Lecture Stat 302
 Introduction to Probability - Slides 3

AD

Jan. 2010

Sample Space

- Definition. The sample space S of an experiment (whose outcome is uncertain) is the set of all possible outcomes of the experiment.
- Example (child): Determining the sex of a newborn child in which case $S=\{$ boy, girl $\}$.
- Example (horse race): Assume you have an horse race with 12 horses. If the experiment is the order of finish in a race, then

$$
S=\{\text { all } 12!\text { permutations of }(1,2,3, \ldots, 11,12)\}
$$

- Example (coins): If the experiment consists of flipping two coins, then the sample space is

$$
S=\{(H, H),(H, T),(T, H),(T, T)\}
$$

- Example (lifetime): If the experiment consists of measuring the lifetime (in years) of your pet then the sample space consists of all nonnegative real numbers: $S=\{x ; 0 \leq x<\infty\}$.

Events

- Any subset E of the sample space S is known as an event; i.e. an event is a set consisting of possible outcomes of the experiment.
- If the outcome of the experiment is in E, then we say that E has occurred.
- Example (child): The event $E=\{$ boy $\}$ is the event that the child is a boy.
- Example (horse race): The event $E=\{$ all outcomes in S starting with a 7$\}$ is the event that the race was won by horse 7.
- Example (coins): The event $E=\{(H, T),(T, T)\}$ is the event that a tail appears on the second coin.
- Example (lifetime): The event $E=\{x: 3 \leq x \leq 5.5\}$ is the event that your pet will live more than 3 years but won't live more than 5 years and 6 months.

Union of Events

- Given events E and $F, E \cup F$ is the set of all outcomes either in E or F or in both E and F. $E \cup F$ occurs if either E or F occurs. $E \cup F$ is the union of events E and F
- Example (coins): If we have $E=\{(H, T)\}$ and $F=\{(T, H)\}$ then $E \cup F=\{(H, T),(T, H)\}$ is the event that one coin is head and the other is tail.
- Example (horse race): If we have $E=\{$ all outcomes in S starting with a 7$\}$ and $F=\{$ all outcomes in S finishing with a 3$\}$ then $E \cup F$ is the event that the race was won by horse 7 or/and the last horse was horse 3 .
- Example (lifetime): If $E=\{x: 0 \leq x \leq 5\}$ and $F=\{x: 10 \leq x<\infty\}$ then $E \cup F$ is the event that your pet will die before 5 or will die after 10 .
- If $\left\{E_{i}\right\}_{i \geq 1}$ are events then the union is denoted $\cup_{i=1}^{\infty} E_{i}$: it is the event which consists of all the outcomes in $\left\{E_{i}\right\}_{i \geq 1}$.

Intersection of Events

- Given events E and $F, E \cap F$ is the set of all outcomes which are both in E and F. $E \cap F$ is also denoted $E F$.
- Example (coins): If we have $E=\{(H, H),(H, T),(T, H\}$ (event that one H at least occurs) and $F=\{(H, T),(T, H),(T, T)\}$ (even that one T at least occurs) then $E \cap F=\{(H, T),(T, H)\}$ is the event that one H and one T occur.
- Example (horse race): If we have
$E=\{$ all outcomes in S starting with a 7$\}$ and
$F=\{$ all outcomes in S starting with a 8$\}$ then $E \cap F$ does not contain any outcome and is denoted by \varnothing.
- Example (lifetime): If we have $E=\{x: 0 \leq x \leq 5\}$ and $F=\{x: 3 \leq x<7\}$ then $E \cap F=\{x: 3 \leq x \leq 5\}$ is the event that your pet will die between 3 and 5 .
- If $\left\{E_{i}\right\}_{i \geq 1}$ are events then the intersection is denoted $\cap_{i=1}^{\infty} E_{i}$: it is the event which consists of the outcomes which are in all of the events $\left\{E_{i}\right\}_{i \geq 1}$.

Notation and Properties

- For any event E, E^{c} denote the complement set of all outcomes in S which are not in E. Hence we have $E \cup E^{c}=S$ and $E \cap E^{c}=\varnothing$.
- For any two events E and F, we write $E \subset F$ is all the outcomes of E are in F.
- "Algebra"
- Commutative laws

$$
E \cup F=F \cup E \text { and } E \cap F=F \cap E .
$$

- Associative laws

$$
\begin{aligned}
& (E \cup F) \cup G=E \cup(F \cup G), \\
& (E \cap F) \cap G=E \cap(F \cap G) .
\end{aligned}
$$

- Distributive laws

$$
\begin{aligned}
(E \cup F) \cap G & =(E \cap G) \cup(F \cap G), \\
(E \cap F) \cup G & =(E \cup G) \cap(F \cup G) .
\end{aligned}
$$

DeMorgan's Laws

- We have

$$
\begin{aligned}
\left(\cup_{i=1}^{n} E_{i}\right)^{c} & =\cap_{i=1}^{n} E_{i}^{c} \\
\left(\cap_{i=1}^{n} E_{i}\right)^{c} & =\cup_{i=1}^{n} E_{i}^{c}
\end{aligned}
$$

- Proof: Suppose x is an outcome of $\left(\cup_{i=1}^{n} E_{i}\right)^{c}$, then x is not in $\left(\cup_{i=1}^{n} E_{i}\right)$. Thus it is not in any of the event $E_{i}, i=1, \ldots, n$. Hence it is in E_{i}^{c} for all $i=1, \ldots, n$. Hence this proves $\left(\cup_{i=1}^{n} E_{i}\right)^{c} \subset \cap_{i=1}^{n} E_{i}^{c}$.
Suppose x is an outcome of $\cap i=1, E_{i}^{c}$, hence it is in E_{i}^{c} for all
$i=1, \ldots, n$. Hence it is in none of the event $E_{i}, i=1, \ldots, n$. Thus it is $\left(\cup_{i=1}^{n} E_{i}\right)^{c}$ and we have proven that $\cap_{i=1}^{n} E_{i}^{c} \subset\left(\cup_{i=1}^{n} E_{i}\right)^{c}$. The result $\left(\cup_{i=1}^{n} E_{i}\right)^{c}=\cap_{i=1}^{n} E_{i}^{c}$ follows.
- To prove $\left(\cap_{i=1}^{n} E_{i}\right)^{c}=\cup_{i=1}^{n} E_{i}^{c}$, we remark that

$$
\underbrace{\left(\cup_{i=1}^{n} E_{i}^{c}\right)^{c}=\cap_{i=1}^{n}\left(E_{i}^{c}\right)^{c}}_{\text {previous result applied to events }\left\{E_{i}^{c}\right\}}=\cap_{i=1}^{n} E_{i} \text { as }\left(E_{i}^{c}\right)^{c}=E_{i} .
$$

Thus by taking the complement on both sides, we obtain the result.

Axioms of Probability

- Consider an experiment with sample space S. For each event E, we assume that a number $P(E)$, the probability of the event E, is defined and satisfies the following 3 axioms.
- Axiom 1

$$
0 \leq P(E) \leq 1
$$

- Axiom 2

$$
P(S)=1
$$

- Axiom 3. For any sequence of mutually exclusive events $\left\{E_{i}\right\}_{i \geq 1}$, i.e. $E_{i} \cap E_{j}=\varnothing$ when $i \neq j$, then

$$
P\left(\cup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right)
$$

- Direct consequences include $P(\varnothing)=0$ and for mutually exclusive events $\left\{E_{i}\right\}_{i \geq 1}$

$$
P\left(\cup_{i=1}^{n} E_{i}\right)=\sum_{i=1}^{n} P\left(E_{i}\right)
$$

