Lecture Stat 302
 Introduction to Probability - Slides 14

AD

March 2010

Continuous Random Variable

- 'Formal' definition: We say that X is a (real-valued) continuous r.v. if there exists a nonnegative function $f: \mathbb{R} \rightarrow[0, \infty)$ such that for any set A of real numbers

$$
P(X \in A)=\int_{A} f(x) d x
$$

- $f(x)$ is called the probability density function (pdf) of the r.v. X and the associated (cumulative) distribution function is

$$
F(x)=\operatorname{Pr}(X \leq x)=\int_{-\infty}^{x} f(y) d y
$$

so we have

$$
f(x)=\frac{d F(x)}{d x}
$$

Example: Insurance Policy

- A group insurance policy covers the medical claims of the employees of a small company. The value, V, of the claims made in one year is described by

$$
V=100,000 X
$$

where X is a random variable with pdf

$$
f(x)= \begin{cases}c(1-x)^{4} & \text { if } 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

- What is the conditional probability that V exceeds 40,000 given that V exceeds 10,000 ?

Example: Insurance Policy

- We are interested in

$$
\begin{aligned}
P(V>40,000 \mid V>10,000) & =\frac{P(V>40,000 \cap V>10,000)}{P(V>10,000)} \\
& =\frac{P(V>40,000)}{P(V>10,000)}
\end{aligned}
$$

where

$$
P(V>v)=P(100,000 X>v)=P\left(X>\frac{v}{100,000}\right)
$$

- First we need to determine c using $\int_{0}^{1} f(x) d x=1$; that is

$$
\begin{aligned}
\int_{0}^{1} f(x) d x & =c\left[-\frac{(1-u)^{5}}{5}\right]_{0}^{1}=\frac{c}{5} \\
& \Rightarrow c=5
\end{aligned}
$$

Example: Insurance Policy

- We need to compute the $\operatorname{cdf} F_{X}(x)$ of X which is given by

$$
F_{X}(x)= \begin{cases}0 & \text { if } x<0 \\ c\left[-\frac{(1-u)^{5}}{5}\right]_{0}^{x}=1-(1-x)^{5} & \text { if } 0 \leq x \leq 1 \\ 1 & \text { if } x>1\end{cases}
$$

- So we are interested in

$$
P(V>40,000 \mid V>10,000)=\frac{1-F_{X}(0.4)}{1-F_{X}(0.1)}=\frac{0.078}{0.590}=0.132
$$

Example: Nuclear power plant

- Assume a nuclear power plant has three independent safety systems. These safety systems have lifetimes X_{1}, X_{2}, X_{3} in years which are exponential r.v.s with respective parameters $\lambda_{1}=1, \lambda_{2}=0.5$ and $\lambda_{3}=0.1$. Since their installation five years ago, these systems have never been inspected. What is the proba that the nuclear power plant is currently being operated without any working safety system?
- The probability that the safety system i it is not working is

$$
\begin{aligned}
\operatorname{Pr}\left(X_{i}<5\right) & =\lambda_{i} \int_{0}^{5} \exp \left(-\lambda_{i} x\right) d x=1-\exp \left(-\lambda_{i} 5\right) \\
& = \begin{cases}0.9933 & \text { if } i=1 \\
0.9179 & \text { if } i=2 \\
0.3935 & \text { if } i=3\end{cases}
\end{aligned}
$$

- Hence the probability that none of the system is working is simply

$$
\operatorname{Pr}\left(X_{1}<5\right) \operatorname{Pr}\left(X_{2}<5\right) \operatorname{Pr}\left(X_{3}<5\right)=0.3588
$$

Expectation of Continuous Random Variables

- We define the expected valued of an r.v. X by

$$
E(X)=\int_{-\infty}^{\infty} x f(x) d x
$$

- More generally for any real-valued function $g: \mathbb{R} \rightarrow \mathbb{R}$ then

$$
E(g(X))=\int_{-\infty}^{\infty} g(x) f(x) d x
$$

- Uniform density. We have for $c<d$ and $x \in[c, d]$

$$
f(x)=\frac{1}{d-c}
$$

then

$$
E(X)=\int_{-\infty}^{\infty} x f(x) d x=\frac{1}{d-c} \int_{c}^{d} x d x=\frac{d^{2}-c^{2}}{2(d-c)}=\frac{c+d}{2}
$$

Expectation of Continuous Random Variables

- Exponential density. We have for $\lambda>0$ and $x \geq 0$

$$
f(x)=\lambda \exp (-\lambda x)
$$

SO

$$
\begin{aligned}
E(X) & =\lambda \int_{0}^{\infty} x \exp (-\lambda x) d x \\
& =\lambda\left[x \frac{\exp (-\lambda x)}{-\lambda}\right]_{0}^{\infty}-\lambda \int_{0}^{\infty} \frac{\exp (-\lambda x)}{-\lambda} d x \\
& =\frac{1}{\lambda}
\end{aligned}
$$

- Even density. For $f(x)=f(-x)$, we have

$$
\begin{aligned}
& E(X)=\int_{-\infty}^{0} x f(x) d x+\int_{0}^{\infty} x f(x) d x \\
& =\int_{-\infty}^{0} x f(-x) d x+\int_{0}^{\infty} x f(x) d x \\
& =-\int_{0}^{\infty} u f(u) d x+\int_{0}^{\infty} x f(x) d x=0
\end{aligned}
$$

Expectation of Continuous Random Variables

- Consider the pdf

$$
f(x)=\frac{1}{(x+1)^{2}} \text { for } x \geq 0
$$

then

$$
\begin{aligned}
E(X+1) & =\int_{0}^{\infty} \frac{x+1}{(x+1)^{2}} d x=\int_{0}^{\infty} \frac{1}{x+1} d x \\
& =\lim _{u \rightarrow \infty}[\log (x+1)]_{0}^{u}=\infty
\end{aligned}
$$

Hence we can conclude that $E(X)$ is infinite in this case.

- Distributions such that $E(X)$ is not finite are sometimes referred to as heavy-tails; they appear a lot in finance, actuarial science etc.

Example: Selling Printers

- The lifetime of a printer costing $200 \$$ us exponentially distributed with mean 2 years. The manufacturer agrees to pay a full refund to a buyer if the printer fails during the first year following its purchase, and a one-half refund if it fails during the second year. If the manufacturer sells 100 printers, how much should it expect to pay in refunds?
- Let T denote a printer lifetime then

$$
f(t)=\frac{1}{2} \exp \left(-\frac{t}{2}\right) \mathbf{1}_{(0, \infty)}(t)
$$

so we have

$$
\begin{aligned}
P(T<1) & =\int_{0}^{1} f(t) d t=[\exp (-t / 2)]_{0}^{1} \\
& =1-\exp (-1 / 2)=0.393 \\
P(1<T<2) & =\int_{1}^{2} f(t) d t=[\exp (-t / 2)]_{1}^{2} \\
& =\exp (-1 / 2)-\exp (-1)=0.239 .
\end{aligned}
$$

Example: Selling Printers

- Let X_{i} denote the refund associated to the i th printer sold. Then for any $i=1, \ldots, 100$

$$
X_{i}= \begin{cases}200 & \text { with proba } 0.393 \\ 100 & \text { with proba } 0.239 \\ 0 & \text { with proba } 0.368\end{cases}
$$

so we have

$$
E\left(X_{i}\right)=200 \times 0.393+100 \times 0.239=102.56
$$

- The expected refund associated to the 100 printers sold is thus

$$
E\left(\sum_{i=1}^{100} X_{i}\right)=\sum_{i=1}^{100} E\left(X_{i}\right)=100 \times 102.56=10,256
$$

Example: Failure Discovery

- A device that continuously measures and records seismic activity is placed in a remote region. The time, T, to failure of this device is exponentially distributed with mean 3 years. Since the device will not be monitored during its first two years of service, the time to discovery of its failure is $X=\max (T, 2)$. What is the expected value of X ?
- We use the formula $E(g(T))=\int g(t) f(t) d t$ for $f(t)$ an exponential of parameter $1 / 3$ and $g(t)=\max (t, 2)$ so

$$
\begin{aligned}
& E(X)=\int_{0}^{\infty} \max (t, 2) \frac{1}{3} \exp \left(-\frac{t}{3}\right) d t \\
& =\int_{0}^{2} \frac{2}{3} \exp \left(-\frac{t}{3}\right) d t+\int_{2}^{\infty} \frac{t}{3} \exp \left(-\frac{t}{3}\right) d t \\
& =\left[-2 \exp \left(-\frac{t}{3}\right)\right]_{0}^{2}-\left[t \exp \left(-\frac{t}{3}\right)\right]_{2}^{\infty}+\int_{2}^{\infty} \frac{1}{3} \exp \left(-\frac{t}{3}\right) d t \\
& =-2 \exp \left(-\frac{2}{3}\right)+2+2 \exp \left(-\frac{2}{3}\right)-\left[3 \exp \left(-\frac{t}{3}\right)\right]_{2}^{\infty} \\
& =2+3 \exp \left(-\frac{2}{3}\right)=3.54
\end{aligned}
$$

Variance of Continuous Random Variables

- We define the variance as

$$
\begin{aligned}
\operatorname{Var}[X] & =E\left((X-E(X))^{2}\right) \\
& =E\left(X^{2}\right)-E(X)^{2}
\end{aligned}
$$

- Uniform density. We have for $f(x)=\frac{1}{d-c}$ for $x \in[c, d]$ and $E(X)=\frac{c+d}{2}$. We also have

$$
\begin{aligned}
E\left(X^{2}\right) & =\int_{-\infty}^{\infty} x^{2} f(x) d x=\frac{1}{d-c} \int_{c}^{d} x^{2} d x=\frac{d^{3}-c^{3}}{3(d-c)} \\
& =\frac{c^{2}+d^{2}+c d}{3}
\end{aligned}
$$

so

$$
\begin{aligned}
\operatorname{Var}[X] & =\frac{c^{2}+d^{2}+c d}{3}-\frac{(c+d)^{2}}{4} \\
& =\frac{(d-c)^{2}}{12}
\end{aligned}
$$

Example: Repair Cost and Insurance Payement

- The owner of an automobile insures it against damage by purchasing an insurance policy with a deductible of $250 \$$. In the event that the automobile is damaged, repair costs can be modeled by a uniform random variables on the interval $(0,1500)$. Determine the standard deviation of the insurance payement in the event that the automobile is damaged.
- Let X be the repair cost and Y the insurance payement then

$$
Y= \begin{cases}0 & \text { if } X<250 \\ X-250 & \text { if } X \geq 250\end{cases}
$$

and we want to compute $\sqrt{\operatorname{Var}(Y)}$.

Example: Repair Cost and Insurance Payement

- We have

$$
\begin{aligned}
& E(Y)=\int_{250}^{1500} \frac{1}{1500}(x-250) d x=\frac{1}{3000}\left[(x-250)^{2}\right]_{250}^{1500}=521 \\
& E\left(Y^{2}\right)=\int_{250}^{1500} \frac{1}{1500}(x-250)^{2} d x=\frac{1}{4500}\left[(x-250)^{3}\right]_{250}^{1500}=434,028
\end{aligned}
$$

- Finally, we obtain

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left(Y^{2}\right)-E(Y)^{2}=434,028-521^{2} \\
\sqrt{\operatorname{Var}(Y)} & =403
\end{aligned}
$$

Variance of Continuous Random Variables

- Exponential density. We have $f(x)=\lambda \exp (-\lambda x)$ for $\lambda>0$ and $x \geq 0$ and $E(X)=\frac{1}{\lambda}$. We have

$$
\begin{aligned}
E\left(X^{2}\right) & =\lambda \int_{0}^{\infty} x^{2} \exp (-\lambda x) d x \\
& =\lambda\left[x^{2} \frac{\exp (-\lambda x)}{-\lambda}\right]_{0}^{\infty}-\lambda \int_{0}^{\infty} 2 x \frac{\exp (-\lambda x)}{-\lambda} d x \\
& =\frac{2}{\lambda} E(X)=\frac{2}{\lambda^{2}}
\end{aligned}
$$

so

$$
\operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2}=\frac{1}{\lambda^{2}}
$$

Median of Continuous Random Variables

- The median of a continuous r.v. X of pdf $f(x)$ is the number m such that

$$
\int_{-\infty}^{m} f(x) d x=\int_{m}^{\infty} f(x) d x=\frac{1}{2}
$$

that is the number m such that

$$
\operatorname{Pr}(X \leq m)=P(X \geq m)=\frac{1}{2}
$$

- For example, assume we look at a population of people. Let X be the salary of a randomly chosen person from this population of $\operatorname{pdf} f(x)$, and let m be the median salary of the population. This means that half the population earns less than m dollars and half earns more than m dollars.
- Uniform density. For $c<d$, we have $f(x)=\frac{1}{d-c}$ and the median is $m=\frac{c+d}{2}$; i.e. in this case the median and $E(X)$ are similar.

Median of Continuous Random Variables

- Exponential density. We have $f(x)=\lambda \exp (-\lambda x)$ for $\lambda>0$ and $x \geq 0$.
- The median corresponds to the value

$$
\int_{0}^{m} \lambda \exp (-\lambda x) d x=\int_{m}^{\infty} \lambda \exp (-\lambda x) d x=\frac{1}{2}
$$

- We have

$$
\begin{aligned}
\int_{m}^{\infty} \lambda \exp (-\lambda x) d x & =[\exp (-\lambda x)]_{m}^{\infty} \\
& =\exp (-\lambda m)
\end{aligned}
$$

and

$$
\exp (-\lambda m)=\frac{1}{2} \Leftrightarrow m=\frac{\log 2}{\lambda}
$$

- In this case, the median and $E(X)$ are different.

