CPSC 303, Fall Term, 2010

Assignment 3, due Monday November 1st

Please show all your work: e-mail your Matlab programs to cs303@ugrad.cs.ubc.ca, but provide a hardcopy of the rest of the assignment. When e-mailing your programs, include your name and student ID in the message's title.

Do not e-mail a complete assignment.

1. The Legendre polynomials satisfy

$$
\int_{-1}^{1} \phi_{j}(x) \phi_{k}(x) d x= \begin{cases}0 & j \neq k \\ \frac{2}{2 j+1} & j=k\end{cases}
$$

Suppose that the best fit problem is given on the interval $[a, b]$.
Show that with the transformation $t=\frac{1}{2}[(b-a) x+(a+b)]$ and a slight change of notation, we have

$$
\int_{a}^{b} \phi_{j}(t) \phi_{k}(t) d t= \begin{cases}0 & j \neq k \\ \frac{b-a}{2 j+1} & j=k\end{cases}
$$

2. Redo Example 12.1 in the notes, reconstructing Figure 12.1, using an orthogonal polynomial base.
3. Consider using a DFT to interpolate the function $f(x)=\log (x+1)$ on the interval $[0,2 \pi]$ as in the examples of Section 13.2.
(a) Construct and plot the interpolant on $[0,2 \pi]$ for $l=16$ and $l=32$. Explain why the results look unsatisfactory.
(b) Consider an even extension of $f(x)$, defining

$$
g(t)=\left\{\begin{array}{ll}
f(t) & 0 \leq t<2 \pi \\
f(4 \pi-t) & 2 \pi \leq t<4 \pi
\end{array} .\right.
$$

Apply DFT interpolation to $g(t)$ and plot the results on $[0,2 \pi]$. Find maximum errors for $l=16$ and $l=32$. Are they better than before? Why?
4. Compare the results reported in Example 13.10 and in particular Figure 13.7 to those obtained in Question 3. Explain similarities and differences.

