Lecture Stat 302
 Introduction to Probability - Slides 6

AD

Jan. 2010

Independence

- We say that the events $\left\{E_{i}\right\}_{i=1}^{n}$ are independent if

$$
P\left(\cap_{i=1}^{n} E_{i}\right)=\prod_{i=1}^{n} P\left(E_{i}\right)
$$

and if for $i_{1}, i_{2}, \ldots, i_{r}$ where $i_{j} \neq i_{k}$ for $j, k \in\{1, \ldots, r\}$ and any $r \in\{1, \ldots, n\}$ we have

$$
P\left(\cap\left\{E_{i_{j}}\right\}_{j=1, \ldots, r}\right)=\prod_{j=1}^{r} P\left(E_{i_{j}}\right) .
$$

- Example: We say that three events E, F, G are independent if

$$
P(E \cap F \cap G)=P(E) P(F) P(G)
$$

and if

$$
\begin{aligned}
& P(E \cap F)=P(E) P(F), P(E \cap G)=P(E) P(G), \\
& P(F \cap G)=P(F) P(G) .
\end{aligned}
$$

Example: Independent Trials

- An infinite sequence of independent trials is to be performed. With proba p it is a success and with proba $1-p$ this is a failure. What is the proba that 1) at least one success occurs in the first n trials 2) exactly k successes occur in the first n trials 3) all trials results in successes?
- Answer: 1) Let E_{i} event of a failure at trial i then proba of no success is

$$
P\left(E_{1} \cap E_{2} \cap \cdots \cap E_{n}\right)=\prod_{i=1}^{n} P\left(E_{i}\right)=(1-p)^{n}
$$

so proba of at least one success is $1-(1-p)^{n}$.
2) Proba of exactly k successes is

$$
\binom{n}{k} p^{k}(1-p)^{n-k}
$$

3) Proba of all successes is
$P\left(\cap_{i=1}^{\infty} E_{i}^{c}\right)=\lim _{n \rightarrow \infty} P\left(\cap_{i=1}^{n} E_{i}^{c}\right)=\lim _{n \rightarrow \infty} p^{n}=0$ for $p<1$.

Example: The problem of points

- An infinite sequence of independent trials is to be performed. With proba. p it is a success and with proba $1-p$ this is a failure. What is the proba of getting at least n successes before getting m failures?
- Answer: For at least n successes to occur before m failures, we need at least n successes in the first $n+m-1$ trials. Hence, we have

$$
\begin{aligned}
& P(\text { at least } n \text { successes })=\sum_{k=n}^{n+m-1} P(k \text { successes exactly }) \\
& =\sum_{k=n}^{n+m-1}\binom{n+m-1}{k} p^{k}(1-p)^{m+n-1-k}
\end{aligned}
$$

Example: Dice... again

- Independent trials consisting of rolling a pair of fair dice are performed. What is the proba that an outcome of 5 appears before an outcome of 7 when the outcome is the sum of the dice?
- Answer: Let $E_{n}=$ \{no 5 and 7 appears in the first $n-1$ trials and 5 appears at n.\} then

$$
P\left(\cup_{i=1}^{\infty} E_{n}\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right) .
$$

where $P($ get a 5$)=\frac{4}{36}, P($ get a 7$)=\frac{6}{36}$

$$
\begin{aligned}
P\left(E_{i}\right) & =P(\text { no } 5, \text { no } 7 n-1 \text { times }) P(\text { a } 5 \text { at } n) \\
& =\left(1-\frac{10}{36}\right)^{n-1}\left(\frac{4}{36}\right)
\end{aligned}
$$

so finally

$$
P\left(\cup_{i=1}^{\infty} E_{n}\right)=\frac{1}{9} \sum_{n=1}^{\infty}\left(\frac{13}{18}\right)^{n-1}=\frac{2}{5}
$$

Conditional Independence

- Given an event E and events $T_{1}, T_{2}, \ldots, T_{n}$, the probability of E given $I_{n}=T_{1} \cap T_{2} \cap \ldots \cap T_{n}$

$$
P\left(E \mid I_{n}\right)=\frac{P\left(I_{n} \mid E\right) P(E)}{P\left(I_{n} \mid E\right) P(E)+P\left(I_{n} \mid E^{c}\right) P\left(E^{c}\right)}
$$

- We say that the events $T_{1}, T_{2}, \ldots, T_{n}$ are conditionally independent given E (respectively E^{c}) if

$$
\begin{aligned}
P\left(I_{n} \mid E\right) & =P\left(T_{1} \cap T_{2} \cap \cdots \cap T_{n} \mid E\right)=\prod_{i=1}^{n} P\left(T_{i} \mid E\right) \\
P\left(I_{n} \mid E^{c}\right) & =P\left(T_{1} \cap T_{2} \cap \cdots \cap T_{n} \mid E^{c}\right)=\prod_{i=1}^{n} P\left(T_{i} \mid E^{c}\right)
\end{aligned}
$$

Application to Spam Emails Detection

- Example. When you receive an email, your spam filter uses Bayes rule to decide whether it is spam or not. Basic spam filters check whether some pre-specified words appear in the email you have received; e.g. \{diplomat,lottery,money, politics, president,sincerely, huge,work...\}. That is to each email is associated n events T_{i} telling us whether the i th pre-specified word is in the email or not. Let $E=\{$ email received is spam $\}$.
- Based on many (humanly) labelled training data, i.e. non-spam and spam emails, we estimate

$$
P(E)=\text { proba. email is a spam, }
$$

$P($ word i in $\mid E)=$ proba. $i^{\text {th }}$ word in email given it is spam, $P\left(\right.$ word i in $\left.\mid E^{c}\right)=$ proba. $i^{\text {th }}$ word in email given it is not spam.

- The spam filter makes the assumption that the events T_{i} are conditionally independent to compute $P\left(E \mid I_{n}\right)$ and decide whether it is spam or not.

Updating Information Sequentially

- Example. A patient came to a clinic. We want to assess whether he has a nasty disease. For this we need to run not one but a battery of $n>1$ tests. Let introduce the event $E=\{$ patient sick $\}$ and the events $T_{i}=\{$ result test $i\}$. Assuming for example that we have n tests and observed the events $T_{1}, T_{2}, \ldots, T_{n}$ then we are interested in

$$
P\left(A \mid I_{n}\right)=\frac{P\left(I_{n} \mid A\right) P(A)}{P\left(I_{n} \mid A\right) P(A)+P\left(I_{n} \mid A^{c}\right) P\left(A^{c}\right)}
$$

where $I_{n}=T_{1} \cap T_{2} \cap \cdots \cap T_{n}$ is the result of all the n tests

- These tests might be very expensive so instead of running directly two tests, we might want to first compute $P\left(A \mid I_{1}\right)=P\left(A \mid T_{1}\right)$ after the 1st test which is given by

$$
P\left(A \mid I_{1}\right)=\frac{P\left(T_{1} \mid A\right) P(A)}{P\left(T_{1} \mid A\right) P(A)+P\left(T_{1} \mid A^{c}\right) P\left(A^{c}\right)}
$$

then only running the 2 nd test if $P\left(A \mid I_{1}\right)$ is not close enough to 0 or 1 so that we cannot decide whether the patient is healthy or sick.

Updating Information Sequentially

- Assume we run the 2 nd test and thus observe T_{2}, then we are now interested in $P\left(A \mid I_{2}\right)$ given by

$$
P\left(A \mid I_{2}\right)=\frac{P\left(I_{2} \mid A\right) P(A)}{P\left(I_{2} \mid A\right) P(A)+P\left(I_{2} \mid A^{c}\right) P\left(A^{c}\right)}
$$

If $P\left(A \mid I_{2}\right)$ is not close enough to 0 or 1 so that we cannot decide whether the patient is healthy or sick, then we run the 3rd test and compute $P\left(A \mid I_{3}\right)$ and so on.

- In many situations, we have conditional independence of the events

$$
\begin{aligned}
P\left(I_{n} \mid A\right) & =P\left(T_{1} \cap T_{2} \cap \cdots \cap T_{n} \mid A\right)=\prod_{i=1}^{n} P\left(T_{i} \mid A\right), \\
P\left(I_{n} \mid A^{c}\right) & =P\left(T_{1} \cap T_{2} \cap \cdots \cap T_{n} \mid A^{c}\right)=\prod_{i=1}^{n} P\left(T_{i} \mid A^{c}\right) .
\end{aligned}
$$

- In this case, we can compute $P\left(A \mid I_{k}\right)$ as a function of $P\left(A \mid I_{k-1}\right)$.

Updating Information Sequentially

- We have

$$
P\left(A \mid I_{k}\right)=\frac{P\left(T_{k} \mid A\right) P\left(A \mid I_{k-1}\right)}{P\left(T_{k} \mid A\right) P\left(A \mid I_{k-1}\right)+P\left(T_{k} \mid A^{c}\right) P\left(A^{c} \mid I_{k-1}\right)} .
$$

- The proof follows from

$$
P\left(A \mid I_{k}\right)=\frac{P\left(I_{k} \mid A\right) P(A)}{P\left(I_{k} \mid A\right) P(A)+P\left(I_{k} \mid A^{c}\right) P\left(A^{c}\right)}
$$

where $P\left(I_{k} \mid A\right)=P\left(T_{k} \mid A\right) P\left(I_{k-1} \mid A\right)$ and
$P\left(I_{k} \mid A^{c}\right)=P\left(T_{k} \mid A^{c}\right) P\left(I_{k-1} \mid A^{c}\right)$. So we have

$$
\begin{aligned}
& P\left(A \mid I_{k}\right)=\frac{P\left(T_{k} \mid A\right) P\left(I_{k-1} \mid A\right) P(A)}{P\left(T_{k} \mid A\right) P\left(I_{k-1} \mid A\right) P(A)+P\left(T_{k} \mid A A^{c}\right) P\left(I_{k-1} \mid A^{c}\right) P\left(A^{c}\right)} \\
& =\frac{P\left(T_{k} \mid A A P\left(I_{k-1} \mid A\right) P(A) / P\left(I_{k-1}\right)\right.}{P\left(T_{k} \mid A\right) P\left(I_{k-1} \mid A\right) P(A) / P\left(I_{k-1}\right)+P\left(T_{k} \mid A^{c}\right) P\left(I_{k-1} \mid A^{c}\right) P\left(A^{c}\right) / P\left(I_{k-1}\right)}
\end{aligned}
$$

and the result follows.

Example: Conditional Independence and HIV Test

- Data from joint United Nation Programs on HIV/AIDS (2006): We have a test such that $P\left(T^{+} \mid H I V^{+}\right)=0.99$ (sensitivity) and $P\left(T^{-} \mid H I V^{-}\right)=0.99$ (specificity). The prevalence of HIV in East Asia is 0.001 . Given the first test is positive, event T_{1}^{+}, what is the probability of being HIV positive? The policy for a positive HIV test is a follow-up confirmatory test. Given the 2nd test is positive, event T_{2}^{+}, what is the proba of being HIV positive?
- Answer. We have

$$
\begin{aligned}
& P\left(H I V^{+} \mid T_{1}^{+}\right)=\frac{P\left(T_{1}^{+} \mid H I V^{+}\right) P\left(H I V^{+}\right)}{P\left(T_{1}^{+} \mid H I V^{+}\right) P\left(H I V^{+}\right)+P\left(T_{1}^{+} \mid H I V^{-}\right) P\left(H I V^{-}\right)} \\
& =\frac{0.99 \times 0.001}{0.99 \times 0.001+0.01 \times 0.999}=0.0901
\end{aligned}
$$

If the 2 nd test is positive, we need to compute

$$
P\left(H I V^{+} \mid T_{1}^{+} \cap T_{2}^{+}\right)=\frac{P\left(T_{1}^{+} \cap T_{2}^{+} \mid H I V^{+}\right) P\left(H I V^{+}\right)}{P\left(T_{1}^{+} \cap T_{2}^{+} \mid H I V^{+}\right) P\left(H I V^{+}\right)+P\left(T_{1}^{+} \cap T_{2}^{+} \mid H I V^{-}\right) P\left(H I V^{-}\right)}
$$

Example: Conditional Independence and HIV Test

- Given the information we have been given, we can only compute this proba if we assume that

$$
\begin{aligned}
P\left(T_{1}^{+} \cap T_{2}^{+} \mid H I V^{+}\right) & =P\left(T_{1}^{+} \mid H I V^{+}\right) P\left(T_{2}^{+} \mid H I V^{+}\right), \\
P\left(T_{1}^{+} \cap T_{2}^{+} \mid H I V^{-}\right) & =P\left(T_{1}^{+} \mid H I V^{-}\right) P\left(T_{2}^{+} \mid H I V^{-}\right)
\end{aligned}
$$

In this case we have

$$
P\left(H I V^{+} \mid T_{1}^{+} \cap T_{2}^{+}\right)=\frac{0.99 \times 0.99 \times 0.001}{0.99 \times 0.99 \times 0.001+0.01 \times 0.01 \times 0.999}=0.980
$$

- Alternatively, we can use the sequential updating rule

$$
\begin{aligned}
& P\left(H I V^{+} \mid T_{1}^{+} \cap T_{2}^{+}\right)=\frac{P\left(T_{2}^{+} \mid H I V^{+}\right) P\left(H I V^{+} \mid T_{1}^{+}\right)}{P\left(T_{2}^{+} \mid H I V^{+}\right) P\left(H I V^{+} \mid T_{1}^{+}\right)+P\left(T_{2}^{+} \mid H I V^{-}\right) P\left(H I V^{-} \mid T_{1}^{+}\right)} \\
& =\frac{0.99 \times 0.0901}{0.99 \times 0.0901+0.01 \times 0.020}=0.980
\end{aligned}
$$

