Lecture Stat 302
 Introduction to Probability - Slides 9

AD

Feb. 2010

Example: Optimal Stock

- Vancouver 2010 Olympic Torchbearer red mittens are currently sold at a net profit of $b \$$ for each unit sold and will bring a net loss of $1 \$$ for each unit left unsold after the Olympics. The number of units of the product sold at a specific store is a random variable X with pmf $p(i), i \geq 0$. If the store must stock this product in advance, compute the expected profit for a determined number of units s. Find \widehat{s} which optimizes the maximum expected profit.
- The profit is equal to

$$
\begin{aligned}
Y(s) & =b X-I(s-X) \text { if } X \leq s \\
& =s b \quad \text { if } X>s
\end{aligned}
$$

- Hence the expected profit is

$$
\begin{aligned}
E[Y(s)] & =\sum_{i=0}^{s}(b i-I(s-i)) p(i)+\sum_{i=s+1}^{\infty} s b p(i) \\
& =s b+(b+I) \sum_{i=0}^{s}(i-s) p(i)
\end{aligned}
$$

Example: Optimal Stock

- We want to maximize the profit. We note that

$$
E[Y(s+1)]-E[Y(s)]=b-(b+l) \sum_{i=0}^{s} p(i)
$$

so we have

$$
E[Y(s+1)]-E[Y(s)] \geq 0
$$

is equivalent to

$$
\sum_{i=0}^{s} p(i)<\frac{b}{b+l}
$$

- So we should consider s^{*} the largest value such that $\sum_{i=0}^{s^{*}} p(i)<\frac{b}{b+l}$ then

$$
E(Y(0))<\cdots<E\left(Y\left(s^{*}\right)\right)<E\left(Y\left(s^{*}+1\right)\right)>E\left(Y\left(s^{*}+2\right)\right)>\ldots
$$ so the optimal stock is $\widehat{s}=s^{*}+1$.

Variance

- A r.v. X is entirely defined by its p.m.f. but it is very useful to be able to summarize the essential properties of it through a few suitably defined measures.
- We have defined previously the expected value $E(X)$. However this measure tells us nothing about the variations of X; e.g. consider $X=0$ with proba. $1, Y=1$ w.p. 0.5 and $Y=-1$ w.p. 0.5 and finally $Z=100$ w.p. and $Z=-100$ w.p. 0.5 then

$$
E(X)=E(Y)=E(Z)=0
$$

whereas there is a much greater spread/variability in the values of Y than in the deterministic value of X and the variability of Z than Y.

- We expect X to be around its expected value/mean $\mu=E(X)$ so it would make sense to quantify the average deviations from it. This is what the variance achieves.

Variance

- If X is a r.v. with expected value/mean $\mu=E(X)$ then the variance is

$$
\operatorname{Var}(X)=E\left((X-\mu)^{2}\right)
$$

and $\operatorname{Std}(X)=\sqrt{\operatorname{Var}(X)}$ is called standard deviation.

- We have

$$
\operatorname{Var}(X)=E\left(X^{2}\right)-\mu^{2}
$$

- Example: Consider a fair die with $X=i$ is "number i rolled" then we have seen that $E(X)=\frac{7}{2}$ and

$$
\begin{aligned}
E\left(X^{2}\right) & =1^{2} \times \frac{1}{6}+2^{2} \times \frac{1}{6}+3^{2} \times \frac{1}{6}+4^{2} \times \frac{1}{6}+5^{2} \times \frac{1}{6}+6^{2} \times \frac{1}{6} \\
& =\frac{1+4+9+16+25+36}{6}=\frac{91}{6}
\end{aligned}
$$

so

$$
\operatorname{Var}(X)=\frac{91}{6}-\left(\frac{7}{2}\right)^{2}=\frac{35}{12}
$$

Example: Variance of Payout of Roulette Wheel

- Red/Black: $P\left(X_{1}=1\right)=\frac{18}{38}, P\left(X_{1}=-1\right)=\frac{20}{38}$ and $E\left(X_{1}\right)=-\frac{1}{19}$ so

$$
\operatorname{Var}\left(X_{1}\right)=1^{2} \times \frac{18}{38}+(-1)^{2} \times \frac{20}{38}-\left(-\frac{1}{19}\right)^{2}=0.99
$$

- Straight up: $P\left(X_{2}=35\right)=\frac{1}{38}, P\left(X_{2}=-1\right)=\frac{37}{38}$ and $E\left(X_{2}\right)=-\frac{1}{19}$ so

$$
\operatorname{Var}\left(X_{2}\right)=35^{2} \times \frac{1}{38}+(-1)^{2} \times \frac{37}{38}-\left(-\frac{1}{19}\right)^{2}=33.21
$$

- Split bet: $P\left(X_{3}=17\right)=\frac{2}{38}, P\left(X_{3}=-1\right)=\frac{36}{38}, E\left(X_{3}\right)=-\frac{1}{19}$ so

$$
\operatorname{Var}\left(X_{3}\right)=17^{2} \times \frac{2}{38}+(-1)^{2} \times \frac{36}{38}=16.15
$$

- Street bet: $P\left(X_{4}=11\right)=\frac{3}{38}, P\left(X_{4}=-1\right)=\frac{35}{38}, E\left(X_{4}\right)=-\frac{1}{19}$ so

$$
\operatorname{Var}\left(X_{4}\right)=11^{2} \times \frac{3}{38}+(-1)^{2} \times \frac{35}{38}-\left(-\frac{1}{19}\right)=10.47
$$

Properties

- Consider $Y=a X+b$ then

$$
\operatorname{Var}(Y)=a^{2} \operatorname{Var}(X)
$$

- We have

$$
\begin{aligned}
\operatorname{Var}(Y) & =E\left((Y-E(Y))^{2}\right) \\
& =E[(a X+b-\underbrace{(a E(X)+b)}_{=E(Y)})^{2}] \\
& =E\left[a(X-E(X))^{2}\right] \\
& =a^{2} E\left[(X-E(X))^{2}\right]=a^{2} \operatorname{Var}(X)
\end{aligned}
$$

Bernoulli Distribution

- Assume you have an experiment which can be classified as either success or failure.
- If you associate a random variable X such that $X=1$ corresponds to a success and $X=0$ corresponds to a failure then

$$
\begin{aligned}
& P(X=1)=p(1)=p \\
& P(X=0)=p(0)=1-p
\end{aligned}
$$

- Such a random variable is a called a Bernoulli random variable.
- We have

$$
E(X)=p \text { and } \operatorname{Var}(X)=p(1-p) .
$$

Binomial Distribution

- Consider a sequence of n independent success/failure experiments, each of which yields success with probability p.
- Let X denote the number of successes then we have $X=X_{1}+X_{2}+\cdots+X_{n}$ where X_{i} is a Bernoulli random variable with proba. p. It is a binomial random variable of parameters (n, p).
- X is a discrete random variables in $\{0,1, \ldots, n\}$ such that

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

- This expression follows from the fact that any specific sequence with exactly k successes (hence $n-k$ failures) has a proba $p^{k}(1-p)^{n-k}$. There are $\binom{n}{k}$ such sequences.

Example

- Example: Everyday one of your classmates is taking the tram twice without any ticket. There is a 5% chance of meeting inspectors each time one boards the tram. What is the proba that he is going to be caught at least twice in a 30 day month?
- Answer: Let X be the number of times he will meet inspectors per year. X is a binomial random variable of parameters $n=2 \times 30$, $p=0.05$ and

$$
\begin{aligned}
P(X \leq 1) & =P(X=0)+P(X=1) \\
& =\binom{n}{0} p^{0}(1-p)^{n}+\binom{n}{1} p^{1}(1-p)^{n-1} \\
& =(1-p)^{n}+n p(1-p)^{n-1} \\
& =0.04671+0.1455=0.4174
\end{aligned}
$$

so

$$
P(X \geq 2)=1-P(X \leq 1)=0.728
$$

Example

- Example: Your friend pretends that he is able to distinguish pepsi from coke. You give him a test. Out of 5 trials, he gets the right answer 4 times. What is the probability that he just got lucky?
- Answer: Let X be the number of right answers. If he answers completely randomly, then X is a binomial of parameters $n=5$ and $p=\frac{1}{2}$. We have

$$
\begin{aligned}
P(X \geq 4) & =P(X=4)+P(X=5) \\
& =\binom{5}{4}\left(\frac{1}{2}\right)^{4}\left(\frac{1}{2}\right)^{5-4}+\binom{5}{5}\left(\frac{1}{2}\right)^{5}\left(\frac{1}{2}\right)^{5-0} \\
& =0.1875
\end{aligned}
$$

This is no convincing evidence that your friend can distinguish the two beverages.

- This is related to what is called p-value in statistics: the probability that you would have observed such results just by pure luck.

Example

- Example: A survey from Teenage Research Unlimited (Northbrook, III.) found that 30% of teenage consumers receive their spending money from part-time jobs. If five teenagers are selected at random, find the probability that at least three of them will have part-time jobs.
- Answer: Let X be the number of teenagers having a part-time job among 5 teenagers, then X is Binomial of parameters $n=5, p=0.3$ so

$$
\begin{aligned}
P(X \geq 3) & =P(X=3)+P(X=4)+P(X=5) \\
& =0.132+0.028+0.002=0.162
\end{aligned}
$$

- Example: What is the probability of obtaining 45 or fewer heads in 100 tosses of a fair coin?
- Solution: Let X be the number of heads, then X is binomial of parameters $n=100, p=0.5$ and

$$
P(X \leq 45)=\sum_{k=0}^{45}\binom{n}{k} p^{k}(1-p)^{k}=0.184
$$

Mean of the Binomial Random Variable

- The mean/expected value of X is given by

$$
E(X)=n p
$$

- Proof. We have

$$
\begin{aligned}
& E(X)=\sum_{k=0}^{n} k P(X=k)=\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =\sum_{k=1}^{n} k \frac{n(n-1)!}{k(k-1)!(n-k)!} p p^{k-1}(1-p)^{n-k} \\
& =n p \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1}(1-p)^{n-k} \\
& =n p \sum_{l=0}^{m} \frac{m!}{1!(m-l)!} p^{\prime}(1-p)^{m-l} \quad(m \leftarrow n-1, I \leftarrow k-1) \\
& =n p
\end{aligned}
$$

- A much more straightforward proof follows from $X=X_{1}+X_{2}+\cdots+X_{n}$ where X_{i} is a Bernoulli random variable with proba. p so

$$
\begin{aligned}
E(X) & =E\left(X_{1}+\cdots+X_{n}\right) \\
& =E\left(X_{1}\right)+\cdots+E\left(X_{n}\right)=n p .
\end{aligned}
$$

