Lecture Stat 302
 Introduction to Probability - Slides 21

AD

April 2010

Conditional Distributions: Discrete Case

- Given two r.v. X, Y, we have

Discrete	Continuous
$p(x, y)$	$f(x, y)$
$p_{X \mid Y}(x \mid y)=\frac{p(x, y)}{p_{Y}(y)}$	$f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}$
$E(g(X) \mid y)=\sum g(x) \cdot p_{X \mid Y}(x \mid y)$	$E(g(X) \mid y)=\int g(x) \cdot f_{X \mid Y}(x \mid y) d x$

Example: A Toy example

- Let X and Y be two r.v. of joint p.d.f.

$$
f(x, y)= \begin{cases}1 / x & \text { for } 0 \leq y \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

- (a) Establish the expression of $f_{X}(x)$.
- (b) Establish the expression of $f_{Y}(y)$.
- (c) Establish the expression of $f_{X \mid Y}(x \mid y)$ and $E(X \mid Y=y)$.
- (d) Establish the expression of $f_{Y \mid X}(y \mid x)$ and $E(Y \mid X=x)$.

Example: A Toy example

- (a) We have for $0 \leq x \leq 1$

$$
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y=\frac{1}{x} \int_{0}^{x} d y=1
$$

and $f_{X}(x)=0$ elsewhere.

- (b) We have for $0 \leq y \leq 1$

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f(x, y) d x=\int_{y}^{1} \frac{1}{x} d x=-\log y
$$

and $f_{Y}(y)=0$ elsewhere.

Example: A Toy example

- (c) We have for $0 \leq y \leq x \leq 1$

$$
f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}=-\frac{1}{x \log y}
$$

and $f_{X \mid Y}(x \mid y)=0$ elsewhere. Hence

$$
E(X \mid Y=y)=\int_{y}^{1} x f_{X \mid Y}(x \mid y) d x=-\frac{(1-y)}{\log y}
$$

- (d) We have for $0 \leq y \leq x \leq 1$

$$
f_{Y \mid X}(y \mid x)=\frac{f(x, y)}{f_{X}(x)}=\frac{1}{x}
$$

and $f_{Y \mid X}(y \mid x)=0$ elsewhere. Hence

$$
E(Y \mid X=x)=\int_{0}^{x} y f_{Y \mid X}(y \mid x) d y=\frac{x}{2}
$$

Example: Bayesian Signal Estimation

- Let X be a random signal. We do not observe X directly but have access to a noisy measurement

$$
Y=X+N
$$

where N is a random noise. Assume that X is a normal r.v. of parameters $\left(m, \sigma_{x}^{2}\right)$ and N is a normal of mean 0 and variance σ_{n}^{2}, X and N are independent. Show that the conditional pdf $f_{X \mid Y}(x \mid y)$ is normal. Compute $E(X \mid y)$ and $\operatorname{Var}(X \mid y)$.

- We have $f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma_{x}} e^{-(x-m)^{2} /\left(2 \sigma_{x}^{2}\right)}$ and

$$
\begin{aligned}
& f_{Y \mid X}(y \mid x)=\frac{1}{\sqrt{2 \pi \sigma_{n}}} e^{-(y-x)^{2} /\left(2 \sigma_{n}^{2}\right)} \text { so } \\
& \qquad \begin{aligned}
f_{X \mid Y}(x \mid y) & =\frac{f_{Y \mid X}(y \mid x) f_{X}(x)}{f_{Y}(y)} \\
& =\frac{\frac{1}{\sqrt{2 \pi} \sigma_{X}} e^{-(x-m)^{2} /\left(2 \sigma_{x}^{2}\right)} \frac{1}{\sqrt{2 \pi} \sigma_{n}} e^{-(y-x)^{2} /\left(2 \sigma_{n}^{2}\right)}}{f_{Y}(y)}
\end{aligned}
\end{aligned}
$$

Example: Signal Estimation

- We have

$$
\begin{aligned}
& \frac{(x-m)^{2}}{\sigma_{x}^{2}}+\frac{(y-x)^{2}}{\sigma_{n}^{2}}=\left(\frac{1}{\sigma_{x}^{2}}+\frac{1}{\sigma_{n}^{2}}\right) x^{2}-2\left(\frac{y}{\sigma_{n}^{2}}+\frac{m}{\sigma_{x}^{2}}\right) x+\frac{y^{2}}{\sigma_{n}^{2}}+\frac{m^{2}}{\sigma_{x}^{2}} \\
& =\frac{1}{\sigma^{2}}(x-\mu)^{2}-\frac{\mu^{2}}{\sigma^{2}}+\frac{y^{2}}{\sigma_{n}^{2}}+\frac{m^{2}}{\sigma_{x}^{2}}
\end{aligned}
$$

where

$$
\begin{aligned}
\sigma^{2} & =\frac{\sigma_{x}^{2} \sigma_{n}^{2}}{\sigma_{x}^{2}+\sigma_{n}^{2}} \\
\mu & =\sigma^{2}\left(\frac{y}{\sigma_{n}^{2}}+\frac{m}{\sigma_{x}^{2}}\right)=\frac{\sigma_{x}^{2}}{\sigma_{x}^{2}+\sigma_{n}^{2}} y+\frac{\sigma_{n}^{2}}{\sigma_{x}^{2}+\sigma_{n}^{2}} m
\end{aligned}
$$

- Hence it follows that

$$
f_{X \mid Y}(x \mid y) \propto e^{-(x-\mu)^{2}} /\left(2 \sigma^{2}\right)
$$

and $f_{X \mid Y}(x \mid y)$ can only be a normal density of mean $E(X \mid y)=\mu$ and $\operatorname{Var}(X \mid y)=\sigma^{2}$.

Example: Bayesian Signal Estimation

- As $\sigma_{n}^{2} \rightarrow 0$, the observation $Y=y$ is very informative about X and we have

$$
\sigma^{2}=\frac{\sigma_{x}^{2} \sigma_{n}^{2}}{\sigma_{x}^{2}+\sigma_{n}^{2}} \approx \frac{\sigma_{x}^{2} \sigma_{n}^{2}}{\sigma_{x}^{2}}=\sigma_{n}^{2}
$$

and

$$
\mu=\frac{\sigma_{x}^{2}}{\sigma_{x}^{2}+\sigma_{n}^{2}} y+\frac{\sigma_{n}^{2}}{\sigma_{x}^{2}+\sigma_{n}^{2}} m \approx y
$$

- As $\sigma_{n}^{2} \rightarrow \infty$, the observation $Y=y$ is not informative about X and we have

$$
\sigma^{2}=\frac{\sigma_{x}^{2} \sigma_{n}^{2}}{\sigma_{x}^{2}+\sigma_{n}^{2}} \approx \frac{\sigma_{x}^{2} \sigma_{n}^{2}}{\sigma_{n}^{2}}=\sigma_{x}^{2}
$$

and

$$
\mu=\frac{\sigma_{x}^{2}}{\sigma_{x}^{2}+\sigma_{n}^{2}} y+\frac{\sigma_{n}^{2}}{\sigma_{x}^{2}+\sigma_{n}^{2}} m \approx m .
$$

Example: Sequential Bayesian Signal Estimation

- Assume now that you have access at each discrete time index k to

$$
Y_{k}=X+N_{k}
$$

where $\left\{N_{k}\right\}_{k \geq 1}$ are independent normal of mean 0 and variance σ_{n}^{2}.

- At time k, we can compute similarly $f_{X \mid\left(Y_{1}, Y_{2}, \ldots, Y_{k}\right)}\left(x \mid y_{1}, y_{2}, \ldots, y_{k}\right)$

$$
\begin{aligned}
& f_{X \mid\left(Y_{1}, Y_{2}, \ldots, Y_{k}\right)}\left(x \mid y_{1}, y_{2}, \ldots, y_{k}\right) \\
= & \frac{f_{\left(Y_{1}, Y_{2}, \ldots, Y_{k}\right) \mid X}\left(y_{1}, y_{2}, \ldots, y_{k} \mid x\right) f_{X}(x)}{f_{\left(Y_{1}, Y_{2}, \ldots, Y_{k}\right)}\left(y_{1}, y_{2}, \ldots, y_{k}\right)} \\
\propto & e^{-(x-m)^{2} /\left(2 \sigma_{x}^{2}\right)} e^{-\sum_{j=1}^{k}\left(y-x_{k}\right)^{2} /\left(2 \sigma_{n}^{2}\right)}
\end{aligned}
$$

which is a normal of mean $E\left(X \mid y_{1}, y_{2}, \ldots, y_{k}\right)=\mu_{k}$ and $\operatorname{Var}\left(X \mid y_{1}, y_{2}, \ldots, y_{k}\right)=\sigma_{k}^{2}$.

Example: Sequential Bayesian Signal Estimation

- We can also compute $f_{X \mid\left(Y_{1}, Y_{2}, \ldots, Y_{k}\right)}\left(x \mid y_{1}, y_{2}, \ldots, y_{k}\right)$ recursively

$$
\begin{aligned}
& f_{X \mid\left(Y_{1}, Y_{2}, \ldots, Y_{k}\right)}\left(x \mid y_{1}, y_{2}, \ldots, y_{k}\right) \\
= & \frac{f_{Y_{k} \mid X}\left(y_{k} \mid x\right) f_{X \mid\left(Y_{1}, Y_{2}, \ldots, Y_{k-1}\right)}\left(x \mid y_{1}, y_{2}, \ldots, y_{k-1}\right)}{f_{Y_{k} \mid\left(Y_{1}, Y_{2}, \ldots, Y_{k-1}\right)}\left(y_{k} \mid y_{1}, y_{2}, \ldots, y_{k-1}\right)}
\end{aligned}
$$

- Hence using calculations similar to the simple case, we obtain by substituting $m \leftarrow \mu_{k-1}$ and $\sigma_{x}^{2} \leftarrow \sigma_{k-1}^{2}$

$$
\sigma_{k}^{2}=\frac{\sigma_{k-1}^{2} \sigma_{n}^{2}}{\sigma_{k-1}^{2}+\sigma_{n}^{2}}, \mu_{k}=\sigma_{k}^{2}\left(\frac{y_{k}}{\sigma_{n}^{2}}+\frac{\mu_{k-1}}{\sigma_{k-1}^{2}}\right)
$$

with $\mu_{0}=m, \sigma_{0}^{2}=\sigma_{x}^{2}$.

- This is a special case of the Kalman(-Stratonovich) filter: one of the most popular algorithms in applied mathematics/aerospace/control/telecommunications/econometrics etc.

Properties of the Conditional Expectation

- We have

$$
E[E(X \mid Y)]=E[X]
$$

- Proof. We have

$$
\begin{aligned}
& E[E(X \mid Y)] \\
= & \int\left[\int x \cdot f_{X \mid Y}(x \mid y) d x\right] f_{Y}(y) d y \\
= & \iint x \cdot \underbrace{f_{X \mid Y}(x \mid y) f_{Y}(y)}_{=f(x, y)} d x d y \\
= & \iint x \cdot f_{X}(x) f_{Y \mid X}(y \mid x) d x d y=\int\left[\int x \cdot f_{X}(x) d x\right] f_{Y \mid X}(y \mid x) d y \\
= & \int x \cdot f_{X}(x) d x=E[X]
\end{aligned}
$$

- This is valid for any function $E[E(g(X) \mid Y)]=E[g(X)]$.

Example: Workplace Injuries

- The number of workplace injuries N occuring in a factory on any given day is Poisson distributed of parameter λ. The parameter λ is a random variable determined by the level of activity in the factory and is uniformly distributed on the interval $[0,3]$. What is the expectation of N ?
- We have

$$
E[N]=E[E[N \mid \lambda]]
$$

where

$$
E[N \mid \lambda]=\lambda
$$

- Hence we have

$$
E[N]=E[\lambda]=\frac{3}{2}
$$

Properties of the Conditional Variance

- We have the following variance decomposition

$$
\operatorname{Var}[X]=\operatorname{Var}[E(X \mid Y)]+E[\operatorname{Var}(X \mid Y)]
$$

hence as $E[\operatorname{Var}(X \mid Y)] \geq 0$

$$
\operatorname{Var}[E(X \mid Y)] \leq \operatorname{Var}[X]
$$

- Proof. We have

$$
\begin{aligned}
\operatorname{Var}[E(X \mid Y)] & =E\left(\{E(X \mid Y)\}^{2}\right)-E(E(X \mid Y))^{2} \\
& =E\left(\{E(X \mid Y)\}^{2}\right)-E(X)^{2}
\end{aligned}
$$

and

$$
\operatorname{Var}(X \mid Y)=E\left(X^{2} \mid Y\right)-\{E(X \mid Y)\}^{2}
$$

so

$$
\begin{aligned}
E[\operatorname{Var}(X \mid Y)] & =E\left(E\left(X^{2} \mid Y\right)\right)-E\left(\{E(X \mid Y)\}^{2}\right) \\
& =E\left(X^{2}\right)-E\left(\{E(X \mid Y)\}^{2}\right)
\end{aligned}
$$

Example: Workplace Injuries

- The number of workplace injuries N occuring in a factory on any given day is Poisson distributed of parameter λ. The parameter λ is a random variable determined by the level of activity in the factory and is uniformly distributed on the interval $[0,3]$. What is the variance of N ?
- We have

$$
\operatorname{Var}[N]=\operatorname{Var}[E(N \mid \lambda)]+E[\operatorname{Var}(N \mid \lambda)]
$$

where

$$
E(N \mid \lambda)=\operatorname{Var}(N \mid \lambda)=\lambda
$$

as, given λ, N is a Poisson random variable of param λ.

- Hence

$$
\begin{aligned}
\operatorname{Var}[N] & =\operatorname{Var}[\lambda]+E[\lambda] \\
& =\frac{3^{2}}{12}+\frac{3}{2}=\frac{9}{4}
\end{aligned}
$$

as λ follows an uniform distribution on $[0,3]$.

Optimality of Conditional Expectation

- Let us consider two r.v. X and Y. Assume we observe Y and want to find a way to estimate X based on Y. Then in some sense, $E(X \mid Y)$ is the best possible estimate of X.
- Proposition. Consider an arbitrary function $g(X)$ then, we have

$$
E\left[(X-E(X \mid Y))^{2}\right] \leq E\left[(X-g(Y))^{2}\right]
$$

that is the expected square "distance" between $g(Y)$ and X is minimized for $g(Y)=E(X \mid Y)$.

- The proof is valid for both discrete and continuous r.v.

Proof

- We have

$$
\begin{aligned}
& E\left[(X-g(Y))^{2} \mid Y=y\right] \\
& =E\left[(X-E(X \mid Y)+E(X \mid Y)-g(Y))^{2} \mid Y=y\right] \\
& =E\left[(X-E(X \mid Y))^{2} \mid Y=y\right]+E\left[(E(X \mid Y)-g(Y))^{2} \mid Y=y\right] \\
& +2 E[(X-E(X \mid Y))(E(X \mid Y)-g(Y)) \mid Y=y]
\end{aligned}
$$

- We have

$$
\begin{aligned}
& E[(X-E(X \mid Y))(E(X \mid Y)-g(Y)) \mid Y=y] \\
= & \underbrace{E[(X-E(X \mid Y)) \mid Y=y]}_{=0}(E(X \mid Y=y)-g(y))
\end{aligned}
$$

Proof

- Hence

$$
\begin{aligned}
E\left[(X-g(Y))^{2} \mid Y=y\right]= & E\left[(X-E(X \mid Y))^{2} \mid Y=y\right] \\
& +\underbrace{E\left[(E(X \mid Y)-g(Y))^{2} \mid Y=y\right]}_{\geq 0}
\end{aligned}
$$

- We can conclude that

$$
E\left[(X-g(Y))^{2} \mid Y=y\right] \geq E\left[(X-E(X \mid Y))^{2} \mid Y=y\right]
$$

- Now by taking the expectation on both sides with respect to Y, we obtain

$$
E\left[(X-g(Y))^{2}\right] \geq E\left[(X-E(X \mid Y))^{2}\right]
$$

