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Axioms of Probability

Consider an experiment with sample space S . For each event E , we
assume that a number P (E ), the probability of the event E , is
defined and satisfies the following 3 axioms.
Axiom 1

0 ≤ P (E ) ≤ 1
Axiom 2

P (S) = 1

Axiom 3. For any sequence of mutually exclusive events {Ei}i≥1, i.e.
Ei ∩ Ej = ∅ when i 6= j , then

P (∪∞
i=1Ei ) =

∞

∑
i=1
P (Ei )

Direct consequences include P (∅) = 0 and for mutually exclusive
events {Ei}i≥1

P (∪ni=1Ei ) =
n

∑
i=1
P (Ei ) .
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Examples

Example (coins): Assume both coins are unbiased; i.e. a head is as
likely to appear as a tail, then

P ({H,H}) = P ({H,T}) = P ({T ,H}) = P ({T ,T}) = 1
4
.

Example: A die is rolled and we assume
P ({1}) = P ({2}) = · · · = P ({6}) = 1/6. Hence as a consequence
from axiom 3, the probability of having an even or odd number is
equal to

P ({1, 3, 5}) = P ({1}) + P ({3}) + P ({5}) = 1/2,
P ({2, 4, 6}) = P ({2}) + P ({4}) + P ({6}) = 1/2.
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Properties

Proposition: P (E c ) = 1− P (E ) .
We have S = E ∪ E c and E ∩ E c = ∅ so

P (S) = 1︸ ︷︷ ︸
axiom 2

= P (E ∪ E c ) = P (E ) + P (E c )︸ ︷︷ ︸
axiom 3

.

Proposition: If E ⊂ F then P (E ) ≤ P (F ) .
We have F = E ∪ (E c ∩ F ) and E ∩ ((E c ∩ F )) = ∅ so

P (F ) = P (E ) + P (E c ∩ F )︸ ︷︷ ︸
≥0 by axiom 1

≥ P (E ) .

Proposition: We have P (E ∪ F ) = P (E ) + P (F )− P (E ∩ F ) .
We have E ∪ F = E ∪ (E c ∩ F ) and E ∩ ((E c ∩ F )) = ∅ so

P (E ∪ F ) = P (E ∪ (E c ∩ F )) = P (E ) + P (E c ∩ F )
but F = (E c ∩ F ) ∪ (E ∩ F ) with (E c ∩ F ) ∩ (E ∩ F ) = ∅ so

P (F ) = P (E c ∩ F )+P (E ∩ F )⇒ P (E c ∩ F ) = P (F )−P (E ∩ F ) .
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Example

You are in a restaurant and ordering 2 dishes. With proba 0.6, you
will like the first dish; with proba 0.4, you will like the second dish.
With proba 0.3, you will like both of them. What is the proba. you
will like neither dish?
Let Ai the event: "You like dish i”. Then the proba you like at least
one is

P (A1 ∪ A2) = P (A1)+P (A2)−P (A1 ∩ A2) = 0.6+ 0.4− 0.3 = 0.7.

The event that you like neither dish is the complement of liking at
least one, so

P (”you will like neither dish”) = P ((A1 ∪ A2)c )
= 1− P (A1 ∪ A2)
= 0.3
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Example

A die is thrown twice and the number on each throw is recorded.
Assuming the dice is fair, what is the probability of obtaining at least
one 6?

There are clearly 6 possible outcomes for the first throw and 6 for the
second throw. By the counting principle, there are 36 possible
outcomes for the two throws. Let Ai the event “I have obtained a 6
for throw i”. The probability we are interested in is

P (A1 ∪ A2) = P (A1) + P (A2)− P (A1 ∩ A2)

=
1
6
+
1
6
− 1
36

=
11
36
.
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Inclusion-Exclusion Identity

We have

P (E ∪ F ∪ G ) = P (E ) + P (F ) + P (G )
−P (E ∩ F )− P (E ∩ G )− P (F ∩ G ) + P (E ∩ F ∩ G ) .

Proof follows from E ∪ F ∪ G = (E ∪ F ) ∪ G so using
P (A∪ B) = P (A) + P (B)− P (A∩ B) where A = E ∪ F , B = G

P (E ∪ F ∪ G ) = P (E ∪ F ) + P (G )− P ((E ∪ F ) ∩ G )
= P (E ) + P (F )− P (E ∩ F ) + P (G )− P ((E ∪ F ) ∩ G ) .

Now we have (E ∪ F ) ∩ G = (E ∩ G ) ∪ (F ∩ G ) so

P ((E ∪ F ) ∩ G ) = P (E ∩ G ) +P (F ∩ G )−P ((E ∩ G ) ∩ (F ∩ G ))︸ ︷︷ ︸
=P (E∩F∩G )

and the result follows.
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General Inclusion-Exclusion Identity

We have

P (E1 ∪ E2 ∪ · · · ∪ En) =
n

∑
i=1
P (Ei )−

n

∑
i1<i2

P (Ei1 ∩ Ei2) + · · ·

+ (−1)r+1
n

∑
i1<i2<···<ir

P (Ei1 ∩ · · · ∩ Eir )

+ · · ·+ (−1)n+1 P (E1 ∩ · · · ∩ En)

=
n

∑
r=1
(−1)r+1

n

∑
i1<i2<···<ir

P (Ei1 ∩ · · · ∩ Eir )

This can be proven by induction.
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Example: Matching problem

You have n letters and n envelopes and randomly stuff the letters in
the envelopes. What is the probability that at least one letter will
match its intended envelope?
The sample space is the space of permutations of {1, 2, ..., n} and
thus has n! outcomes.
Let Ei =“letter i matches its intended envelope”. We are interested
in P (E1 ∪ E2 ∪ · · · ∪ En).
Consider the event Ei1 ∩ · · · ∩ Eir the event that each of the r letters
i1, ..., ir match their intended envelopes. There are
(n− r) (n− r − 1) · · · 1 such outcomes corresponding to the number
of ways the remaining r envelopes can be matched. Assuming all
outcomes equiprobable, we have

P (Ei1 ∩ · · · ∩ Eir ) =
(n− r) (n− r − 1) · · · 1

n!
=
(n− r)!
n!
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Example: Matching problem (cont.)

We want to compute

P (E1 ∪ E2 ∪ · · · ∪ En) =
n

∑
r=1
(−1)r+1

n

∑
i1<i2<···<ir

P (Ei1 ∩ · · · ∩ Eir )

We have
(
n
r

)
terms of the form P (Ei1 ∩ · · · ∩ Eir ). Moreover,(

n
r

)
P (Ei1 ∩ · · · ∩ Eir )︸ ︷︷ ︸

= (n−r )!
n!

=
1
r !
.

It follows that

P (E1 ∪ E2 ∪ · · · ∪ En) =
n

∑
r=1
(−1)r+1 1

r !

= 1− 1
2!
+
1
3!
− · · ·+ (−1)

n+1

n!
→
n→∞

1− e−1
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Sample Spaces with Equally Likely Outcomes

Assume S = {1, 2, ...,N} then it is often natural to assume
P ({i}) = 1/N so, for any event E ,

P (E ) =
# outcomes in E
# outcomes in S

.

Example: If 5 balls are “randomly drawn” from a bowl containing 10
white and 7 black balls, what is the probability that 3 of the balls are
white and the 2 other black?

Answer: There are
(
17
5

)
possible outcomes of the experiment

which are assumed equally likely. We have
(
10
3

)
ways to select 3

white balls among 10 and
(
7
2

)
ways to select 2 black balls among

7. So the probability is given by(
10
3

)(
7
2

)
/
(
17
5

)
= 0.4072
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Example: Lottery

In the 6/49 Lottery, there are 49 numbered balls, and 6 of these are
selected at random. What is the probability that exactly 3 of the 6
numbers we select are drawn? What is the probability of having at
least 3 numbers?
The number of possible draws (the number of different sets of 6

numbers) is
(
49
6

)
= 13, 983, 816. The number of possible draws

with exactly 3 “good”numbers is
(
6
3

)(
43
3

)
= 246, 820. So the

probability is 246, 820/13, 983, 816 ≈ 0.0177.
The number of possible draws with at least 3 “good”numbers is(
6
3

)(
43
3

)
+

(
6
4

)(
43
2

)
+

(
6
5

)(
43
1

)
+

(
6
6

)(
43
0

)
= 246, 820+ 13, 545+ 258+ 1 = 260, 624

So the probability is 260, 624/13, 983, 816 ≈ 0.0186.
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Example: Witness Identification

A line-up of 10 men is conducted in order that a witness can identify
3 suspects. Suppose that 3 people in the line-up actually committed
the crime in question. If the witness does not recognise any of the
suspects, but simply chooses three men at random, what is the
probability that the three guilty men are selected? What is the
probability that the witness selects three innocent men?

There are
(
10
3

)
= 120 ways to select 3 men out of ten. So there is

a probability 1
120 ≈ 0.0083 to pick the 3 guilty men randomly.

There are
(
7
3

)(
3
3

)
= 35 ways to pick 3 innocent men. So there

is a probability 35
120 ≈ 0.2917 to pick the 3 innocent men randomly.
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Historical Example: Chevalier de Méré, Fermat and Pascal

Example: Chevalier de Méré, who was a big gambler, realized
empirically that he could earn money by betting that, if you throw a
fair dice 4 times, at least one “6”would appear. What is the
probability of this event?
Answer: The complement event is to never obtain a “6”when you
throw the dice 4 times, this has a probability

( 5
6

)4
. Hence the

probability of interest is given by 1−
( 5
6

)4 ≈ 0.5177.
Example: Chevalier de Méré decided to extend this “trick” to two
dices and conjectured that he would still make a money by betting
that, if you throw two dices 24 times, at least one double “6”would
appear. He started losing money and asked Fermat and Pascal to
explain him why.
Answer: The complement event is to never obtain a double “6”
when you throw the dice 24 times, it has a probability

( 35
36

)24
. Hence

the probability of interest is given by 1−
( 35
36

)24 ≈ 0.4914.
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Example: Portable Music Player

Example: You are having 4,000 songs on your portable music player
and are using an option that picks the songs randomly (after each
song, it picks a new song, each with proba 1/4000). You then realize
that the 75th song played by your player is the same as the 30th (or
the 12th or whatever) you have listened to. Should you complain to
the manufacturer?

Answer: If the songs are picked randomly, then the probability of not
listening twice to the same song among the 75 first songs is

4000.3999 · · · · · (4000− 75+ 1)
400075

≈ 0.4975.

Your portable music player works just fine.
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Example: Birthday Problem

Example: If n people are present in a room, what is the probability
that at least two of them celebrate their birthday on the same day of
the year? (We assume that there are 365 days and proba of being
born a given day is 1/365).

Answer: The complementary event is that no two of them celebrate
their birthday on the same day which is given by

Pn =
365 · 364 · · · · · (365− n+ 1)

365n

so the probability is Pn = 1− Pn.
For n = 23, we have Pn ≥ 0.5 and for n = 70, we have Pn ≈ 0.9992.

This might appear suprising but there are
(
n
2

)
possible pairs of

people. For n = 23,
(
23
2

)
= 253 and for n = 70,

(
70
2

)
= 2415.

AD () Jan. 2010 16 / 24



Example: Three children with the same birthday

A recent news story in the UK featured a family whose three children
had all been born on the same day. But is this so remarkable?
The sample space is
S = ((i , j , k) ; i ∈ {1, ..., 365} , j ∈ {1, ..., 365} , j ∈ {1, ..., 365}) so
assuming each day is equally likely, the proba the three days coincides
is

365
365× 365× 365 ≈

7.5
1, 000, 000

,

this is quite small but much higher that winning at the lottery. [The
proba of the 3 birthdays being on a very specific day, e.g. Christmas,
is 1
365×365×365 ≈ 2.06.10−8]

There are 24,000,000 households in the UK, and 1,000,000 of them
are made up of a couple and 3 or more dependent children. Therefore
we would expect around 7 or 8 families in Britain to have three
children all born on the same day, and so this family is unlikely to be
unique in this country.
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Probability as a Continuous Set Function

A sequence of events {En}n≥1 is said to be increasing if
E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ En+1 ⊂ · · ·

and we define a new event, denoted lim
n→∞

En, by

lim
n→∞

En = ∪∞
i=1Ei

Similarly, {En}n≥1 is said to be decreasing if
E1 ⊃ E2 ⊃ · · · ⊃ En ⊃ En+1 ⊃ · · ·

and we define a new event, denoted lim
n→∞

En, by

lim
n→∞

En = ∩∞
i=1Ei

Proposition: If {En}n≥1 is either an increasing or decreasing
sequence of events, then

lim
n→∞

P (En) = P
(
lim
n→∞

En
)
.
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Proof

We prove it for a sequence of increasing events. The idea is to use
Axiom 3 to establish the result.

We have as {En}n≥1 is increasing

∪ni=1Ei = En

and we have the following “donuts”decomposition

En = ∪ni=1Fi

with
F1 = E1 and Fn = En ∩ E cn−1.

It is easy to check that

Fi ∩ Fj = ∅ and ∪ni=1 Ei = ∪ni=1Fi for all n ≥ 1
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Proof (cont.)

We have

P (∪∞
i=1Ei ) = P (∪∞

i=1Fi ) =
∞

∑
i=1
P (Fi ) (axiom 3)

= lim
n→∞

n

∑
i=1
P (Fi )

= lim
n→∞

P(∪ni=1Fi )︸ ︷︷ ︸
=∪ni=1Ei

= lim
n→∞

P (En)

For decreasing events {En}n≥1, use the fact that {E cn }n≥1 is
increasing.
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Example: A Paradox

You possess an infinitely large urn and an infinite collection of balls
labelled number 1,2,3 etc. At time 0, balls 1 to 10 are placed in the
urn and ball 10 withdrawn. After 1/2 minute, balls 11 to 20 are
placed in the urn and ball 20 withdrawn. After one more 1/4 minute,
balls 21 to 30 are places in the urn and ball 30 withdrawn etc. How
many balls do we have in the urn after one minute?
We clearly have an infinite number as, at time

1
2
+ ...+

1
2n

we have 9 (n+ 1) balls after the n+ 1th withdrawal; i.e. balls 1 to 9,
11 to 19,..., 10n+ 1 to 10n+ 9.
We now change the experiment so that at time 0, balls 1 to 10 are
placed in the urn and ball 1 is withdrawn. After 1/2 minute, balls 11
to 20 are placed in the urn and ball 2 withdrawn. After 1/4 more
minute, balls 21 to 30 are places in the urn and ball 3 withdrawn etc.
How many balls do we have in the urn after one minute?
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Example: A Paradox (cont.)

The urn is empty as ball number n is removed at time 0 for n = 1
and time

1
2
+ ...+

1
2n−1

< 1 for n > 1.

Consider now the case where, whenever a ball is to be withdrawn,
that ball is randomly selected from among those present; i.e. at time
0 balls 1 to 10 are placed in the urn and one is randomly selected and
withdrawn, and so on. How many balls will you have in the urn after
one minute?
Consider ball number 1. Define En the event that this ball is still in
the urn after n withdrawals. We have

P (En) =
9 · 18 · 27 · · · · · 9n

10 · 19 · 28 · · · · · (9n+ 1) =
n

∏
i=1

9i
9i + 1

Being in the urn at time 1 is the event ∩∞
i=1Ei and {Ei}i≥1 is

increasing so P (∩∞
i=1Ei ) = lim

n→∞
P (En) .
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Example: A Paradox (cont.)

We have

1
P (En)

=
n

∏
i=1

(
1+

1
9i

)
≥ 1
9
+
1
18
+ · · ·+ 1

9n
→
n→∞

∞

so
P (∩∞

i=1Ei ) = 0.

This reasoning can be extended to any ball number k. Define
p (k) the positive integer such that k = 10 p (k) + d (k) where
0 ≤ d (k) ≤ 9 and define En the event that ball k is still in the urn
after n (n ≥ p (k) + 1) withdrawals then similarly

P (En) =
n

∏
i=p(k )+1

9i
9i + 1

→
n→∞

∞

Hence, the urn will be empty at time 1.
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Interpretation of Probability

Consider an event E of the sample space S . Assume you replicate the
experiment n times, then it is tempting to define “practically”

P (E ) = lim
n→∞

n (E )
n

where n (E ) is the number of times the event E occurred in the n
experiments.
This is known as the frequentist approach: you should repeat an
infinite number of times an experiment and the probabilities
corresponds to the limiting frequencies.
Problem. How do you attribute a probability to the following event
“There will be a major earthquake in Tokyo on the 27th April 2013”?
In many scenarios, probabilities are measures of the individual’s
degree of belief: this is subjective.
This does not have any impact on the mathematical “machinery”as
long as you define the axioms 1,2 and 3 are satisfied.
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