Lecture Stat 302
 Introduction to Probability - Slides 23

AD

April 2010

Exercise 1

- Alf and Beth are two UBC students. They must take 4 300-level courses from a list of 12 possibilities. If they select their courses independently and at random, what is the probability that they will have exactly two courses in common?
- Each student has $\binom{12}{4}$ possible choices. So the total number of choices for both students is $A=\binom{12}{4}^{2}=495^{2}$. The number of choices such that exactly 2 courses are in common is given by

$$
B=\binom{12}{2} \times\binom{ 10}{2} \times\binom{ 8}{2}=83160
$$

so the probability is

$$
P=\frac{B}{A}=0.3394
$$

Exercise 2

- Suppose that 10% of the children are left-handed.
- (a) In a class of 20 children, what is the probability that at least two are left-handed?
- (b) Suppose a school has 10 classes of 20 children. If you check the classes one by one, what is the probability that the first left-handed child will be found in the fourth class?

Exercise 2

- (a) Let X denote the number of left-handed children in a class of 20 children. X follow a binomial distribution of parameter $n=20$, $p=0.1$ so

$$
\begin{aligned}
P(X \geq 2) & =1-P(X=0)-P(X=1) \\
& =1-(1-p)^{20}-\binom{20}{1}(1-p)^{19} p \\
& =0.6083
\end{aligned}
$$

- (b) Let α be the probability that there is at least one left-handed child in a class of 20, then

$$
\alpha=P(X>0)=1-(1-p)^{20}=0.8784
$$

Let Y denote the number of classes you need to check to find a left-handed child, Y follows a geometric distribution of parameter α so

$$
P(Y=4)=(1-\alpha)^{3} \alpha=0.0016
$$

Exercise 3

- To estimate the number of trout in a lake, we caught 50 trout, tagged them and released them back in the lake. Later, we caught 40 trout and found out that 4 of them were tagged. From this experiment, estimate N, the number of trout in the lake. (Hint: Let p_{N} be the probability that, in a lake with N trout, exactly 4 of the 50 trout caught are tagged. Find the value of N that maximizes p_{N}).
- Let X the number of trout recaptured, then X follows an hypergeometric distribution of parameters $N, m=50$ and $n=40$.
We have

$$
P(X=4)=p_{N}=\frac{\binom{50}{4}\binom{N-50}{36}}{\binom{N}{40}}
$$

- This proba is maximized with respect to N at the point $\widehat{N} \approx m n / 4=500$. (see book and lecture)

Exercise 4

- In answering a multiple choice exam question, a student either knows the correct answer or randomly pick 1 of m alternatives. Let p be the probability that the student knows the answer. If the student gets the correct answer, what is the probability that the student actually knew the answer?
- Let $A=$ "know correct answer" and $B=$ "give correct answer". We are interested in

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

where

$$
P(B)=P\left(B \mid A^{c}\right) P\left(A^{c}\right)+P(B \mid A) P(A)
$$

- We have $P(A)=1-P\left(A^{c}\right)=p, P(B \mid A)=1$ and $P\left(B \mid A^{c}\right)=\frac{1}{m}$ so

$$
P(A \mid B)=\frac{p}{p+(1-p) / m} .
$$

Exercise 5

- Let X denote the random lifetime of a TV (in years) and assume that the density takes the form

$$
f_{X}(x)= \begin{cases}\frac{1}{2} \exp (-x / 2) & \text { for } x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

- (a) Calculate the proba that exactly 3 out of 4 TVs last more than 4 years.
- (b) Use both the change of variables formula AND the method of the distribution function to find the density of $Y=\sqrt{X}$.

Exercise 5

- (a) We have for a random lifetime X

$$
\begin{aligned}
P(X>4) & =\int_{4}^{\infty} f_{X}(x) d x=\frac{1}{2} \int_{4}^{\infty} \exp (-x / 2) d x \\
& =\exp (-2)=0.1353
\end{aligned}
$$

- We want the proba that exactly 3 out of 4 last more than 4 years which is

$$
\begin{aligned}
P & =\binom{4}{3}[P(X>4)]^{3}[P(X<4)] \\
& =0.0086
\end{aligned}
$$

Exercise 5

- (b) You can use the generic formula for $Y=g(X)$ where g is monotonic

$$
f_{Y}(y)=f_{X}\left(g^{-1}(y)\right)\left|\frac{d x}{d y}\right|_{x=g^{-1}(y)}=f_{X}\left(g^{-1}(y)\right) \frac{1}{g^{\prime}\left(g^{-1}(y)\right)}
$$

where $y=g(x)=\sqrt{x}$ and $x=g^{-1}(y)=y^{2}$ so $g^{\prime}\left(g^{-1}(y)\right)=\frac{1}{2 y}$ and

$$
f_{Y}(y)=2 y f_{X}\left(y^{2}\right)
$$

- If we use the cdf, we have for $y \geq 0$

$$
\begin{aligned}
P(Y \leq y) & =P(\sqrt{X} \leq y)=P\left(X \leq y^{2}\right) \\
& =F_{X}\left(y^{2}\right)
\end{aligned}
$$

so by the chain's rule

$$
f_{Y}(y)=2 y f_{X}\left(y^{2}\right)
$$

Exercise 6

- Consider an exponential r.v. X of parameter λ; i.e. $f(x)=\lambda \exp (-\lambda x)$ for $x \geq 0$.
- (a) Compute $P(X \leq x \mid X \geq t)$ for $x, t \geq 0$.
- (b) Differentiate $P(X \leq x \mid X \geq t)$ w.r.t. to $x f$ to obtain the conditional pdf $f_{X \mid X \geq t}(x)$.

Exercise 6

- (a) We have $P(X \leq x \mid X \geq t)=0$ if $x \leq t$ and for $x \geq t \geq 0$

$$
P(X \leq x \mid X \geq t)=\frac{P(X \leq x \cap X \geq t)}{P(X \geq t)}=\frac{P(t \leq X \leq x)}{P(X \geq t)}
$$

where

$$
\begin{aligned}
P(t \leq X \leq x) & =\int_{t}^{x} \lambda \exp (-\lambda u) d u=\exp (-\lambda t)-\exp (-\lambda x) \\
P(X \geq t) & =\int_{t}^{\infty} \lambda \exp (-\lambda u) d u=\exp (-\lambda t)
\end{aligned}
$$

It follows that

$$
P(X \leq x \mid X \geq t)=\frac{\exp (-\lambda t)-\exp (-\lambda x)}{\exp (-\lambda t)}=1-\exp (-\lambda(x-t))
$$

- (b) By differentiation

$$
f_{X \mid X \geq t}(x)=\lambda \exp (-\lambda(x-t))
$$

Hence $X-t$ is an exponential density of parameter λ, this is called the memoryless property of exponential.

Exercise 7

- The duration of a certain computer game is a random variable with an exponential distribution with mean 10 minutes. Suppose that when you enter a video arcade two players have just started playing the game (independently).
- (a) What is the probability that at least one of them is still playing 20 minutes later?
- (b) If we denote T_{i} the duration of the game of player $i(i=1,2)$, what is the pdf of $T=\max \left(T_{1}, T_{2}\right)$? (Hint: compute first the cdf of $T)$.

Exercise 7

- (a) T_{1} and T_{2} are independent exponential r.v. of parameter $\lambda=1 / 20$ and we are interested in computing

$$
\begin{aligned}
& P\left(\left\{T_{1}>20\right\} \cup\left\{T_{2}>20\right\}\right) \\
= & P\left(T_{1}>20\right)+P\left(T_{2}>20\right)-P\left(\left\{T_{1}>20\right\} \cap\left\{T_{2}>20\right\}\right) \\
= & P\left(T_{1}>20\right)+P\left(T_{2}>20\right)-P\left(T_{1}>20\right) P\left(T_{2}>20\right)
\end{aligned}
$$

- We have

$$
\begin{aligned}
P\left(T_{1}>20\right) & =P\left(T_{2}>20\right)=\frac{1}{10} \int_{20}^{\infty} \exp (-t / 10) d t \\
& =\exp (-2)=0.1353
\end{aligned}
$$

so

$$
P\left(\left\{T_{1}>20\right\} \cup\left\{T_{2}>20\right\}\right)=0.2524
$$

Exercise 7

- (b) As suggested by the hint, we first compute the cdf of $T=\max \left(T_{1}, T_{2}\right)$

$$
\begin{aligned}
\operatorname{Pr}(T \leq t) & =\operatorname{Pr}\left(\max \left(T_{1}, T_{2}\right) \leq t\right)=\operatorname{Pr}\left(T_{1} \leq t \cap T_{2} \leq t\right) \\
& =\operatorname{Pr}\left(T_{1} \leq t\right) \operatorname{Pr}\left(T_{2} \leq t\right) \text { (independence) }
\end{aligned}
$$

where

$$
\operatorname{Pr}\left(T_{1} \leq t\right)=\frac{1}{10} \int_{0}^{t} \exp (-u / 10) d u=1-\exp (-t / 10)
$$

- Hence we obtain

$$
\operatorname{Pr}(T \leq t)=[1-\exp (-t / 10)]^{2}
$$

and the pdf is obtained by differentiating the cdf

$$
f_{T}(t)=\frac{1}{5} \exp (-t / 10)(1-\exp (-t / 10))
$$

Exercise 8

- Two contractors, A and B, bid independently on a job. The contract will go to the lowest bidder. A's bid is a random number X selected with an uniform distribution on the interval $[0,1]$, while B 's bid Y has probability density $f_{Y}(y)=2 y$ for $0<y<1$ and $f_{Y}(y)=0$ otherwise.
- (a) What is the joint pdf of X and Y ?
- (b) What is the probability that A will win the contract, i.e. that $X<Y$?
- (c) What is the expected value of the winning bid $E[\min (X, Y)]$? (Hint: $\min (X, Y)=X$ for $X<Y$ and Y if $Y<X$).

Exercise 8

- (a) We have

$$
f(x, y)=f_{X}(x) f_{Y}(y)= \begin{cases}1 \cdot 2 y=2 y & \text { for } 0<x<1,0<y<1 \\ 0 & \text { otherwise }\end{cases}
$$

- (b) We have

$$
\begin{aligned}
\operatorname{Pr}(X<Y) & =\iint_{\{x, y: x<y\}} f(x, y) d x d y \\
& =\int_{0}^{1}\left(\int_{0}^{y} f(x, y) d x\right) d y=2 \int_{0}^{1} y^{2} d y=\frac{2}{3}
\end{aligned}
$$

Exercise 8

- (c) We have

$$
\begin{aligned}
& E[\min (X, Y)]=\iint \min (x, y) \cdot f(x, y) d x d y \\
& =\iint_{\{x, y: x<y\}} x \cdot f(x, y) d x d y+\iint_{\{x, y: x>y\}} y \cdot f(x, y) d x d y \\
& =\int_{0}^{1}\left(\int_{0}^{y} x \cdot f(x, y) d x\right) d y+\int_{0}^{1}\left(\int_{0}^{x} y \cdot f(x, y) d y\right) d x
\end{aligned}
$$

- Now

$$
\int_{0}^{1}\left(\int_{0}^{y} x \cdot f(x, y) d x\right) d y=\int_{0}^{1} y^{3} d y=\frac{1}{4}
$$

and

$$
\int_{0}^{1}\left(\int_{0}^{x} y \cdot f(x, y) d y\right) d x=\frac{2}{3} \int_{0}^{1} x^{3} d x=\frac{2}{12}=\frac{1}{6}
$$

so

$$
E[\min (X, Y)]=\frac{1}{4}+\frac{1}{6}
$$

