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Jointly Distributed Random Variables

If both X and Y are continuous r.v., then their joint p.d.f. is a
non-negative function f (x , y) such that for any set C

P {(X ,Y ) ∈ C} =
∫ ∫

(x ,y )∈C
f (x , y) dxdy .

In particular, we have the following multivariate c.d.f.

F (a, b) = P (X ≤ a,Y ≤ b) =
∫ a

−∞

∫ b

−∞
f (x , y) dxdy .

and, when we differentiate, we obtain

f (x , y) =
∂2

∂x∂y
F (x , y) .

For X and Y are discrete r.v., then their joint p.m.f. is

P (X = x ,Y = y) = p (x , y)

and P {(X ,Y ) ∈ C} = ∑
(x ,y )∈C

p (x , y) .
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Independent Random Variables

The r.v. X and Y are said to be independent if, for any sets A and B
we have

P (X ∈ A,Y ∈ B) = P (X ∈ A)P (Y ∈ B)
It can be shown that X and Y are independent if and only if

F (x , y) = FX (x) FY (y)

and
f (x , y) = fX (x) fY (y)

that is the joint c.d.f. (resp. the joint p.d.f.) is the product of the
marginal c.d.f.s (resp. the marginal p.d.f.s)
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Example

The joint density of two r.v. X and Y is given by

f (x , y) =
{
x e−(x+y ) for x > 0 and y > 0
0 otherwise.

Are the r.v. X and Y independent?
We need to check whether f (x , y) = fX (x) fY (y) or not. We have
for x > 0

fX (x) =
∫ ∞

0
f (x , y) dy = xe−x

∫ ∞

0
e−ydy = xe−x

and for y > 0

fY (y) =
∫ ∞

0
f (x , y) dx = e−y

∫ ∞

0
xe−xdx

= e−y
{[
−xe−x

]∞
0 +

∫ ∞

0
e−xdx

}
= e−y

so X and Y are independent rv.
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Example: Insurance Policies

An insurance company sells two types of auto insurance policies:
Basic and Deluxe. The time until the next Basic policy claim is an
epxonential random variable with mean two days. The time until the
next Deluxe policy claim is an independent exponential random
variable with mean three days. What is the probability that the next
claim will be a Deluxe policy claim?

In this case, we have for 0 < t1 < ∞, 0 < t2 < ∞

f (t1, t2) =
(
1
2
exp (−t1/2)

)(
1
3
exp (−t2/3)

)
and we want to find

P (T2 < T1) =
∫ ∞

0

∫ t1

0
f (t1, t2) dt1dt2.
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Example: Insurance Policies

We have

P (T2 < T1) =
∫ ∞

0

[∫ t1

0
f (t1, t2) dt2

]
dt1

=
∫ ∞

0
exp (−t1/2)

[
−1
2
exp (−t2/3)

]t1
0
dt1

=
∫ ∞

0

(
1
2
exp (−t1/2)−

1
2
exp (−t1/2) exp (−t1/3)

)
dt1

=
∫ ∞

0

(
1
2
exp (−t1/2)−

1
2
exp (−5t1/6)

)
dt1

=

[
− exp (−t1/2) +

3
5
exp (−5t1/6)

]∞

0
= 1− 3

5
=
2
5
.
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Example: Operational Cost

A device containing two key components fails when, and only when,
both components fail. The lifetimes, T1 and T2, of these components
are independent with common density function f (t) = exp (−t) for
t ≥ 0. The cost X of operating the device until failure is 2T1 + T2.
What is the density function of X?
We have fX (x) > 0 only if x ≥ 0. For x ≥ 0, we have

P (X ≤ x) = P (2T1 + T2 ≤ x)

=
∫ x

0
exp (−t2)

[∫ 1
2 (x−t2)

0
exp (−t1) dt1

]
dt2

=
∫ x

0
exp (−t2) [− exp (−t1)]

1
2 (x−t2)
0 dt2

=
∫ x

0
exp (−t2)

[
1− exp

(
−1
2
(x − t2)

)]
dt2

=

[
− exp (−t2) + 2 exp

(
−x
2

)
exp

(
− t2
2

)]x
0

= 1− 2 exp
(
−x
2

)
+ exp (−x)AD () March 2010 7 / 13



Example: Operational Cost

We have

P (X ≤ x) =

[
− exp (−t2) + 2 exp

(
−x
2

)
exp

(
− t2
2

)]x
0

= 1− 2 exp
(
−x
2

)
+ exp (−x) .

Hence, the density is given by

fX (x) =
dP (X ≤ x)

dx

= exp
(
−x
2

)
− exp (−x)

for x ≥ 0.
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Sum of Independent Random Variables

Consider two integer-valued independent r.v. X and Y of respective
p.m.f. pX (x) and pY (y).

Consider Z = X + Y , we want to compute the p.m.f. of Z denoted
pZ (z).

Assume Y = y then Z = z if and only if X = z − y and

P (X = z − y ∩ Y = y) = pX (z − y) pY (y)

so, as Y can take integer values and the events
(X = z − y) ∩ (Y = y) and (X = z − y ′) ∩ (Y = y ′) are mutually
exclusive for y 6= y ′, we have

pZ (z) =
∞

∑
y=−∞

pX (z − y) pY (y) .
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Sum of Poisson Random Variables

Consider two Poisson independent r.v. X and Y of respective p.m.f.
pX (x) = e−λ λx

x ! for x = 0, 1, 2, .... and pY (y) = e
−λ′ λ′y

y ! .

Consider Z = X + Y , then we can prove that Z is Poisson of
parameter λ+ λ′.

Proof: For z ≥ 0 we have Y = y ≤ z that X = z − y

pZ (z) = e−(λ+λ′)
z

∑
y=0

λ(z−y )

(z − y)!

(
λ′
)y
y !

=
e−(λ+λ′)

z !

z

∑
y=0

(
z
y

) (
λ′
)y

λ(z−y )

=
e−(λ+λ′)

z !
(
λ+ λ′

)z (by binomial formula)

AD () March 2010 10 / 13



Sum of Independent Random Variables

In numerous scenarios, we have to sum independent continuous r.v.;
signal + noise, sums of different random effects etc.

Assume that X ,Y are continuous r.v. of respective pdf fX (x) and
fY (y) then Z = X + Y admits the pdf

fZ (z) =
∫ ∞

−∞
fX (z − y) fY (y) dy

=
∫ ∞

−∞
fX (x) fY (z − x) dx

The pdf fZ (z) is the so-called “convolution”of fX (x) and fY (y).
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Proof

We have

FZ (z) = P (Z ≤ z) = P (X + Y ≤ z)

=
∫ ∫

(x+y≤z )
fX (x) fY (y) dxdy

=
∫ ∫

(y∈R;x≤z−y )
fX (x) fY (y) dxdy

=
∫ ∞

−∞

(∫ z−y

−∞
fX (x) dx

)
fY (y) dy

=
∫ ∞

−∞
FX (z − y) fY (y) dy

Now we obtain

fZ (z) =
dFZ (z)
dz

=
∫ ∞

−∞

dFX (z − y)
dz

fY (y) dy

=
∫ ∞

−∞
fX (z − y) fY (y) dy (chain rule)
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Sum of Uniform Random Variables

In this case, we have fX (x) = 1[0,1] (x) and fY (y) = 1[0,1] (y) so
fZ (z) is non-null in [0, 2]

We have

fZ (z) =
∫ ∞

−∞
fX (z − y) fY (y) dy

=
∫ 1

0
fX (z − y) dy =

∫ 1

0
1[0,1] (z − y) dy

where∫ 1

0
1[0,1] (z − y) dy =

∫ z

z−1
1[0,1] (u) du =

{
z if 0 ≤ z ≤ 1
2− z if 1 ≤ z ≤ 2
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