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1. [20 marks] The roots of the quadratic equation

x2 − 2bx+ c = 0

with b2 > c are given by
x1,2 = b±

√
b2 − c.

Note x1x2 = c.

The following Matlab scripts calculate these roots using two different algorithms:

(a) x1 = b + sqrt(b^2-c);

x2 = b - sqrt(b^2-c);

(b) if b > 0

x1 = b + sqrt(b^2-c);

x2 = c / x1;

else

x2 = b - sqrt(b^2-c);

x1 = c / x2;

end

Which algorithm gives a more accurate result in general? – circle one of:

1. Algorithm (i) 2. Algorithm (ii) 3. Both algorithms produce the same result

Justify your choice in one short sentence. Note: No justification, or two justifications,
produce no marks. Also, assume that no overflow occurs in any of these operations.

2. A popular technique arising in methods for minimizing functions in several variables involves
a weak line search, where an approximate minimum x∗ is found for a function in one variable,
f(x), for which the values of f(0), f ′(0) and f(1) are given. The function f(x) is defined
for all nonnegative x, has a continuous second derivative, and satisfies f(0) < f(1) and
f ′(0) < 0. We then interpolate the given values by a quadratic polynomial and set x∗ as the
minimum of the interpolant.



(a) [30 marks] Find x∗ for the values f(0) = 1, f ′(0) = −1, f(1) = 2.

(b) Bonus (do not attempt this part unless you have extra time left):

Show that the quadratic interpolant has a unique minimum satisfying 0 < x∗ < 1. Can
you show the same for the function f itself?



3. [20 marks]

Given function values f(t0), f(t1), . . . , f(tq), as well as those of f ′(t0) and f ′(tq), for some
q ≥ 2, it is possible to construct the complete interpolating cubic spline.

Suppose that we were instead to approximate f ′(ti) by f [ti−1, ti+1], for i = 1, 2, . . . , q − 1,
and then use these values (as well as the given ones) to construct a Hermite piecewise cubic
interpolant.

Give one advantage and one disadvantage of this procedure over a complete cubic spline
interpolation.

Note: If more than one advantage or one disadvantage is given then the least correct will be
graded.



4. Often in practice, an approximation of the form

u(x) = γ0e
γ1x

is sought for a data fitting problem, where γ0 and γ1 are constants.

Assume given data (x0, z1), (x0, z1), . . . , (xm, zm), where zi > 0, i = 0, 1, . . . ,m, and m > 0.

(a) [10 marks] Explain in one brief sentence why the techniques introduced in class cannot
be directly applied to find this u(x).

(b) [20 marks] Considering instead

v(x) = lnu(x) = (ln γ0) + γ1x

it makes sense to define yi = ln zi, i = 0, 1, . . . ,m, and then find coefficients c0 and c1

such that v(x) = c0 + c1x is the best least squares fit for the data

(x0, y0), (x1, y1), . . . , (xm, ym).

Using this method, find u(x) for the data

i 0 1 2
xi 0.0 1.0 2.0
zi e0.1 e0.9 e2


