 were as-
signed at the same decision level, the resolvent would be
{4} or {4,−7}, depending on whether the solver considers
the supercubed variable to be a decision or an implication.
The first resolvent is incorrect, while the second does not
represent a UIP cut.

Assigning variables by the proposed order always re-
sults in correct construction of resolvents, as there is no
difference between supercubed and non-branchable deci-
sion variables. Hence, in the given example the solver
will first assign variables implied by the flipped decision
variable (dotted implication edges). Afterwards, it will
proceed with the supercubed variable that is evaluated at
a new decision level. If there are more supercubed vari-
ables, the solver will assign all implied variables first, and
if there is no conflict, assign the next unassigned super-
cubed variable.

IV. Experimental results

Our experimental solver is still in the early stage of de-
velopment, so the results presented here should be taken
as a proof of concept rather than as a definite evaluation
of the capabilities of supercubing. All tests have been
performed on 2.6GHz Pentium 4 with 2 Gb of memory.
ZChaff version 2003.11.04 [15] was used for comparison.
For evaluation, we use bounded model checking (BMC)5

and FPGA routing6 instances.
The timeout for BMC benchmarks was set to 300 sec-

onds, while the timeout for FPGA instances was 3600
seconds. The number of instances on which the solver
has timed out is given in parentheses.

TABLE IV
Experimental results

Benchmark set Our solver ZChaff Speedup

BMC-barrel 332.4(1) 194.6 0.58

BMC-longmult 923.4 1280.2 1.38

BMC-queueinvar 6.8 3.0 0.44

FPGA-UNSAT 21855.8(4) 30387.1(8) 1.39

FPGA-SAT 4429.9 10903.1(2) 2.46

Our solver is on average a bit slower on BMC bench-
marks, especially on the barrel9 instance that the solver
couldn’t solve in the given period of time. On FPGA
routing instances, our solver performs significantly bet-
ter. It is well-known that symmetry-breaking works very
well on FPGA instances, so it seems that instances with
a lot of structural symmetries can gain more from super-
cubing. Running Shatter and Saucy first decreased the
runtimes of both solvers, but our solver was still faster
on FPGA and longmult instances by approximately the
same percentage as in Table IV.

V. Conclusion

The paper explores the integration of a new pruning
technique called supercubing [1] with traditional tech-
niques like conflict directed backtracking (CDB) and
learning. After analyzing the mechanics of supercubing
and CDB solvers, we have identified the main sources of
incompatibility and proposed efficient solutions. Also, we
suggested a simple and efficient algorithm for computa-
tion of supercubes.

Our findings are that heuristics implemented in lead-
ing edge solvers, like BerkMin [13] and ZChaff [15], don’t
work very well with supercubing. Heuristics that tend to
increase the priority of decision variables result in larger

5Available at http://www-2.cs.cmu.edu/∼modelcheck/bmc/BMC-
dimacs-examples-0.0.tar.gz

6Available at http://www.eecs.umich.edu/∼faloul/
benchmarks.html



supercubes, but when the solver assigns all the super-
cubed variables, the decisions it makes become worse than
if VSIDS [15] or BerkMin [13] heuristics are used. On
the other hand, the mentioned heuristics generally cause
a different order of decisions in adjacent branches of de-
cision decision variables, effectively dispersing the resol-
vents and reducing the size of supercubes. It seems that
good heuristics supercubing-based solvers should find a
balance between increasing priorities of decision and im-
plied variables, but more research is required before we
can make strong conclusions.

The additional complexity of integration seems to be
justified according to our preliminary results. We believe
that improving our fragile heuristics, adding simple pre-
processing, and overall solver optimization should yield
even better results.

Our main contribution is the proposed solution for inte-
gration of supercubing in traditional SAT solving frame-
work. We expect that more powerful pruning techniques
than supercubing can be developed and that will be the
focus of our future research.

References

[1] Evgueni Goldberg, Mukul R. Prasad, and Robert K.
Brayton. Using Problem Symmetry in Search Based
Satisfiability Algorithms. In Proceedings of the con-
ference on Design, Automation, and Test in Europe,
pages 134–142, 2002.

[2] G. Nam, K. Sakallah, and R. Rutenbar. A boolean
satisfiability-based incremental rerouting approach
with application to FPGAs. In Proceedings of the
conference on Design, Automation and Test in Eu-
rope, pages 560–565. IEEE Press, 2001.

[3] P. Stephan, R.K. Brayton, and A.L. Sangiovanni-
Vincentelli. Combinational test generation using
satisfiability. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems,
15(9):1167–1176, Sept 1996.

[4] Miroslav N. Velev and Randal E. Bryant. Effective
Use of Boolean Satisfiability Procedures in the For-
mal Verification of Superscalar and VLIW Micropro-
cessors. In Proceedings of the 38th conference on De-
sign automation, pages 226–231. ACM Press, 2001.

[5] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and
Y. Zhu. Symbolic model checking using SAT pro-
cedures instead of BDDs. In Proceedings of the 36th
ACM/IEEE conference on Design automation, pages
317–320. ACM Press, 1999.

[6] Lintao Zhang, Conor F. Madigan, Matthew H.
Moskewicz, and Sharad Malik. Efficient conflict
driven learning in a boolean satisfiability solver.
In Proceedings of the International Conference on

Computer-aided Design, pages 279–285. IEEE Press,
2001.

[7] Lawrence Ryan. Efficient algortihtms for clause-
learning SAT solvers. Master’s thesis, Simon Fraser
University, 2004.

[8] João P. Marques-Silva and Karem A. Sakallah.
GRASP: A Search Algorithm for Propositional Satis-
fiability. IEEE Trans. Comput., 48(5):506–521, 1999.

[9] I. L. Markov F. A. Aloul, A. Ramani and K. A.
Sakallah. Solving Difficult SAT Instances In
The Presence of Symmetry. In Proceedings of
the Design Automation Conference, pages 731–736.
ACM/IEEE, June 2002.

[10] Karem A. Sakallah Fadi A. Aloul, Igor L. Markov.
Shatter: Efficient Symmetry-Breaking for Boolean
Satisfiability. In Proceedings of the Design Automa-
tion Conference, pages 836–839. ACM/IEEE, June
2003.

[11] Karem A. Sakallah Paul T. Darga, Mark H. Liffi-
ton and Igor L. Markov. Exploiting Structure in
Symmetry Detection for CNF. In Proceedings of
the Design Automation Conference, pages 530–534.
ACM/IEEE, 2004.

[12] Mukul Ranjan Prasad. Propositional Satisfiability
Algorithms in EDA Applications. PhD thesis, Uni-
versity of California at Berkeley, 2001.

[13] E. Goldberg and Y. Novikov. BerkMin: A Fast and
Robust SAT-Solver. In Proceedings of the conference
on Design, Automation, and Test in Europe, pages
142–149, 2002.

[14] João P. Marques Silva. The Impact of Branching
Heuristics in Propositional Satisfiability Algorithms.
In Proceedings of the 9th Portuguese Conference on
Artificial Intelligence, pages 62–74. Springer-Verlag,
1999.

[15] Matthew W. Moskewicz, Conor F. Madigan, Ying
Zhao, Lintao Zhang, and Sharad Malik. Chaff: en-
gineering an efficient SAT solver. In Proceedings of
the Design Automation Conference, pages 530–535.
ACM Press, 2001.


