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Conditional Distributions: Discrete Case

@ Given two r.v. X, Y, we have

Discrete Continuous

p(x.y) f(xy)

pxiv (xI) = 503 b <x\y> =
E(g(X)ly) =2Lg () pxy (x]y) | E( = [ g (x) fxy (x|y) dx
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Example: A Toy example

@ Let X and Y be two r.v. of joint p.d.f.

[ 1/x for0<y<x<1
Flxy)= { 0 otherwise.

(a) Establish the expression of fx (x).
(b) Establish the expression of fy (y).
(c) Establish the expression of fx|y (x|y) and E (X|Y =y).
(d) Establish the expression of fy|x (y|x) and E (Y|X = x).
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Example: A Toy example

@ (a) We havefor 0 < x <1

fx(X):/oo f(X,y)dyzi/OXdyzl

—0Q

and fx (x) = 0 elsewhere.
o (b) We havefor 0 <y <1

fy(y):/w f(x,y)dx:/l)l(dx:—logy

— 00

and fy(y) = 0 elsewhere.
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Example: A Toy example

o (c)Wehavefor 0 <y <x<1
f(xy) 1

f X = = —
X|Y< |Y) fy (y) xlog y
and fx|y (x|y) = 0 elsewhere. Hence
' (1-y)
EXY:y:/xf x|y)dx = — .
(X )= | % fay (1) gy

o (d) Wehavefor0 <y <x <1

f - .
Y|X (y|X) fx (X) x
and fy|x (y|x) = 0 elsewhere. Hence

X X
E(Y|X:x):/0 yfy|X(y|x)dy:§.
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Example: Bayesian Signal Estimation

@ Let X be a random signal. We do not observe X directly but have
access to a noisy measurement

Y=X+N

where N is a random noise. Assume that X is a normal r.v. of
parameters (m,02) and N is a normal of mean 0 and variance 02, X
and N are independent. Show that the conditional pdf fx|y (x|y) is
normal. Compute E (X]|y) and Var (X|y).

@ We have fx (X) = %e*(xfmﬁ/(&rﬁ) and

270y ,
(y—x )
frix (Y] x) = e -2/ (22) o

270,
fY|X (ylx) fx (x)

fX‘Y<X|y) = fY(Y)
1 —(x=—m)?/ (202 1 —(y—x)*/(202
_ Vi Crn) e )

fv (v)
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Example: Signal Estimation

o We have
(x=m)~ m) _|_(y X) :(%+L)X2_2<;’7+ )X—|— _}_72
1 m? ’
:ﬁ(x—ﬂ) atete
where
2 2
0.2 — ;Txo-nzy
0-x+0-n
N A SR
Bo= 2 2) 2+ T 2+

@ Hence it follows that
iy (x]y) o e 01/ (202)

and fx|y (x| y) can only be a normal density of mean E (X|y) = u
and Var (X|y) = 2.
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Example: Bayesian Signal Estimation

@ As 02 — 0, the observation Y = y is very informative about X and

we have ) o ) o
2 ngn ~ ngn _0,2
T 2402 o2 "
X n X
and ) )
H= oy LomRy
o2+ 02 02+ 02

o As 02 — oo, the observation Y = y is not informative about X and

we have ) )
2 O-XU-n ~ UxUn 2
= 5.2~ 5 —0x
O-X +0—n 0’”
and ) )
X 0h ~

— y m=m
=y’ T 21 g2
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Example: Sequential Bayesian Signal Estimation

@ Assume now that you have access at each discrete time index k to
Y, =X+ Ny

where { Ny}, are independent normal of mean 0 and variance o2.

o At time k, we can compute similarly fx|(y, v,,...v,) (X y1, ¥2, - y&)

fX‘(Y1’Y2 ~~~~~ Yk)<X’y1vy2'---.}/k)
f(erYZ ----- Yio)lX <y1.Y2.---.yk|x) fx (x>
fovi Yo vi) (V10 Y2, oo Yk)
« = (x=m)/(20%) o= T r—xk)?/ (20%)

which is a normal of mean E(X|y1,y2, __.,yk) =, and
Var (X|y1, y2, ... y) = 0%.
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Example: Sequential Bayesian Signal Estimation

o We can also compute fx|(y, v,,...v,) (X| ¥1,¥2, ..., y«) recursively

X1V, Vv vi) (X[ Y10 Y20 k)
fyax (Wl %) fx (v var i) (XIya, ve, oo yi-1)
A (VYoo Yen) Ykl YL, 2, o Y1)

@ Hence using calculations similar to the simple case, we obtain by

substituting m <y, _; and 02 «— 0% _,

2
o2 — _Tk=19n _ o2 [ X Fr—1
k= 72 +(72'P‘k— k2 T2
k—1 n n k—1

with py = m, 02 =02,

@ This is a special case of the Kalman(-Stratonovich) filter: one of the
most popular algorithms in applied
mathematics/aerospace/control /telecommunications/econometrics
etc.
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Properties of the Conditional Expectation

o We have
E[E(X|Y)] = E[X].

o Proof. We have
E[E(X|Y)]
— / [/x.fxy (x]y) dx] fy (y) dy
- //X'fX\Y(XU) fy (y)dxdy

=f(x.y)
= //x.fx (x) fy|x (y|x) dxdy = / [/X-fx (x) dx] fyix (] x) dy
_ /x.fx (x) dx = E[X]

e This is valid for any function E [E (g (X)|Y)] = E [g (X)].
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Example: Workplace Injuries

@ The number of workplace injuries N occuring in a factory on any
given day is Poisson distributed of parameter A. The parameter A is a
random variable determined by the level of activity in the factory and
is uniformly distributed on the interval [0, 3]. What is the expectation
of N7

o We have

E[N] = E[E[N[A]]

where
E[N|A] = A.
@ Hence we have 3
E[N]:E[A]:E'
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Properties of the Conditional Variance

@ We have the following variance decomposition
Var [X] = Var [E (X]|Y)] 4+ E [Var (X]| Y)]
hence as E [Var (X]|Y)] >0
Var [E (X|Y)] < Var [X]
@ Proof. We have
Var[E(X| V)] = E({E(X|Y)}*) = E(E(X|Y))

= E({E(XIV)Y) - E(X)?

and
Var (X| V) = E (X3| Y) = {E(X| )}

SO

Elvar (X|Y)] = E(E(X*|Y))—E({E(X|V)})
= E(X®)-E({EXIMY)
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Example: Workplace Injuries

@ The number of workplace injuries N occuring in a factory on any
given day is Poisson distributed of parameter A. The parameter A is a
random variable determined by the level of activity in the factory and
is uniformly distributed on the interval [0, 3]. What is the variance of
N7

o We have

Var [N] = Var [E (N|A)] + E [Var (N|A)]
where
E(N|A)= Var(N|A)=A
as, given A, N is a Poisson random variable of param A.
@ Hence

Var [N] = Var[A] 4+ E[A]

_ 7+7_2
- 4
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Optimality of Conditional Expectation

@ Let us consider two r.v. X and Y. Assume we observe Y and want to
find a way to estimate X based on Y. Then in some sense, E (X|Y)
is the best possible estimate of X.

e Proposition. Consider an arbitrary function g (X) then, we have
2 2
E|[(x—E(X|V))] <E[(x-g(M))],

that is the expected square “distance” between g (Y) and X is
minimized for g (Y) = E (X|Y).
@ The proof is valid for both discrete and continuous r.v.
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o We have

E[(Xx—g(M)|y =]

= E[(X=E(X|Y)+E(X|Y) =g (V)| ¥ =]
=E[(X=EX|YV)?|Y =y| +E[(E(X|V) =g (V)| ¥ =V]
+2E[(X — E(X| V) (E(X|Y) =g (Y)Y =]

o We have

E[(X=EX|Y)(E(X]Y)—g(Y)]Y =y]
= E[X-EX|[Y)|Y=y[(E(X][Y=y)—-g(y))

~

=0
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@ Hence
E[Xx—gMP|y=y] = E[(x-EXIY)|Y=y]
HE[EXIY) ~s ()| Y =y]

@ We can conclude that
E[(x-gM)|Y =y] = E[(x=EX|V)?|Y =v].

@ Now by taking the expectation on both sides with respect to Y, we

obtain
E[(x—g(M)] = E[(x - E(x| V)]
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