CPSC 303, Fall Term, 2010 Assignment 1, due Wednesday September 29th

Please show all your work: e-mail your Matlab programs to cs303@ugrad.cs.ubc.ca, but provide a hardcopy of the rest of the assignment. When e-mailing your programs, include your name and student ID in the message's title.

Do not e-mail a complete assignment.

1. The function $f_{1}\left(x_{0}, h\right)=\sin \left(x_{0}+h\right)-\sin \left(x_{0}\right)$ can be transformed into another form, $f_{2}\left(x_{0}, h\right)$, using the trigonometric formula

$$
\sin (\phi)-\sin (\psi)=2 \cos \left(\frac{\phi+\psi}{2}\right) \sin \left(\frac{\phi-\psi}{2}\right) .
$$

Thus, f_{1} and f_{2} have the same values, in exact arithmetic, for any given argument values x_{0} and h.
(a) Derive $f_{2}\left(x_{0}, h\right)$.
(b) Suggest a formula that avoids cancellation errors for computing the approximation $\left(f\left(x_{0}+h\right)-f\left(x_{0}\right)\right) / h$ to the derivative of $f(x)=$ $\sin (x)$ at $x=x_{0}$. Write a Matlab program that implements your formula and computes an approximation of $f^{\prime}(1.2)$, for $h=1 \mathrm{e}-$ 20,1e-19,..., 1.
(c) Explain the difference in accuracy between your results and the results reported in Example 1.3.
2. Some unknown (but crucial) modeling considerations have mandated a search for a function

$$
u(x)=\gamma_{0} e^{\gamma_{1} x+\gamma_{2} x^{2}}
$$

where the unknown coefficients γ_{1} and γ_{2} are expected to be nonpositive. Given are data pairs to be interpolated, $\left(x_{0}, z_{0}\right),\left(x_{1}, z_{1}\right)$ and $\left(x_{2}, z_{2}\right)$, where $z_{i}>0, i=0,1,2$. Thus, we require $u\left(x_{i}\right)=z_{i}$.
The function $u(x)$ is not linear in its coefficients, but $v(x)=\ln (u(x))$ is linear in its.
(a) Find a quadratic polynomial $v(x)$ that interpolates appropriately defined three data pairs, and then give a formula for $u(x)$ in terms of the original data.
[This is a pen-and-paper item; the following one should consume much less of your time.]
(b) Write a script to find u for the data $(0,1),(1, .9),(3, .5)$. Give the coefficients γ_{i} and plot the resulting interpolant over $[0,6]$. In what way does the curve behave qualitatively differently from a quadratic?
3. Joe had decided to buy stocks of a particularly promising Internet company. The price per share was $\$ 100$, and Joe subsequently recorded the stock price at the end of each week. With the abscissae measured in days, the following data were acquired:
$(0,100),(7,98),(14,101),(21,50),(28,51),(35,50)$.
In attempting to analyze what happened, it was desired to approximately evaluate the stock price a few days before the crash.
(a) Pass a linear interpolant through the points with abscissae 7 and 14. Then add to this data set the value at 0 and (separately) the value at 21 to obtain two quadratic interpolants. Evaluate all three interpolants at $x=12$. Which one do you think is the most accurate? Explain.
(b) Plot the two quadratic interpolants above, together with the data (without a broken line passing through the data) over the interval [0,21]. What are your observations?
4. Suppose we want to approximate the function e^{x} on the interval $[0,1]$ by using polynomial interpolation with $x_{0}=0, x_{1}=1 / 2$ and $x_{2}=1$. Let $p_{2}(x)$ denote the interpolating polynomial.
(a) Find an upper bound for the error magnitude

$$
\max _{0 \leq x \leq 1}\left|e^{x}-p_{2}(x)\right| .
$$

(b) Find the interpolating polynomial using your favorite technique.
(c) Plot the function e^{x} and the interpolant you found, both on the same figure, using the commands plot.
(d) Plot the error magnitude $\left|e^{x}-p_{2}(x)\right|$ on the interval using logarithmic scale (the command semilogy) and verify by inspection that it is below the bound you found in Part (a).
5. Interpolate the Runge function

$$
f(x)=\frac{1}{1+25 x^{2}}, \quad-1 \leq x \leq 1
$$

at Chebyshev points for n from 10 to 170 in increments of 10 . Calculate the maximum interpolation error on the uniform evaluation mesh $\mathrm{x}=$ $-1: .001: 1$ and plot the error vs. polynomial degree using semilogy. Observe spectral accuracy.

