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Sum of Independent Random Variables

Consider Z = X + Y where X and Y are disrete r.v. of respective
p.m.f. pX (x) and pY (y) then

pZ (z) = ∑
y
pX (z − y) pY (y) .

Consider Z = X + Y where X and Y are continuous r.v. of
respective p.d.f. fX (x) and fY (y) then

fZ (z) =
∫ ∞

−∞
fX (z − y) fY (y) dy .
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Sum of Exponential Random Variables

Consider two independent exponential r.v. X , Y of parameter λ (i.e.
fX (x) = fY (x) = λe−λx1[0,∞) (x)).

The pdf of Z = X + Y is fZ (z) = 0 for z < 0 and for z > 0

fZ (z) =
∫ ∞

−∞
λe−λ(z−y )1[0,∞) (z − y) λe−λy1[0,∞) (y) dy

= λ2e−λz
∫ ∞

0
1[0,∞) (z − y) dy

= λ2e−λz
∫ z

0
1[0,∞) (z − y) dy

= λ2ze−λz .
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Sum of Gaussian Random Variables

Consider two independent normal standard r.v. X , Y (i.e.
fX (x) = fY (x) = 1√

2π
e−x

2/2) then the pdf of Z = X + Y is

fZ (z) =
1
2π

∫ ∞

−∞
e−(z−y )

2/2e−y
2/2dy

where

(z − y)2 + y2 = z2 + 2y2 − 2yz
= z2 + 2 (y − z/2)2 − z2/2 = 2 (y − z/2)2 + z2/2

So we have

fZ (z) =
e−z

2/4

2π

√
π
∫ ∞

−∞

1√
π
e−(y−z/2)2dy =

e−z
2/4

√
2π
√
2

Hence Z is a normal r.v. of mean 0 and variance 2.
Generalization: if X is an normal r.v.

(
µX , σ

2
X

)
and Y is an normal

r.v.
(
µY , σ

2
Y

)
where X and Y are independent then Z is a normal

r.v.
(
µX + µY , σ

2
X + σ2Y

)
.
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Conditional Distributions: Discrete Case

Given a joint p.m.f. for two r.v. X ,Y it is possible to compute the
conditional p.m.f. X given Y = y .

Assume X ,Y are discrete-valued r.v. with a joint p.m.f. p (x , y) then
the conditional p.m.f. of X given Y = y is

pX |Y (x | y) : = P (X = x |Y = y)

=
P (X = x ∩ Y = y)

P (Y = y)

=
p (x , y)
pY (y)

.

In the case where X and Y are independent, we have
pX |Y (x | y) = pX (x) as p (x , y) = pX (x) pY (y) .
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Conditional Distributions: Discrete Case

We have
p (x , y) = pX |Y (x | y) pY (y)

and similarly
p (x , y) = pY |X (y | x) pX (x)

Hence we obtain

pX |Y (x | y) =
pY |X (y | x) pX (x)

pY (y)

which holds if pY (y) > 0.
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Conditional Expectation and Variance: Discrete Case

We can define the mean, variance of the conditional p.m.f.

The conditional mean is given by

E (X |Y = y) = ∑
x
x · pX |Y (x | y)

The conditional variance is given by

Var (X |Y = y) = E
(
(X − E (X |Y = y))2 |Y = y

)
= E

(
X 2|Y = y

)
− {E (X |Y = y)}2

where
E
(
X 2|Y = y

)
= ∑

x
x2 · pX |Y (x | y)

E (X |Y = y) and Var (X |Y = y) are functions but E (X |Y ) and
Var (X |Y ) are random variables.
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Example: Toy problem

Consider X ∈ {0, 1, 2} and Y ∈ {0, 1, 2} such that their joint pmf is
given by

y
0 1 2

x 0 1/9 2/9 1/9
1 2/9 2/9 0
2 1/9 0 0

The conditional pmf of X given Y = 0 and Y = 1 are

pX |Y (x | 0) =
p (x , y = 0)

1/9+ 2/9+ 1/9
, pX |Y (x | 1) =

p (x , y = 1)
2/9+ 2/9+ 0

.

We have

E (X | 0) = 1× pX |Y (x | 0) + 2× pX |Y (x | 0)

=
2/9
4/9

+ 2× 1/9
4/9

= 1
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Example: Fair Die

Roll a die until we get a 6. Let Y be the total number of rolls and X
the number of 1’s we get. What is the conditional pmf pX |Y (x | y)?
Compute E (X | y) and Var (X |Y = y) .
The event Y = y means that there were y − 1 rolls that were not a 6
and then the y th roll was a six.

So pX |Y (x | y) is a binomial distribution with n = y − 1 trials and
proba. of success p = 1/5.
It follows that

E (X | y) = np =
(y − 1)
5

,

Var (X |y) = np (1− p) = 4 (y − 1)
25

If we do not observe Y = y , then E (X |Y ) = Y−1
5 and

Var (X |Y ) = 4(Y−1)
25 are not numbers but random variables.
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Example: Fair Die

As E (X |Y ) is a random variable, it is possible to compute its
expectation

E (E (X |Y )) = ∑
y
E (X |Y = y) .pY (y)

= ∑
y

(y − 1)
5

.pY (y)

= −1
5
+∑

y
ypY (y) = −

1
5
+ E (Y )

= −1
5
+ 6 as Y Geometric

It can actually be easily established that

E (E (X |Y )) = E (X ) .
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Example: Poisson random variables

Consider two Poisson independent r.v. X and Y of respective p.m.f.
pX (x) = e−λ λx

x ! for x = 0, 1, 2, .... and pY (y) = e
−λ′ λ′y

y ! . Calculate
the conditional p.m.f. of X given X + Y = m. What is the
conditional expectation and variance E (X | y) and Var (X | y)?
We have p (X = x |X + Y = m) = 0 for x > m and for x ≤ m

p (X = x |X + Y = m) = p(X=x ,X+Y=m)
p(X+Y=m)

= p(X=x ,Y=m−x )
p(X+Y=m) = pX (X=x )pY (Y=m−x )

p(X+Y=m)

=
e−λ λx

x ! e
−λ′ (λ

′)m−x

(m−x )!

e−(λ+λ′) (λ+λ′)m

m!

as X + Y is Poisson λ+ λ′

=

(
m
x

)
λx (λ′)

m−x

(λ+λ′)
m =

(
m
x

)(
λ

λ+λ′

)x (
1− λ

λ+λ′

)m−x
which is a Binomial of parameter n = m and success proba
p = λ/

(
λ+ λ′

)
.
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Example: Poisson random variables

Hence we have

E (X |X + Y = m) = np = mλ(
λ+ λ′

)
We also obtain

Var (X |X + Y = m) = np (1− p)

=
mλλ′(

λ+ λ′
)2
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Example: How Many Tax Fraudsters?

The number N of tax fraudsters is assumed to follow a Poisson
distribution with param λ. Each tax fraudster is identified with proba
p independently of the other fraudsters. Let K be the number of
fraudsters identified. What is the conditional p.m.f. of N given
K = k? Compute E (N | k) .
We have

pN (n) = e−λ λn

n!
,

pK |N (k | n) =

(
n
k

)
pk (1− p)n−k .

We want to compute

pN |K (n| k) =
pK |N (k | n) pN (n)

pK (k)
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Example: How Many Tax Fraudsters?

We have pN |K (n| k) = 0 if n < k.
If n ≥ k

pN |K (n| k) =

(
n
k

)
pk (1− p)n−k e−λ λn

n!

∑m≥k

(
m
k

)
pk (1− p)m−k e−λ λm

m!

=
{(1− p) λ}n−k

(n− k)! e−(1−p)λ (use i = m− k)

Hence we have

E (N | k) = ∑
n≥k

n
{(1− p) λ}n−k

(n− k)! e−(1−p)λ = k + (1− p) λ
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