Lecture Stat 302 Introduction to Probability - Slides 3

AD

Jan. 2010

Sample Space

- **Definition**. The sample space S of an experiment (whose outcome is uncertain) is the set of all possible outcomes of the experiment.
- *Example* (child): Determining the sex of a newborn child in which case *S* = {*boy*, *girl*}.
- *Example* (horse race): Assume you have an horse race with 12 horses. If the experiment is the order of finish in a race, then

 $S = \{ all \ 12! \text{ permutations of } (1, 2, 3, ..., 11, 12) \}.$

• *Example* (coins): If the experiment consists of flipping two coins, then the sample space is

$$S = \{(H, H), (H, T), (T, H), (T, T)\}.$$

Example (lifetime): If the experiment consists of measuring the lifetime (in years) of your pet then the sample space consists of all nonnegative real numbers: S = {x; 0 ≤ x < ∞}.

Events

- Any *subset E* of the sample space S is known as an *event*; i.e. an event is a set consisting of possible outcomes of the experiment.
- If the outcome of the experiment is in *E*, then we say that *E* has occurred.
- *Example* (child): The event $E = \{boy\}$ is the event that the child is a boy.
- Example (horse race): The event
 E = {all outcomes in S starting with a 7} is the event that the race was won by horse 7.
- Example (coins): The event $E = \{(H, T), (T, T)\}$ is the event that a tail appears on the second coin.
- Example (lifetime): The event $E = \{x : 3 \le x \le 5.5\}$ is the event that your pet will live more than 3 years but won't live more than 5 years and 6 months.

Union of Events

- Given events E and F, E ∪ F is the set of all outcomes either in E or F or in both E and F. E ∪ F occurs if either E or F occurs. E ∪ F is the union of events E and F
- Example (coins): If we have $E = \{(H, T)\}$ and $F = \{(T, H)\}$ then $E \cup F = \{(H, T), (T, H)\}$ is the event that one coin is head and the other is tail.
- Example (horse race): If we have
 E = {all outcomes in S starting with a 7} and
 F = {all outcomes in S finishing with a 3} then E ∪ F is the event that the race was won by horse 7 or/and the last horse was horse 3.
- Example (lifetime): If $E = \{x : 0 \le x \le 5\}$ and $F = \{x : 10 \le x < \infty\}$ then $E \cup F$ is the event that your pet will die before 5 or will die after 10.
- If {E_i}_{i≥1} are events then the union is denoted ∪[∞]_{i=1}E_i: it is the event which consists of all the outcomes in {E_i}_{i>1}.

Intersection of Events

- Given events E and F, E ∩ F is the set of all outcomes which are both in E and F. E ∩ F is also denoted EF.
- Example (coins): If we have E = {(H, H), (H, T), (T, H} (event that one H at least occurs) and F = {(H, T), (T, H), (T, T)} (even that one T at least occurs) then E ∩ F = {(H, T), (T, H)} is the event that one H and one T occur.
- Example (horse race): If we have
 - $E = \{$ all outcomes in S starting with a 7 $\}$ and
 - $F = \{ all outcomes in S starting with a 8 \}$ then $E \cap F$ does not contain any outcome and is denoted by \emptyset .
- *Example* (lifetime): If we have $E = \{x : 0 \le x \le 5\}$ and $F = \{x : 3 \le x < 7\}$ then $E \cap F = \{x : 3 \le x \le 5\}$ is the event that your pet will die between 3 and 5.
- If {E_i}_{i≥1} are events then the intersection is denoted ∩[∞]_{i=1}E_i: it is the event which consists of the outcomes which are in all of the events {E_i}_{i≥1}.

Notation and Properties

- For any event E, E^c denote the complement set of all outcomes in S which are not in E. Hence we have E ∪ E^c = S and E ∩ E^c = Ø.
- For any two events E and F, we write E ⊂ F is all the outcomes of E are in F.
- "Algebra"
 - Commutative laws

$$E \cup F = F \cup E$$
 and $E \cap F = F \cap E$.

Associative laws

$$(E \cup F) \cup G = E \cup (F \cup G),$$

$$(E \cap F) \cap G = E \cap (F \cap G).$$

• Distributive laws

$$(E \cup F) \cap G = (E \cap G) \cup (F \cap G), (E \cap F) \cup G = (E \cup G) \cap (F \cup G).$$

DeMorgan's Laws

We have

$$(\bigcup_{i=1}^{n} E_i)^c = \bigcap_{i=1}^{n} E_i^c$$
$$(\bigcap_{i=1}^{n} E_i)^c = \bigcup_{i=1}^{n} E_i^c$$

Proof: Suppose x is an outcome of (∪_{i=1}ⁿE_i)^c, then x is not in (∪_{i=1}ⁿE_i). Thus it is not in any of the event E_i, i = 1, ..., n. Hence it is in E_i^c for all i = 1, ..., n. Hence this proves (∪_{i=1}ⁿE_i)^c ⊂ ∩_{i=1}ⁿE_i^c. Suppose x is an outcome of ∩_{i=1}ⁿE_i^c, hence it is in E_i^c for all i = 1, ..., n. Hence it is in none of the event E_i, i = 1, ..., n. Thus it is (∪_{i=1}ⁿE_i)^c and we have proven that ∩_{i=1}ⁿE_i^c ⊂ (∪_{i=1}ⁿE_i)^c. The result (∪_{i=1}ⁿE_i)^c = ∩_{i=1}ⁿE_i^c follows.

• To prove $\left(\cap_{i=1}^n E_i \right)^c = \cup_{i=1}^n E_i^c$, we remark that

$$\underbrace{\left(\bigcup_{i=1}^{n}E_{i}^{c}\right)^{c}}_{i=1}=\bigcap_{i=1}^{n}\left(E_{i}^{c}\right)^{c}_{i=1}=\bigcap_{i=1}^{n}E_{i}\text{ as }\left(E_{i}^{c}\right)^{c}=E_{i}.$$

previous result applied to events $\left\{E_i^c\right\}$

Thus by taking the complement on both sides, we obtain the result.

Axioms of Probability

- Consider an experiment with sample space S. For each event E, we assume that a number P(E), the *probability* of the event E, is defined and satisfies the following 3 axioms.
- Axiom 1

$$0 \leq P(E) \leq 1$$

Axiom 2

$$P(S) = 1$$

• Axiom 3. For any sequence of mutually exclusive events $\{E_i\}_{i\geq 1}$, i.e. $E_i \cap E_j = \emptyset$ when $i \neq j$, then

$$P\left(\cup_{i=1}^{\infty}E_{i}\right)=\sum_{i=1}^{\infty}P\left(E_{i}\right)$$

• Direct consequences include $P(\emptyset) = 0$ and for mutually exclusive events $\{E_i\}_{i \ge 1}$

$$P\left(\cup_{i=1}^{n}E_{i}\right)=\sum_{i=1}^{n}P\left(E_{i}\right).$$