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Discrete Random Variables

A discrete r.v. X takes at most a countable number of possible values
fx1, x2, ...g with p.m.f.

p (xi ) = P (X = xi )

where

p (xi ) � 0 and
∞

∑
i=1
p (xi ) = 1.

Expected value/mean

µ = E (X ) =
∞

∑
i=1
xi p (xi ) .

Variance
Var (X ) = E

�
(X � µ)2

�
= E

�
X 2
�
� µ2.
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Poisson Random Variable

A discrete r.v. X taking values 0, 1, 2, ... is said to be a Poisson r.v.
with parameter λ, λ > 0, if

p (i) = P (X = i) = e�λ λi

i !
.

This expresses the probability of a number of events occurring in a
�xed period of time if these events occur with a known average rate λ.

If we consider a binomial r.v. X of parameters (n, p) such that n is
large and p is small enough so that np is moderate then the binomial
distribution can be well-approximated by the Poisson distribution of
parameter λ = np.
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Example: Waiting at the bus stop

Example: Assume that 6 buses per hour stop at your bus stop. If the
buses were arriving exactly every 10 minutes, then your average
waiting time would be 5 minutes; i.e. you wait between 0 and 10
minutes. What is the probability that you are going to wait at least 5
minutes without seeing any bus if the buses follow a Poisson
distribution? What is the proba to wait at least 10 minutes? What is
the proba of seeing two buses in 10 minutes?
Answer: If we let X1 be the number of buses arriving in 5 minutes, it
is a Poisson r.v. with parameter 0.5 (average rate 6 per hour). So we
have

P (X1 = 0) = e�0.5 = 0.60.

If we let X2 be the number of buses arriving in 10 minutes, it is a
Poisson r.v. with parameter 1. So we have

P (X2 = 0) = e�1 = 0.368, P (X2 = 2) = e�1
12

2!
= 0.184.
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Mean of a Poisson Random Variable

We have E (X ) = λ.

We have

E (X ) =
∞

∑
i=0
i P (X = i) =

∞

∑
i=0
i e�λ λi

i !

= e�λ
∞

∑
i=0

λ λi�1

(i � 1)!

= e�λλ
∞

∑
j=0

λj

j !
(change j  i � 1)

= e�λλeλ = λ.

Note that this is in agreement with our approximation of Binomial by
Poisson. A Binomial has mean np and we approximate it by a Poisson
of parameter λ = np which is also the mean of the Poisson
distribution.
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Variance of a Poisson Random Variable

We have Var (X ) = E
�
X 2
�
� E (X )2 = λ.

Proof: We have

E
�
X 2
�
=

∞

∑
i=0
i2 e�λ λi

i !
=

∞

∑
i=1
i2 e�λ λi

i !

= e�λ
∞

∑
i=1
i

λ λi�1

(i � 1)! = λ
∞

∑
j=0
(j + 1) e�λ λj

j !

= λE (Y + 1)

where Y is a Poisson random variable of parameter λ, hence
E (Y + 1) = λ+ 1.
We can now conclude

Var (X ) = λ (λ+ 1)� λ2 = λ.

Note that for Poisson random variable, we have
E (X ) = Var (X ) = λ. For binomial we have E (X ) = np and
Var (X ) = np (1� p) and so Var (X ) � E (X ) only if p << 1.
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Example: Brain Cancer

Brain cancer is a rare disease. In any year there are about 3.1 cases
per 100,000 of population (US �gures from TIME). Suppose a small
medical insurance company has 150,000 people on their books. How
many claims stemming from brain cancer should the company expect
in any year? What is the probability of getting more than 2 claims
related to brain cancer in a year?
Assume you use the Poisson approximation to the Binomial, then
λ = 3.1150000100000 = 4.65. So if we denote X the number of claims
stemming from brain cancer then

E (X ) = λ.

The probability of getting more than 2 claims is

P (X > 2) = 1� P (X = 0)� P (X = 1)� P (X = 2)

= 1� e�λ � λe�λ � λ2

2
e�λ

= 0.8426
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Example: Alpha Particle Emissions

In a 1910 study of the emission of alpha-particles from a Polonium
source, Rutherford and Geiger counted the number of particles
striking a screen in each of n = 2608 time intervals of length one
eighth of a minute. Rutherford and Geiger�s observations are recorded
in the following repeated-data frequency table form giving the number
of time intervals (out of the n) in which 0; 1; 2; 3 etc particles had
been observed.
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Experimental Data

# particles uj Observed frequency fj Observed proportion fj/n
0 57 0.022
1 203 0.078
2 383 0.147
3 525 0.201
4 532 0.204
5 408 0.156
6 273 0.105
7 139 0.053
8 45 0.017
9 27 0.010
10 10 0.004
11 6 0.002
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Example: Alpha Particle Emissions

Could it be that the emission of alpha-particles occurs randomly in a
way that obeys the conditions for a Poisson process? Let�s try to �nd
out. Let X be the number hitting the screen in a single time interval.
We want to check whether X follow a Poisson distribution of
parameter λ where λ is the underlying average number of particles
striking per unit time.
We don�t know λ̧ but will use the observed average number from the
data as an estimate

X =
∑n
j=1 uj fj
n

= 3.87

Now let us consider λ = 3.87 and we compare the observed
proportion fj/n to the Poisson distribution P (X = i) = e�λλi/i !, we
have

0 1 2 3 4 5 6 7 8 9 10 11
Obs. prop. 0.022 0.078 0.147 0.201 0.204 0.156 0.105 0.053 0.017 0.010 0.004 0.002
Poisson dist. 0.021 0.081 0.156 0.201 0.195 0.151 0.097 0.054 0.026 0.011 0.004 0.002
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Geometric Random Variable

Consider yet again independent trials, each with success proba p.
These trials are performed until a success occurs.

Let X the number of trials required then X 2 f1, 2, ...g then it
follows a geometric p.m.f.

P (X = n) = (1� p)n�1 p.

It is indeed a valid p.m.f. as

∞

∑
k=1

(1� p)k�1 p = p
∞

∑
l=0
(1� p)l = p 1

1� (1� p) = 1.
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Mean and Variance of a Geometric Random Variable

We have
E (X ) =

1
p
and Var (X ) =

1� p
p2

.

Proof of expression of E (X ): If we set q = 1� p, we have

E (X ) =
∞

∑
k=1

kqk�1p = p
∞

∑
k=1

kqk�1.

Now we know that

J (q) =
∞

∑
k=0

qk =
1

1� q
so by taking the derivative with respect to q

J 0 (q) =
∞

∑
k=1

kqk�1 =
1

(1� q)2
=
1
p2

so
E (X ) =

1
p
.
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Example: Collecting pictures

Question: Assume that, every time your little brother buys a box of
Wheaties, he receives a picture of one of the n players of the
Canadian Hockey team. Let Xk be the number of additional boxes he
has to buy, after he has obtained k � 1 di¤erent pictures, in order to
obtain the next new picture. Thus X1 = 1, X2 is the number of boxes
bought after this to obtain a picture di¤erent from the 1st pictured
obtained, and so forth. a) What is the distribution of Xk? (We
assume that Wheaties does not favour any player, i.e. Proba(�nding
player i)=Proba(�nding player j)=1/n). Let Y the total number of
boxes you must buy to get the n di¤erent players. b) What is the
expectation of Y ?
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Example: Collecting pictures

Answer a): After having obtained k � 1 di¤erent pictures, a
successful event corresponds to buying a box of Wheaties with a
picture of one of the remaining (n� (k � 1)) = (n� k + 1) player.
The probability of this event is

pk := (n� k + 1)� 1
n
= 1� (k � 1)

n
.

Hence Xk follows a geometric distribution with pk .
Answer b): We have Y = X1 + X2 + � � �+ Xn so

E (Y ) = E (X1) + E (X2) + � � �+ E (Xn)

=
1
p1
+
1
p2
+ � � �+ 1

pn

= 1+
1

1� 1
n

+ � � �+ 1
1� n�1

n

For n = 6, we have E (Y ) = 14.7 and for n = 14, we have
E (Y ) = 45.5.
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Hypergeometric Random Variable

Consider a barrel or urn containing N balls of which m are white and
N �m are black. We take a simple random sample (i.e. without
replacement) of size n and measure X , the number of white balls in
the sample.

The Hypergeometric distribution is the distribution of X under this
sampling scheme and

P (X = i) =

�
m
i

��
N �m
n� i

�
�
N
n

�
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Applications of the Hypergeometric distribution

The two color urn model gives a physical analogy (or model) for any
situation in which we take a simple random sample of size n (i.e.
without replacement) from a �nite population of size N and count X ,
the number of individuals (or objects) in the sample who have a
characteristic of interest.
With a sample survey, white balls and black balls may correspond
variously to people who do (white balls) or don�t (black balls) have
leukemia, people who do or don�t smoke, people who do or don�t
favor the death penalty, or people who will or won�t vote for a
particular political party.
Here N is the size of the population, m is the number of individuals in
the population with the characteristic of interest, while X measures
the number with that characteristic in a sample of size n.
The reason for conducting surveys as above is to estimate m, or more
often the proportion of white balls p = m/N, from an observed value
of X .
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Example: Company �eet

Suppose a company �eet of 20 cars contains 7 cars that do not meet
government exhaust emissions standards and are therefore releasing
excessive pollution. Moreover, suppose that a tra¢ c policeman
randomly inspects 5 cars. How many cars is he likely to �nd that
exceed pollution control standards?

This is like sampling from an urn. The N = 20 balls in the urn
correspond to the 20 cars, of which m = 7 are white (i.e. polluting).
When n = 5, the distribution of X , the number in the sample
exceeding pollution control standards has a Hypergeometric
distribution with N = 20, m = 7 and n = 5.

For example, the probability of no more than 2 polluting cars being
selected is

P (X � 2) = P (X = 0) + P (X = 1) + P (X = 2)

= 0.0830+ 0.3228+ 0.3874 = 0.7932.
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Example: Survey sampling

Suppose that as part of a survey, 7 houses are sampled at random
from a street of 40 houses in which 5 contain families whose family
income puts them below the poverty line. What is the probability
that: (a) None of the 5 families are sampled? (b) 4 of them are
sampled? (c) No more than 2 are sampled? (d) At least 3 are
sampled?

Let X the number of families sampled which are below the poverty
line. It follows an hypergeometric distribution with N = 40, m = 5
and n = 7. So (a) P (X = 0) (b) P (X = 4) (c) P (X � 2) and
(d) P (X � 3)

AD () March 2010 18 / 19



Example: Quality inspection

In industrial quality control, lots of size N are subjected to sampling
inspection. The defective items in the lot play the role of �white�
elements and their number m is typically unknown.

A sample size n is taken, and the number X of defective items in it is
determine.

We know that X follow a hypergeometric distribution of parameter N,
m and n.

Having observed X = x , we can estimate m by �nding the value of m
which maximizes P (X = x); this is called the maximum likelihood
estimate of m.
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