Lecture Stat 302
 Introduction to Probability - Slides 15

AD

March 2010

Continuous Random Variable

- Let X a (real-valued) continuous r.v.. It is characterized by its pdf $f: \mathbb{R} \rightarrow[0, \infty)$ which such that for any set A of real numbers

$$
P(X \in A)=\int_{A} f(x) d x
$$

and its distribution function

$$
F(x)=\operatorname{Pr}(X \leq x)=\int_{-\infty}^{x} f(y) d y
$$

- For any real-valued function $g: \mathbb{R} \rightarrow \mathbb{R}$, we have

$$
E(g(X))=\int_{-\infty}^{\infty} g(x) f(x) d x
$$

Normal Random Variables

- Also known as Gaussian random variables in the literature.
- We say that X is a normal r.v. of parameters $\left(\mu, \sigma^{2}\right)$ if its pdf is

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

- The normal distribution is often used to describe, at least approximately, any variable that tends to cluster around the mean; e.g. the heights of USA males are roughly normally distributed. A histogram of male heights will appear similar to a bell curve, with the correspondence becoming closer if more data are used.

Properties of Normal Random Variables

- It can indeed be checked that

$$
\int_{-\infty}^{\infty} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x=\sqrt{2 \pi} \sigma
$$

- We have also

$$
E(X)=\mu
$$

and

$$
\operatorname{Var}(X)=\sigma^{2}
$$

- Hence μ is referred to as the mean and σ^{2} as the variance.

The 68-95-99.7 Rule

- We have

$$
\begin{aligned}
P(\mu-\sigma \leq X \leq \mu+\sigma) & \approx 0.68 \\
P(\mu-2 \sigma \leq X \leq \mu+2 \sigma) & \approx 0.95 \\
P(\mu-3 \sigma \leq X \leq \mu+3 \sigma) & \approx 0.997
\end{aligned}
$$

- This helps doing quickly some approximate calculations.
- The distribution of the scores of the more than 1.3 million high school seniors in 2002 who took the SAT verbal exam is close to normal with $\left(\mu, \sigma^{2}\right)=\left(504,111^{2}\right)$.
- Hence 95% of the SAT scores are between $504-222=282$ and $504+222=276$. The other 5% of scores lie outside this range.

Properties of Normal Random Variables

- Let X be a normal r.v. of parameters $\left(\mu, \sigma^{2}\right)$ and consider the new r.v. Y such that

$$
Y=a X+b
$$

then we know that

$$
\begin{aligned}
E(Y) & =a E(X)+b=a \mu+b \\
\operatorname{Var}(Y) & =a^{2} \operatorname{Var}(X)=a^{2} \sigma^{2}
\end{aligned}
$$

- A much stronger result is true, Y is a normal r.v. of parameters $\left(a \mu+b, a^{2} \sigma^{2}\right)$.

Properties of Normal Random Variables

- For $a>0$, we have

$$
P(Y \leq y)=P(a X+b \leq y)=P\left(X \leq \frac{y-b}{a}\right)=F_{X}\left(\frac{y-b}{a}\right)
$$

- The chain rule tells us that $[u(v(y))]^{\prime}=v^{\prime}(y) \cdot u^{\prime}(v(y))$ so

$$
\begin{aligned}
& f_{Y}(y)=\frac{1}{a} f_{X}\left(\frac{y-b}{a}\right) \\
& =\frac{1}{a} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(\frac{y-b}{a}-\mu\right)^{2}}{2 \sigma^{2}}\right)=\frac{1}{\sqrt{2 \pi} \sigma a} \exp \left(-\frac{(y-b-a \mu)^{2}}{2 \sigma^{2} a^{2}}\right)
\end{aligned}
$$

- For $a<0$, we use

$$
P(Y \leq y)=P(a X+b \leq y)=P\left(X \geq \frac{y-b}{a}\right)=1-F_{X}\left(\frac{y-b}{a}\right)
$$

and

$$
f_{Y}(y)=\frac{-1}{a} f_{X}\left(\frac{y-b}{a}\right)=\frac{1}{\sqrt{2 \pi} \sigma|a|} \exp \left(-\frac{(y-b-a \mu)^{2}}{2 \sigma^{2} a^{2}}\right)
$$

Cumulative Distribution Function

- Consider X a normal r.v. of parameters $\left(\mu=0, \sigma^{2}=1\right)$; known as standard r.v. in the literature.
- It is customary to denote $\Phi(x)$ the cdf of X; i.e.

$$
\Phi(x)=P(X \leq x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} \exp \left(-\frac{y^{2}}{2}\right) d y
$$

- $\Phi(x)$ does not admit an analytical expression but is tabulated for $x \geq 0$.
- One can easily show that

$$
\Phi(-x)=P(X \leq-x)=P(X \geq x)=1-\Phi(x)
$$

Standardizing normal variables

- Let X a normal r.v. of mean μ and variance σ^{2}.
- Define the new r.v.

$$
Z=\frac{X-\mu}{\sigma}
$$

then Z is a standard normal r.v.

- Hence

$$
\begin{aligned}
P(a \leq X \leq b) & =P\left(\frac{a-\mu}{\sigma} \leq \frac{X-\mu}{\sigma} \leq \frac{b-\mu}{\sigma}\right) \\
& =\Phi\left(\frac{b-\mu}{\sigma}\right)-\Phi\left(\frac{a-\mu}{\sigma}\right)
\end{aligned}
$$

Example

- Let X a normal r.v. of mean $\mu=2$ and variance $\sigma^{2}=25$. Assume you want to compute using the table of $\Phi(x)$ (a) $P(1 \leq X \leq 4)$, (b) $P(X>0)$ and (c) $P\left((X-2)^{2}>5\right)$
- (a) We have

$$
\begin{aligned}
P(1 \leq X \leq 4) & =P\left(\frac{1-2}{5} \leq \frac{X-2}{5} \leq \frac{4-2}{5}\right) \\
& =P\left(\frac{-1}{5} \leq Z \leq \frac{2}{5}\right)=\Phi\left(\frac{2}{5}\right)-\Phi\left(-\frac{1}{5}\right) \\
& =\Phi\left(\frac{2}{5}\right)-\left(1-\Phi\left(\frac{1}{5}\right)\right)
\end{aligned}
$$

where Z is a normal r.v. of mean 0 and variance 1 ; i.e. a standard normal r.v.

Example

- (b) We have

$$
\begin{aligned}
P(X>0) & =P\left(\frac{X-2}{5}>\frac{-2}{5}\right)=P\left(Z>\frac{-2}{5}\right) \\
& =1-\Phi\left(-\frac{2}{5}\right)=\Phi\left(\frac{2}{5}\right)
\end{aligned}
$$

- (c) We have

$$
\begin{aligned}
P\left((X-2)^{2}>5\right) & =P\left(\frac{(X-2)^{2}}{25}>\frac{1}{5}\right)=P\left(Z^{2}>\frac{1}{5}\right) \\
& =P\left(Z>\frac{1}{\sqrt{5}}\right)+P\left(Z<-\frac{1}{\sqrt{5}}\right) \\
& =1-\Phi\left(\frac{1}{\sqrt{5}}\right)+\Phi\left(-\frac{1}{\sqrt{5}}\right) \\
& =2\left(1-\Phi\left(\frac{1}{\sqrt{5}}\right)\right)
\end{aligned}
$$

Example: Signal Transmission

- A binary message - either 0 or 1 - is transmitted through the atmosphere from A to B. The value 2 is sent when the message is 1 and the value -2 is sent when the message is 0 . At the location B of the receiver, the message received is corrupted by some channel noise; that is if the signal $X=x$ has been transmitted then at the receiver we observe

$$
R=x+N
$$

where the noise is assumed to be a standard normal r.v.

- At the receiver, the following decoding scheme is used. If $R \geq 0.5$ then we conclude that 1 has been transmitted. If $R<0.5$ then we conclude that 0 has been transmitted.
- What is the probability of decoding correctly the transmitted message when we transmit 0 and when we transmit 1 ?

Example: Signal Transmission

- If we transmit 0 , then $R=-2+N$ is an normal r.v. of mean -2 and variance 1 so

$$
\begin{aligned}
P(R<0.5) & =P\left(\frac{R+2}{1}<\frac{0.5+2}{1}\right) \\
& =P(Z<2.5)=\Phi(2.5) \approx 0.999
\end{aligned}
$$

- If we transmit 1 , then $R=2+N$ is an normal r.v. of mean 2 and variance 1 so

$$
\begin{aligned}
P(R>0.5) & =P\left(\frac{R-2}{1}>\frac{0.5-2}{1}\right) \\
& =P(Z>-1.5)=\Phi(1.5) \approx 0.933
\end{aligned}
$$

- Generalization of this idea $=$ Viterbi algorithm.

Normal Approximation to the Binomial Distribution

- Consider X a binomial r.v. of parameters n, p then we know that

$$
E(X)=n p, \operatorname{Var}(X)=n p(1-p)
$$

- We have already seen that it is possible to approximate X by a Poisson distribution of parameter $\lambda=n p$.
- As $n p \rightarrow \infty$, it can be shown that X can be approximated by a normal r.v. with $\mu=n p$ and $\sigma^{2}=n p(1-p)$ so

$$
\begin{aligned}
P(a \leq X \leq b) & =P\left(\frac{a-\mu}{\sigma} \leq \frac{X-\mu}{\sigma} \leq \frac{b-\mu}{\sigma}\right) \\
& \approx \Phi\left(\frac{b-\mu}{\sigma}\right)-\Phi\left(\frac{a-\mu}{\sigma}\right)
\end{aligned}
$$

Example: Bald men

- If 10% of men are bald, what is the probability that fewer than 100 in a random sample of 818 men are bald?
- Let X be the number of bald men in a random sample of 818 men, this is a Bernoulli r.v. of parameters $p=0.1$ and $n=818$.
- We are interested in computing $P(X \leq 100)$. We can use the standard binomial but this is tiedous. We use the normal approximation where

$$
\mu=n p=81.8, \sigma=\sqrt{n p(1-p)}=8.5802
$$

SO

$$
\begin{aligned}
P(0 \leq X \leq 100) & =\Phi\left(\frac{100-81.8}{8.5802}\right)-\Phi\left(\frac{-81.8}{8.5802}\right) \\
& \approx 0.983
\end{aligned}
$$

Example: Threshold signal

- Assume to transmit a random signal X which follows a normal distribution $\left(\mu, \sigma^{2}\right)$. The receiver only detects signals above a given threshold m so that what is observed is

$$
Y= \begin{cases}X & \text { if } X \geq m \\ 0 & \text { if } X<m\end{cases}
$$

- Compute the expected value of the received signal Y ?

Example: Threshold signal

- We have
$E(Y)=\int_{m}^{\infty} x \frac{1}{\sqrt{2 \pi \sigma}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x$
$=\int_{m}^{\infty}(x-\mu) \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x+\mu \int_{m}^{\infty} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x$
where we use $x=(x-\mu)+\mu$.
- Now we have $\int_{m}^{\infty} \frac{1}{\sqrt{2 \pi \sigma}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x=1-\Phi\left(\frac{m-\mu}{\sigma}\right)$ and

$$
\begin{aligned}
& \int_{m}^{\infty}(x-\mu) \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x \\
& =\left[\frac{-\sigma^{2}}{\sqrt{2 \pi \sigma}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)\right]_{m}^{\infty} \\
& =\frac{\sigma}{\sqrt{2 \pi}} \exp \left(-\frac{(m-\mu)^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

so

$$
E(Y)=\frac{\sigma}{\sqrt{2 \pi}} \exp \left(-\frac{(m-\mu)^{2}}{2 \sigma^{2}}\right)+\mu\left(1-\Phi\left(\frac{m-\mu}{\sigma}\right)\right)
$$

Exercise: Stein's identity

- Let X a normal random variable of mean μ and variance σ^{2} then show

$$
E[(X-\mu) g(X)]=\sigma^{2} E\left[g^{\prime}(X)\right]
$$

when both sides exist.

- We have

$$
E[(X-\mu) g(X)]=\int_{-\infty}^{\infty} g(x)(x-\mu) \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x
$$

so by integration by parts

$$
\begin{aligned}
E[(X-\mu) g(X)]= & {\left[g(x) \times \frac{-\sigma^{2}}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)\right]_{-\infty}^{\infty} } \\
& +\int_{-\infty}^{\infty} g^{\prime}(x) \times \frac{\sigma^{2}}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x
\end{aligned}
$$

