Lecture Stat 302
 Introduction to Probability - Slides 16

AD

March 2010

Change of Variables

- Let X be a r.v. of pdf $f_{X}(x)$ and consider the r.v. $Y=g(X)$.
- A legitimate question is to ask what is the pdf $f_{Y}(y)$ of Y.
- This has numerous applications: converting measurements, computing returns on investments etc.

Example: Conversion Celsius to Farenheit

- Consider X the temperature at a given time instant in Celsius. It is assumed that X has a pdf $f_{X}(x)$ and associated distribution function $F_{X}(x)$. Assume you want to convert this temperature in Fahrenheit, hence you introduce the r.v.

$$
Y=\frac{9}{5} X+32
$$

What is the distribution $F_{Y}(y)$ and its associated density $f_{Y}(y)$?

- Consider the general case where $Y=a X+b$ then for $a>0$

$$
\begin{aligned}
F_{Y}(y) & =\operatorname{Pr}(Y \leq y)=\operatorname{Pr}(a X+b \leq y)=\operatorname{Pr}\left(X \leq \frac{y-b}{a}\right) \\
& =F_{X}\left(\frac{y-b}{a}\right) \Rightarrow f_{Y}(y)=\frac{d F_{Y}(y)}{d y}=\frac{1}{a} f_{X}\left(\frac{y-b}{a}\right)
\end{aligned}
$$

- For $a<0, F_{Y}(y)=1-F_{X}\left(\frac{y-b}{a}\right)$ so $f_{Y}(y)=\frac{-1}{a} f_{X}\left(\frac{y-b}{a}\right)$.

Example: Polar to Cartesian coordinates

- Assume you evolve on a circle of radius $R=1$. The cartesian coordinates associated to an angle θ are

$$
X=\cos \theta, \quad Y=\sin \theta
$$

Assuming that the angle θ is distributed uniformly on $\left[0, \frac{\pi}{2}\right]$, what is the pdf of Y ?

- We have $P(Y \leq y)=0$ for $y \leq 0$ and $P(Y \leq y)=1$ for $y \geq 1$. For $0 \leq y \leq 1$

$$
P(Y \leq y)=P(\sin \theta \leq y)=P\left(\theta \leq \sin ^{-1} y\right)=\frac{2}{\pi} \sin ^{-1} y
$$

- By differentiating $P(Y \leq y)$, we obtain

$$
f_{Y}(y)=\frac{2}{\pi \sqrt{1-y^{2}}} \text { for } 0 \leq y \leq 1
$$

Example: Squared random variable

- Consider a r.v. X of pdf $f_{X}(x)$ and associated distribution function $F_{X}(x)$. You are not interested in X per se but in $Y=X^{2}$. What is the distribution $F_{Y}(y)$ and its associated density $f_{Y}(y)$?
- For $y \leq 0$, we have $F_{Y}(y)=0$ and $f_{Y}(y)=0$. For $y \geq 0$, we have

$$
\begin{aligned}
F_{Y}(y) & =\operatorname{Pr}(Y \leq y)=\operatorname{Pr}\left(X^{2} \leq y\right) \\
& =\operatorname{Pr}(-\sqrt{y} \leq X \leq \sqrt{y}) \\
& =F_{X}(\sqrt{y})-F_{X}(-\sqrt{y})
\end{aligned}
$$

- Using the chain rule, we obtain

$$
f_{Y}(y)=\frac{d F_{Y}(y)}{d y}=\frac{1}{2 \sqrt{y}} f_{X}(\sqrt{y})+\frac{1}{2 \sqrt{y}} f_{X}(-\sqrt{y})
$$

Change of variables

- Consider the case where $g(x)$ is a strictly monotonic differentiable function of x. Then the r.v. $Y=g(X)$ has a pdf given by

$$
f_{Y}(y)= \begin{cases}f_{X}\left(g^{-1}(y)\right)\left|\frac{d g^{-1}(y)}{d y}\right| & \text { if } y=g(x) \text { for some } x \\ 0 & \text { if } y \neq g(x) \text { for all } x\end{cases}
$$

- Proof follows for increasing $g(x)$ from

$$
\begin{aligned}
F_{Y}(y) & =P(Y \leq y)=P(g(X) \leq y) \\
& =P\left(X \leq g^{-1}(y)\right) \text { if } y=g(x) \text { for some } x \\
& =F_{X}\left(g^{-1}(y)\right)
\end{aligned}
$$

- By the chain rule,we obtain

$$
f_{Y}(y)=\frac{d F_{Y}(y)}{d y}=\frac{d g^{-1}(y)}{d y} f_{X}\left(g^{-1}(y)\right)
$$

Example: Investment

- An investment account earns an annual interested rate R that follows a uniform distribution on the interval $(0.04,0.08)$. The value of a $10,000 \$$ initial investment in this account after one year is given by $V=10,000 \exp (R)$. Determine the cdf and pdf of V.
- We have $F_{V}(v)=0$ for $v \leq 10,000 \times \exp (0.04)$ and for $v \geq 10,000 \times \exp (0.04)$

$$
\begin{aligned}
F_{V}(v) & =P(V \leq v)=P(R \leq \log v-\log 10,000) \\
& =\frac{1}{0.04} \int_{0.04}^{\log v-\log 10,000} d r=25 \log (v)-25 \log (10,000)-1 \\
& =25\left[\log \frac{v}{10,000}-0.04\right]
\end{aligned}
$$

so $f_{V}(v)=\frac{d F(v)}{d v}=\frac{25}{v}$ or directly for

$$
g(r)=10,000 \exp (r)=v \Leftrightarrow r=g^{-1}(v)=\log \frac{v}{10,000}
$$

$$
f_{V}(v)=\left|\frac{d g^{-1}(v)}{d v}\right| f_{R}\left(g^{-1}(v)\right)=\frac{1}{v} \frac{1}{0.04}=\frac{25}{v}
$$

Example: Cauchy distribution

- Consider a real r.v. X of pdf

$$
f_{X}(x)=\frac{1}{\pi} \frac{1}{\left(1+x^{2}\right)}
$$

What is the pdf of the r.v. $Y=g(X)=1 / X$?

- We have $X=g^{-1}(Y)=1 / Y$

$$
\begin{aligned}
f_{Y}(y) & =f_{X}\left(g^{-1}(y)\right)\left|\frac{d g^{-1}(y)}{d y}\right| \\
& =f_{X}(1 / y)\left|-\frac{1}{y^{2}}\right|=\frac{1}{\pi} \frac{1}{\left(1+1 / y^{2}\right)} \times \frac{1}{y^{2}} \\
& =\frac{1}{\pi} \frac{1}{\left(1+y^{2}\right)}=f_{X}(y) .
\end{aligned}
$$

