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Conditional Distributions: Discrete Case

Given two r.v. X ,Y , we have

Discrete Continuous
p (x , y) f (x , y)

pX |Y (x | y) =
p(x ,y )
pY (y )

fX |Y (x | y) =
f (x ,y )
fY (y )

E (g (X )| y) = ∑ g (x) .pX |Y (x | y) E (g (X )| y) =
∫
g (x) .fX |Y (x | y) dx
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Example: A Toy example

Let X and Y be two r.v. of joint p.d.f.

f (x , y) =
{
1/x for 0 ≤ y ≤ x ≤ 1
0 otherwise.

(a) Establish the expression of fX (x).

(b) Establish the expression of fY (y) .

(c) Establish the expression of fX |Y (x | y) and E (X |Y = y) .
(d) Establish the expression of fY |X (y | x) and E (Y |X = x) .
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Example: A Toy example

(a) We have for 0 ≤ x ≤ 1

fX (x) =
∫ ∞

−∞
f (x , y) dy =

1
x

∫ x

0
dy = 1

and fX (x) = 0 elsewhere.

(b) We have for 0 ≤ y ≤ 1

fY (y) =
∫ ∞

−∞
f (x , y) dx =

∫ 1

y

1
x
dx = − log y

and fY (y) = 0 elsewhere.
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Example: A Toy example

(c) We have for 0 ≤ y ≤ x ≤ 1

fX |Y (x | y) =
f (x , y)
fY (y)

= − 1
x log y

and fX |Y (x | y) = 0 elsewhere. Hence

E (X |Y = y) =
∫ 1

y
x fX |Y (x | y) dx = −

(1− y)
log y

.

(d) We have for 0 ≤ y ≤ x ≤ 1

fY |X (y | x) =
f (x , y)
fX (x)

=
1
x
.

and fY |X (y | x) = 0 elsewhere. Hence

E (Y |X = x) =
∫ x

0
y fY |X (y | x) dy =

x
2
.
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Example: Bayesian Signal Estimation

Let X be a random signal. We do not observe X directly but have
access to a noisy measurement

Y = X +N

where N is a random noise. Assume that X is a normal r.v. of
parameters

(
m, σ2x

)
and N is a normal of mean 0 and variance σ2n, X

and N are independent. Show that the conditional pdf fX |Y (x | y) is
normal. Compute E (X |y) and Var (X |y) .
We have fX (x) = 1√

2πσx
e−(x−m)

2/(2σ2x ) and

fY |X (y | x) = 1√
2πσn

e−(y−x )
2/(2σ2n) so

fX |Y (x | y) =
fY |X (y | x) fX (x)

fY (y)

=

1√
2πσx

e−(x−m)
2/(2σ2x ) 1√

2πσn
e−(y−x )

2/(2σ2n)

fY (y)
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Example: Signal Estimation

We have

(x−m)2
σ2x

+ (y−x )2
σ2n

=
(
1

σ2x
+ 1

σ2n

)
x2 − 2

(
y
σ2n
+ m

σ2x

)
x + y 2

σ2n
+ m2

σ2x

= 1
σ2
(x − µ)2 − µ2

σ2
+ y 2

σ2n
+ m2

σ2x

where

σ2 =
σ2xσ2n

σ2x + σ2n
,

µ = σ2
(
y
σ2n
+
m
σ2x

)
=

σ2x
σ2x + σ2n

y +
σ2n

σ2x + σ2n
m

Hence it follows that

fX |Y (x | y) ∝ e−(x−µ)2/
(
2σ2
)

and fX |Y (x | y) can only be a normal density of mean E (X |y) = µ

and Var (X |y) = σ2.
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Example: Bayesian Signal Estimation

As σ2n → 0, the observation Y = y is very informative about X and
we have

σ2 =
σ2xσ2n

σ2x + σ2n
≈ σ2xσ2n

σ2x
= σ2n

and

µ =
σ2x

σ2x + σ2n
y +

σ2n
σ2x + σ2n

m ≈ y .

As σ2n → ∞, the observation Y = y is not informative about X and
we have

σ2 =
σ2xσ2n

σ2x + σ2n
≈ σ2xσ2n

σ2n
= σ2x

and

µ =
σ2x

σ2x + σ2n
y +

σ2n
σ2x + σ2n

m ≈ m.
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Example: Sequential Bayesian Signal Estimation

Assume now that you have access at each discrete time index k to

Yk = X +Nk

where {Nk}k≥1 are independent normal of mean 0 and variance σ2n.

At time k, we can compute similarly fX |(Y1,Y2,...,Yk ) (x | y1, y2, ..., yk )

fX |(Y1,Y2,...,Yk ) (x | y1, y2, ..., yk )

=
f(Y1,Y2,...,Yk )|X (y1, y2, ..., yk | x) fX (x)

f(Y1,Y2,...,Yk ) (y1, y2, ..., yk )

∝ e−(x−m)
2/(2σ2x )e−∑k

j=1(y−xk )
2/(2σ2n)

which is a normal of mean E (X |y1, y2, ..., yk ) = µk and
Var (X |y1, y2, ..., yk ) = σ2k .
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Example: Sequential Bayesian Signal Estimation

We can also compute fX |(Y1,Y2,...,Yk ) (x | y1, y2, ..., yk ) recursively

fX |(Y1,Y2,...,Yk ) (x | y1, y2, ..., yk )

=
fYk |X (yk | x) fX |(Y1,Y2,...,Yk−1) (x | y1, y2, ..., yk−1)

fYk |(Y1,Y2,...,Yk−1) (yk | y1, y2, ..., yk−1)

Hence using calculations similar to the simple case, we obtain by
substituting m← µk−1 and σ2x ← σ2k−1

σ2k =
σ2k−1σ

2
n

σ2k−1 + σ2n
, µk = σ2k

(
yk
σ2n
+

µk−1
σ2k−1

)
with µ0 = m, σ20 = σ2x .
This is a special case of the Kalman(-Stratonovich) filter: one of the
most popular algorithms in applied
mathematics/aerospace/control/telecommunications/econometrics
etc.
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Properties of the Conditional Expectation

We have
E [E (X |Y )] = E [X ] .

Proof. We have

E [E (X |Y )]

=
∫ [∫

x .fX |Y (x | y) dx
]
fY (y) dy

=
∫ ∫

x .fX |Y (x | y) fY (y)︸ ︷︷ ︸
=f (x ,y )

dxdy

=
∫ ∫

x .fX (x) fY |X (y | x) dxdy =
∫ [∫

x .fX (x) dx
]
fY |X (y | x) dy

=
∫
x .fX (x) dx = E [X ]

This is valid for any function E [E (g (X )|Y )] = E [g (X )].
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Example: Workplace Injuries

The number of workplace injuries N occuring in a factory on any
given day is Poisson distributed of parameter λ. The parameter λ is a
random variable determined by the level of activity in the factory and
is uniformly distributed on the interval [0, 3]. What is the expectation
of N?

We have
E [N ] = E [E [N | λ]]

where
E [N | λ] = λ.

Hence we have
E [N ] = E [λ] =

3
2
.
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Properties of the Conditional Variance

We have the following variance decomposition

Var [X ] = Var [E (X |Y )] + E [Var (X |Y )]
hence as E [Var (X |Y )] ≥ 0

Var [E (X |Y )] ≤ Var [X ]
Proof. We have

Var [E (X |Y )] = E
(
{E (X |Y )}2

)
− E (E (X |Y ))2

= E
(
{E (X |Y )}2

)
− E (X )2

and
Var (X |Y ) = E

(
X 2
∣∣Y )− {E (X |Y )}2

so

E [Var (X |Y )] = E
(
E
(
X 2
∣∣Y ))− E ({E (X |Y )}2)

= E
(
X 2
)
− E

(
{E (X |Y )}2

)
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Example: Workplace Injuries

The number of workplace injuries N occuring in a factory on any
given day is Poisson distributed of parameter λ. The parameter λ is a
random variable determined by the level of activity in the factory and
is uniformly distributed on the interval [0, 3]. What is the variance of
N?
We have

Var [N ] = Var [E (N | λ)] + E [Var (N | λ)]
where

E (N | λ) = Var (N | λ) = λ

as, given λ, N is a Poisson random variable of param λ.
Hence

Var [N ] = Var [λ] + E [λ]

=
32

12
+
3
2
=
9
4

as λ follows an uniform distribution on [0, 3].
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Optimality of Conditional Expectation

Let us consider two r.v. X and Y . Assume we observe Y and want to
find a way to estimate X based on Y . Then in some sense, E (X |Y )
is the best possible estimate of X .

Proposition. Consider an arbitrary function g (X ) then, we have

E
[
(X − E (X |Y ))2

]
≤ E

[
(X − g (Y ))2

]
,

that is the expected square “distance”between g (Y ) and X is
minimized for g (Y ) = E (X |Y ).
The proof is valid for both discrete and continuous r.v.

AD () April 2010 15 / 17



Proof

We have

E
[
(X − g (Y ))2

∣∣∣Y = y]
= E

[
(X − E (X |Y ) + E (X |Y )− g (Y ))2

∣∣∣Y = y]
= E

[
(X − E (X |Y ))2

∣∣∣Y = y]+ E [ (E (X |Y )− g (Y ))2∣∣∣Y = y]
+2E [ (X − E (X |Y )) (E (X |Y )− g (Y ))|Y = y ]

We have

E [ (X − E (X |Y )) (E (X |Y )− g (Y ))|Y = y ]
= E [ (X − E (X |Y ))|Y = y ]︸ ︷︷ ︸

=0

(E (X |Y = y)− g (y))
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Proof

Hence

E
[
(X − g (Y ))2

∣∣∣Y = y] = E
[
(X − E (X |Y ))2

∣∣∣Y = y]
+E

[
(E (X |Y )− g (Y ))2

∣∣∣Y = y]︸ ︷︷ ︸
≥0

We can conclude that

E
[
(X − g (Y ))2

∣∣∣Y = y] ≥ E [ (X − E (X |Y ))2∣∣∣Y = y] .
Now by taking the expectation on both sides with respect to Y , we
obtain

E
[
(X − g (Y ))2

]
≥ E

[
(X − E (X |Y ))2

]
.
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