Lecture Stat 302
 Introduction to Probability - Slides 22

AD

April 2010

Characterizing Joint Distributions/Densities: Covariance

- Consider two r.v. X and Y (either discrete or continuous), then the covariance of (X, Y) is defined as

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E((X-E(X))(Y-E(Y))) \\
& =E(X Y)-E(X) E(Y)
\end{aligned}
$$

- The covariance measures the degree to which X and Y vary together. If the covariance is positive, X tends to be larger than its mean when Y is larger than its mean. The covariance of a variable with itself is the variance of that variable.

Independent Variables and Covariance

- If X and Y are two independent r.v. then

$$
\operatorname{Cov}(X, Y)=0
$$

- Proof. We are going to show that $E(X Y)=E(X) E(Y)$ if X and Y are independent

$$
\begin{aligned}
E(X Y) & =\iint x y \cdot f(x, y) d x d y \\
& =\iint x y \cdot f_{X}(x) f_{Y}(y) d x d y \text { (independence) } \\
& =\left[\int x \cdot f_{X}(x) d x\right]\left[\int y \cdot f_{Y}(y) d y\right] \\
& =E(X) E(Y)
\end{aligned}
$$

Example: Two Stocks

- Let X and Y denote the values of two stocks at the end of a five-year period. X is uniformly distributed on $(0,12)$. Given $X=x, Y$ is uniformly distributed on the interval $(0, x)$. Determine $\operatorname{Cov}(X, Y)$.
- We have for $0<x<12$ and $0<y<x$

$$
f(x, y)=f_{X}(x) f_{Y \mid X}(y \mid x)=\frac{1}{12} \frac{1}{x}
$$

SO

$$
\begin{aligned}
E(X) & =\int_{0}^{12} x \cdot \frac{1}{12} d x=6 \\
E(Y) & =\int_{0}^{12} \int_{0}^{x} y \cdot \frac{1}{12} \frac{1}{x} d y d x=3 \\
E(X Y) & =\int_{0}^{12} \int_{0}^{x} x y \cdot \frac{1}{12} \frac{1}{x} d y d x=24
\end{aligned}
$$

Hence we have

$$
\operatorname{Cov}(X, Y)=24-3 \times 6=6
$$

Sum of Random Variables

- Consider two random variables X and Y with variances σ_{x}^{2} and σ_{y}^{2} respectively. Let $Z=X+Y$ then

$$
\operatorname{Var}(Z)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)
$$

- Proof. We have $\operatorname{Var}(Z)=E\left(Z^{2}\right)-E(Z)^{2}$ where

$$
E\left(Z^{2}\right)=E\left((X+Y)^{2}\right)=E\left(X^{2}\right)+E\left(Y^{2}\right)+2 E(X Y)
$$

and

$$
\begin{aligned}
E(Z)^{2} & =(E(X)+E(Y))^{2} \\
& =E\left(X^{2}\right)+E\left(Y^{2}\right)+2 E(X) E(Y)
\end{aligned}
$$

and the result follows directly.

Example: Spreading your risk optimally

- You have 2 financial products whose returns can be modelled by the r.v. X and Y such that $E(X)=E(Y)=\mu, \operatorname{Var}(X)=\sigma_{X}^{2}$, $\operatorname{Var}(Y)=\sigma_{y}^{2}$ and $\operatorname{Cov}(X, Y)=\sigma_{x y}$. (These two products are equally priced). You want to buy a proportion λ of product 1 and $(1-\lambda)$ of product 2 where $\lambda \in[0,1]$ to spread the risk.
- (a) What is the expectation of the total return $Z=\lambda X+(1-\lambda) Y$?
- (b) What is the variance of the total return?
- (c) How should you select λ to minimize this variance?
- (d) What is the minimum variance of the return if X and Y are independent?

Example: Minimizing the Variance of Your Return

- (a) The total return is given by $Z=\lambda X+(1-\lambda) Y$ so

$$
E(Z)=\lambda E(X)+(1-\lambda) E(Y)=\mu
$$

- (b) We have

$$
\begin{aligned}
\operatorname{Var}(Z) & =\lambda^{2} \sigma_{x}^{2}+(1-\lambda)^{2} \sigma_{y}^{2}+2 \lambda(1-\lambda) \sigma_{x y} \\
& =\lambda^{2}\left(\sigma_{x}^{2}+\sigma_{y}^{2}-2 \sigma_{x y}\right)+2 \lambda\left(\sigma_{x y}-\sigma_{y}^{2}\right)+\sigma_{y}^{2}
\end{aligned}
$$

- (c) We just differentiate $\operatorname{Var}(Z)$ w.r.t. λ and obtain

$$
\lambda_{\mathrm{opt}}=\frac{\sigma_{y}^{2}-\sigma_{x y}}{\sigma_{x}^{2}+\sigma_{y}^{2}-2 \sigma_{x y}}
$$

- (d) For X, Y independent, we have $\sigma_{x y}=0$ so $\lambda_{\text {opt }}=\sigma_{y}^{2} /\left(\sigma_{x}^{2}+\sigma_{y}^{2}\right)$

$$
\begin{aligned}
& \operatorname{Var}(Z)=\frac{\sigma_{y}^{4}}{\left(\sigma_{x}^{2}+\sigma_{y}^{2}\right)^{2}} \sigma_{x}^{2}+\frac{\sigma_{x}^{4}}{\left(\sigma_{x}^{2}+\sigma_{y}^{2}\right)^{2}} \sigma_{y}^{2} \\
& =\frac{\sigma_{x}^{2} \sigma_{y}^{2}\left(\sigma_{x}^{2}+\sigma_{y}^{2}\right)}{\left(\sigma_{x}^{2}+\sigma_{y}^{2}\right)^{2}}=\frac{\sigma_{x}^{2} \sigma_{y}^{2}}{\sigma_{x}^{2}+\sigma_{y}^{2}}
\end{aligned}
$$

Example: Surgical Claim

- Let X denote the size of a surgical claim and let Y denote the size of the associated hospital claim. An actuary is using a model in which $E(X)=5, E\left(X^{2}\right)=27.4, E(Y)=7, E\left(Y^{2}\right)=51.4$ and $\operatorname{Var}(X+Y)=8$. Let $C_{1}=X+Y$ denote the size of the combined claims before the application of a 20% surcharge on the hospital portion of the claim, and let C_{2} the size of the combined claims after the application of that surcharge. Calculate $\operatorname{Cov}\left(C_{1}, C_{2}\right)$.
- We have $C_{1}=X+Y$ and $C_{2}=X+1.2 Y$ so
$\operatorname{Cov}\left(C_{1}, C_{2}\right)=E[(X+Y)(X+1.2 Y)]-E[(X+Y)] E[(X+1.2 Y)]$ $=E\left(X^{2}\right)+1.2 E\left(Y^{2}\right)+2.2 E(X Y)-E(X)^{2}-1.2 E(Y)^{2}-2.2 E(X) E(Y)$ $=\operatorname{Var}(X)+1.2 \operatorname{Var}(Y)+2.2 \operatorname{Cov}(X, Y)$
and $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)$ so
$\operatorname{Cov}(X, Y)=\frac{1}{2}\left\{E\left(X^{2}\right)-E(X)^{2}+E\left(Y^{2}\right)-E(Y)^{2}\right\}=1.6$ and
$\operatorname{Cov}\left(C_{1}, C_{2}\right)=8.8$.

Characterizing Joint Distributions/Densities: Correlation

- The correlation of (X, Y) is defined as

$$
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}}
$$

- The correlation is a measure of "dependence" between X and Y. It is a uniteless measure which takes values in $[-1,1]$. Proof can be established using Cauchy-Schwartz inequality $\left(\left(\int \alpha(u) \beta(u) d u\right)^{2} \leq\left(\int \alpha^{2}(u) d u\right)\left(\int \beta^{2}(u) d u\right)\right)$.
- If X and Y are two independent r.v. then $\rho(X, Y)=0$ as $\operatorname{Cov}(X, Y)=0$.

Example: Two Stocks

- We want to compute the correlation

$$
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}}
$$

- We have computed $\operatorname{Cov}(X, Y)=6$ so we need to compute $\operatorname{Var}(X)$ and $\operatorname{Var}(Y)$. We have

$$
\begin{aligned}
& E\left(X^{2}\right)=\int_{0}^{12} x^{2} \cdot \frac{1}{12} d x=\frac{1}{12}\left[\frac{x^{3}}{3}\right]_{0}^{12}=\frac{144}{3}=48 \\
& E\left(Y^{2}\right)=\int_{0}^{12} \frac{1}{12} \frac{1}{x}\left(\int_{0}^{x} y^{2} \cdot d y\right) d x=\frac{1}{36} \int_{0}^{12} x^{2} d x=\frac{144}{9}=16
\end{aligned}
$$

Hence

$$
\rho(X, Y)=\frac{6}{\sqrt{48-6^{2}} \sqrt{16-3^{2}}}=0.3631
$$

Uncorrelated Variables Are Not Necessarily Independent

- Independence does imply uncorrelation but the reverse is NOT true.
- Counter example for discrete r.v.: let X be such that

$$
P(X=-1)=P(X=0)=P(X=1)=\frac{1}{3}
$$

and $Y=X^{2}$ then X and Y are dependent but X and Y are uncorrelated as

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E(X Y)-E(X) E(Y) \\
& =\underbrace{E\left(X^{3}\right)}_{=0}-\underbrace{E(X) E\left(X^{2}\right)=0}_{=0}
\end{aligned}
$$

- Counter example for continuous r.v.: let X be a standard normal and $Y=X^{2}$ then clearly X and Y are dependent but X and Y are uncorrelated as

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E(X Y)-E(X) E(Y) \\
& =\underbrace{E\left(X^{3}\right)}-\underbrace{E(X)}_{=0} E\left(X^{2}\right)=0
\end{aligned}
$$

