CPSC 303, Fall Term, 2010
 Assignment 4, due Monday November 15th

Please show all your work: e-mail your Matlab programs to cs303@ugrad.cs.ubc.ca, but provide a hardcopy of the rest of the assignment. When e-mailing your programs, include your name and student ID in the message's title.

Do not e-mail a complete assignment.

1. Let us denote $x_{ \pm 1}=x_{0} \pm h$ and $f\left(x_{i}\right)=f_{i}$. It is known that the difference formula

$$
f p p_{0}=\left(f_{1}-2 f_{0}+f_{-1}\right) / h^{2}
$$

provides a 2 nd order method for approximating the second derivative of f at x_{0}, and also that roundoff error increases like h^{-2}.

Write a Matlab script using default floating point arithmetic to calculate and plot the actual total error for approximating $f^{\prime \prime}(1.2)$, with $f(x)=\sin (x)$. Plot the error on a loglog scale for $h=10^{-k}, \mathrm{k}=$ $-8: 5: 0$. Observe the roughly V shape of the plot and explain it. What is (approximately) the observed optimal h ?
2. Continuing with the notation of Question 1, one could define

$$
g_{1 / 2}=\left(f_{1}-f_{0}\right) / h, \quad \text { and } \quad g_{-1 / 2}=\left(f_{0}-f_{-1}\right) / h .
$$

These approximate to 2 nd order the first derivative values $f^{\prime}\left(x_{0}+h / 2\right)$ and $f^{\prime}\left(x_{0}-h / 2\right)$, respectively. Then define

$$
f p p_{0}=\left(g_{1 / 2}-g_{-1 / 2}\right) / h .
$$

All three derivative approximations here are centered (hence 2nd order), and they are applied to first derivatives hence have roundoff error increasing proportionally to h^{-1}, not h^{-2}. Can we manage to (partially) cheat the hangman in this way?!
(a) Show that in exact arithmetic $f p p_{0}$ defined above and in Question 1 are one and the same.
(b) Implement this method and compare to the results of Question 1. Explain your observations.
3. The basic trapezoidal rule for approximating $I_{f}=\int_{a}^{b} f(x) d x$ is based on linear interpolation of f at $x_{0}=a$ and $x_{1}=b$. The Simpson rule is likewise based on quadratic polynomial interpolation. Consider now a cubic Hermite polynomial, interpolating both f and its derivative f^{\prime} at a and b. The osculating interpolation formula gives
$p_{3}(x)=f(a)+f^{\prime}(a)(x-a)+f[a, a, b](x-a)^{2}+f[a, a, b, b](x-a)^{2}(x-b)$, and integrating this yields (after some algebra)

$$
I \approx \int_{a}^{b} p_{3}(x) d x=\frac{b-a}{2}[f(a)+f(b)]+\frac{(b-a)^{2}}{12}\left[f^{\prime}(a)-f^{\prime}(b)\right] .
$$

This formula is called the corrected trapezoidal rule.
a) Show that the error in the basic corrected trapezoidal rule can be estimated by

$$
E(f)=\frac{f^{\prime \prime \prime \prime}(\eta)}{720}(b-a)^{5} .
$$

b) Use the basic corrected trapezoidal rule to evaluate approximations for $\int_{0}^{1} e^{x} d x$ and $\int_{0.9}^{1} e^{x} d x$. Compare errors to those of Example 15.3 in the notes. What are your observations?
4. Continuing Question 3:
a) Derive the composite corrected trapezoidal rule. How does it relate to the composite trapezoidal rule? Use both composite trapezoidal and corrected composite trapezoidal to evaluate approximations for $I_{f}=\int_{0}^{1} e^{-x^{2}} d x$ with $r=10$ subintervals. What are your observations? [The exact value is $I_{f}=0.746824133$..]
b) Show that the error in the (uncorrected) composite trapezoidal formula can be written as

$$
E(f)=I_{f}-I_{t r}=K_{1} h^{2}+\mathcal{O}\left(h^{4}\right)
$$

where K_{1} is independent of h.

