Lecture Stat 302
 Introduction to Probability - Slides 20

AD

April 2010

Conditional Distributions: Discrete Case

- Given a joint p.m.f. for two r.v. X, Y it is possible to compute the conditional p.m.f. X given $Y=y$.
- Assume X, Y are discrete-valued r.v. with a joint p.m.f. $p(x, y)$ then the conditional p.m.f. of X given $Y=y$ is

$$
p_{X \mid Y}(x \mid y)=\frac{p(x, y)}{p_{Y}(y)}=\frac{p_{Y \mid X}(y \mid x) p_{X}(x)}{p_{Y}(y)}
$$

- The conditional expectation of $g(X)$ is given by

$$
E(g(X) \mid Y=y)=\sum_{x} g(x) \cdot p_{X \mid Y}(x \mid y)
$$

- $E(g(X) \mid Y=y)$ is a function of y and $E(g(X) \mid Y)$ is a r.v..

Example: Warm-up

- Let X, Y be two discrete r.v. of joint p.m.f.

$$
p(x, y)=\frac{(x+y)}{21}
$$

for $x=1,2,3$ and $y=1,2$.

- (a) Show that X and Y are not independent.
- (b) Compute $p_{X \mid Y}(x \mid y)$.
- (c) Compute $E(X \mid Y=y)$.

Example: Warm-up

- (a) X and Y are independent if and only if $p(x, y)=p_{X}(x) p_{Y}(y)$. We have

$$
\begin{aligned}
p_{X}(x) & =\sum_{y} p(x, y)=p(x, 1)+p(x, 2) \\
& =\frac{(x+1)}{21}+\frac{(x+2)}{21}=\frac{2 x}{21}+\frac{1}{7}
\end{aligned}
$$

and

$$
\begin{aligned}
p_{Y}(y) & =\sum_{x} p(x, y)=p(1, y)+p(2, y)+p(3, y) \\
& =\frac{(1+y)}{21}+\frac{(2+y)}{21}+\frac{(3+y)}{21}=\frac{2}{7}+\frac{3 y}{21} .
\end{aligned}
$$

Clearly $p(x, y) \neq p_{X}(x) p_{Y}(y)$ so X, Y are not independent.

- Remark: A safety check consists of checking that $\sum_{x} p_{X}(x)=\sum_{y} p_{Y}(y)=1$.

Example: Warm-up

- (b) The conditional p.m.f. is given by

$$
\begin{aligned}
p_{X \mid Y}(x \mid y) & =\frac{p(x, y)}{p_{Y}(y)}=\frac{(x+y) / 21}{(6+3 y) / 21} \\
& =\frac{x+y}{6+3 y}
\end{aligned}
$$

- (c) The conditional mean is given by

$$
\begin{aligned}
E(X \mid Y=y) & =\sum_{x} x \cdot p_{X \mid Y}(x \mid y) \\
& =\frac{1+y}{6+3 y}+2 \times \frac{2+y}{6+3 y}+3 \times \frac{3+y}{6+3 y} \\
& =\frac{14+6 y}{6+3 y}
\end{aligned}
$$

Example: Insurance Company

- An insurance company provides insurance to three groups of staff with the following characteristics

Age	\# ind.	Proba claim (in a year)	Expect amount (in a year)
<30	20	0.02	$\$ 500$
30 to 50	50	0.04	$\$ 1000$
>50	30	0.06	$\$ 1500$

(1) What is the proba that a randomly selected individual is below the age of 30 and will make a claim in a year?
(2) What is the proba that a randomly selected individual will not make any claim in a year?
(3) Given that the randomly selected individual has made a claim in a year, what are the proba that he/she is below 30, aged 30 to 50 or older than 50 ?
(9) Given that the randomly selected individual has made a claim in a year and is older than 30 , what is the expected claim?

Example: Insurance Company

(1) $\operatorname{Pr}("<30 " \cap$ "Claim" $)=\frac{20}{100} \times 0.02=0.004$.
(2) We have

$$
\begin{aligned}
& \operatorname{Pr}(\text { No Claim })=\operatorname{Pr}(\text { No Claim } \mid "<30 ") \operatorname{Pr}\left("<30^{\prime \prime}\right) \\
& +\operatorname{Pr}(\text { No Claim } \mid " 30-50 ") \operatorname{Pr}\left(" 30-50^{\prime \prime}\right) \\
& +\operatorname{Pr}\left(\text { No Claim } \mid ">50^{\prime \prime}\right) \operatorname{Pr}(">50 ") \\
& =(1-0.02) \frac{20}{100}+(1-0.04) \frac{50}{100}+(1-0.06) \frac{30}{100} \\
& =0.958
\end{aligned}
$$

(3) We want

$$
\begin{aligned}
\operatorname{Pr}("<30 " \mid \text { Claim }) & =\frac{\operatorname{Pr}(\text { Claim } \mid "<30 ") \operatorname{Pr}("<30 ")}{\operatorname{Pr}(\text { Claim })} \\
& =\frac{0.02 \times(20 / 100)}{1-0.958}=0.0952 .
\end{aligned}
$$

Similarly, we obtain $\operatorname{Pr}(" 30-50 " \mid$ Claim $)=0.4762$ and $\operatorname{Pr}(">50 " \mid$ Claim $)=0.4286$.

Example: Insurance Company

4a. We have

$$
\begin{aligned}
& \operatorname{Pr}(" 30-50 " \mid \text { Claim } \cap\{" 30-50 " \cup ">50 "\}) \\
& =\frac{\operatorname{Pr}\left(\text { Claim } \mid\left\{" 30-50^{\prime \prime} \cup ">50^{\prime \prime}\right\} \cap " 30-50^{\prime \prime}\right) \operatorname{Pr}\left(" 30-50 " \mid " 30-50^{\prime \prime} \cup ">50^{\prime \prime}\right)}{\operatorname{Pr}\left(\text { Claim }\left\{{ }^{\prime \prime} 30-50^{\prime \prime} \cup^{\prime \prime}>50^{\prime \prime}\right\}\right)} \\
& =\frac{\operatorname{Pr}\left(\text { Claim } \mid " 30-50^{\prime \prime}\right) \operatorname{Pr}\left(" 30-50^{\prime \prime} \mid " 30-50^{\left." " \cup ">50^{\prime \prime}\right)}\right.}{\operatorname{Pr}\left(\text { Claim }\left\{\text { " } 30-50^{\prime \prime} \cup ">50 "\right\}\right)}
\end{aligned}
$$

where $\operatorname{Pr}($ Claim $\cap\{" 30-50 " \cup ">50 "\})=$
$\operatorname{Pr}($ Claim $\mid " 30-50 ") \operatorname{Pr}(" 30-50 " \mid " 30-50 " \cup ">50 ")+$ $\operatorname{Pr}($ Claim $\mid ">50 ") \operatorname{Pr}(" 30-50 " \mid " 30-50 " \cup ">50 ")$.
4b. Hence it follows that the expected amount claimed is

$$
\begin{aligned}
& E[\text { Amount Claim } \mid \text { Claim } \cap\{" 30-50 " \cup ">50 "\}] \\
= & 1000 \times \operatorname{Pr}\left(" 30-50 " \mid \text { Claim } \cap\left\{" 30-50 " \cup ">50^{\prime \prime}\right\}\right) \\
& +1500 \times \operatorname{Pr}(">50 " \mid \text { Claim } \cap\{" 30-50 " \cup ">50 "\}) \\
= & \frac{0.4762}{0.4762+0.4286} \times 1000+\frac{0.4286}{0.4762+0.4286} \times 1500 \\
= & 1236,8 \$
\end{aligned}
$$

Conditional Densities: Continuous Case

- Given a joint p.d.f. for two r.v. X, Y it is possible to compute the conditional p.d.f. of X having observed $Y=y$.
- Assume X, Y are continous-valued r.v. with a joint p.d.f. $f(x, y)$ then the conditional pdf of X given $Y=y$ is

$$
f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}
$$

- This can be heuristically established by noting that

$$
\begin{aligned}
f_{X \mid Y}(x \mid y) d x & =\frac{f(x, y) d x d y}{f_{Y}(y) d y} \\
& \approx \frac{P(x \leq X \leq x+d x \cap y \leq Y \leq y+d y)}{P(y \leq Y \leq y+d y)} \\
& =P(x \leq X \leq x+d x \mid y \leq Y \leq y+d y)
\end{aligned}
$$

- In the case where X and Y are independent, we have $f_{X \mid Y}(x \mid y)=f_{X}(x)$ as $f(x, y)=f_{X}(x) f_{Y}(y)$.

Conditional Densities: Continuous Case

- We have

$$
f(x, y)=f_{X \mid Y}(x \mid y) f_{Y}(y)
$$

and similarly

$$
f(x, y)=f_{Y \mid X}(y \mid x) f_{X}(x)
$$

- Hence we obtain

$$
f_{X \mid Y}(x \mid y)=\frac{f_{Y \mid X}(y \mid x) f_{X}(x)}{f_{Y}(y)}
$$

which holds if $f_{Y}(y)>0$.

Conditional Expectation and Variance

- We can define the mean, variance of the conditional p.m.f.
- The conditional mean is given by

$$
E(X \mid Y=y)=\int x f_{X \mid Y}(x \mid y) d x
$$

- The conditional variance is given by

$$
\begin{aligned}
\operatorname{Var}(X \mid Y=y) & =E\left((X-E(X \mid Y=y))^{2} \mid Y=y\right) \\
& =E\left(X^{2} \mid Y=y\right)-\{E(X \mid Y=y)\}^{2}
\end{aligned}
$$

where

$$
E\left(X^{2} \mid Y=y\right)=\int x^{2} f_{X \mid Y}(x \mid y) d x
$$

- $E(X \mid Y=y)$ and $\operatorname{Var}(X \mid Y=y)$ are functions but $E(X \mid Y)$ and $\operatorname{Var}(X \mid Y)$ are random variables.

Example: Toy example

- Find the conditional pdf of Y given X and $E(Y \mid X=x)$ when their joint density is

$$
f(x, y)=\lambda^{2} e^{-\lambda y} \text { for } 0 \leq x \leq y \leq \infty
$$

- We have for $0 \leq x \leq \infty$

$$
f_{X}(x)=\int_{x}^{\infty} \lambda^{2} e^{-\lambda y} d y=\lambda e^{-\lambda x}
$$

so for $0 \leq x \leq y \leq \infty$

$$
f_{Y \mid X}(y \mid x)=\frac{f(x, y)}{f_{X}(x)}=\lambda e^{\lambda(x-y)}
$$

- Hence, we obtain

$$
\begin{aligned}
& \left.E(Y \mid X=x)=\int_{x}^{\infty} y f_{Y \mid X}(y \mid x) d y \text { (change of var. } u=y-x\right) \\
& =\int_{0}^{\infty}(u+x) \lambda e^{-\lambda u} d u=\frac{1}{\lambda}+x .
\end{aligned}
$$

Example: Another Toy example

- Find the conditional pdf of Y given X and $E(Y \mid X=x)$ when their joint density is

$$
f(x, y)=x e^{-x(y+1)} \text { for } x, y \geq 0
$$

- We have for $0 \leq x \leq \infty$

$$
f_{X}(x)=\int_{0}^{\infty} x e^{-x(y+1)} d y=e^{-x}
$$

so that for $0 \leq y \leq \infty$

$$
f_{Y \mid X}(y \mid x)=\frac{f(x, y)}{f_{X}(x)}=x e^{-x y}
$$

- It follows that

$$
E(Y \mid X=x)=\int_{0}^{\infty} y f_{Y \mid X}(y \mid x) d y=\frac{1}{x}
$$

Optimality of Conditional Expectation

- Let us consider two r.v. X and Y. Assume we observe Y and want to find a way to estimate X based on Y. Then in some sense, $E(X \mid Y)$ is the best possible estimate of X.
- Proposition. Consider an arbitrary function $g(X)$ then, we have

$$
E\left[(X-E(X \mid Y))^{2}\right] \leq E\left[(X-g(Y))^{2}\right]
$$

that is the expected square "distance" between $g(Y)$ and X is minimized for $g(Y)=E(X \mid Y)$.

- This is valid for both discrete and continuous r.v.

