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Discrete Random Variables

A discrete r.v. X takes at most a countable number of possible values
fx1, x2, ...g with p.m.f.

p (xi ) = P (X = xi )

where

p (xi ) � 0 and
∞

∑
i=1
p (xi ) = 1.

Expected value/mean

µ = E (X ) =
∞

∑
i=1
xi p (xi ) .

Variance
Var (X ) = E

�
(X � µ)2

�
= E

�
X 2
�
� µ2.
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Bernoulli and Binomial Distributions

Assume you have an experiment w.p. success p and w.p. failure
(1� p).
Bernoulli r.v.: You set X = 1 if success and X = 0 if failure so

P (X = 1) = p (1) = p, P (X = 0) = p (0) = 1� p.

Assume now you have n independent experiments, each w.p. success
p and w.p. failure (1� p).
Binomial r.v.: Set X =number of successes among the n experiments,
then X 2 f0, 1, 2, ..., ng

X = X1 + X2 + � � �+ Xn

where Xk is the Bernoulli r.v. associated to experiment i and

P (X = k) =
�
n
k

�
pk (1� p)n�k .
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Example

Example: A survey from Teenage Research Unlimited (Northbrook,
Ill.) found that 30% of teenage consumers receive their spending
money from part-time jobs. If �ve teenagers are selected at random,
�nd the probability that at least three of them will have part-time
jobs.
Answer: Let X be the number of teenagers having a part-time job
among 5 teenagers, then X is Binomial of parameters n = 5, p = 0.3
so

P (X � 3) = P (X = 3) + P (X = 4) + P (X = 5)

= 0.132+ 0.028+ 0.002 = 0.162

Example: What is the probability of obtaining 45 or fewer heads in
100 tosses of a fair coin?
Solution: Let X be the number of heads, then X is binomial of
parameters n = 100, p = 0.5 and

P (X � 45) = ∑45
k=0

�
n
k

�
pk (1� p)k = 0.184.
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Mean of the Binomial Random Variable

The mean/expected value of X is given by

E (X ) = np

Proof 1. We have X = X1 + X2 + � � �+ Xn where Xi is a Bernoulli
r.v. w.p. p so

E (X ) = E (X1 + � � �+ Xn)
= E (X1) + � � �+ E (Xn) = np.

Proof 2. We have

E (X ) = ∑n
k=0 k P (X = k) = ∑n

k=0 k
�
n
k

�
pk (1� p)n�k

= ∑n
k=1 k

n (n�1)!
k (k�1)! (n�k )!p p

k�1 (1� p)n�k

= np ∑n
k=1

(n�1)!
(k�1)! (n�k )! p

k�1 (1� p)n�k

= np ∑m
l=0

m!
l ! (m�l)! p

l (1� p)m�l (m n� 1, l  k � 1)
= np
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Variance of the Binomial Random Variable

The variance of the binomial random variable is

Var (X ) = np (1� p) .
Proof 1. We have Var (X ) = E

�
X 2
�
� E (X )2 = E

�
X 2
�
� (np)2

where

X 2 = (X1 + � � �+ Xn)2

=
n

∑
k=1

X 2k +
n

∑
k ,l=1;k 6=l

XkXl

so

E
�
X 2
�
=

n

∑
k=1

E
�
X 2k
�
+

n

∑
k ,l=1;k 6=l

E (XkXl ) .

We have E
�
X 2k
�
= 12 � p+ 02 � (1� p) = p. To compute E (XkXl )

where k 6= l , we note that XkXl 2 f0, 1g is a r.v. such that
P (XkXl = 1) = P (Xk = 1)P (Xl = 1) = p

2,

P (XkXl = 0) = 1� P (XkXl = 1) = 1� p2.
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Variance of the Binomial Random Variable

As a safety check, you have indeed

P (XkXl = 0) = P (Xk = 0,Xl = 0) + P (Xk = 0,Xl = 1)

+P (Xk = 1,Xl = 0)

= (1� p)2 + (1� p) p + p (1� p)
= 1� p2.

Hence we have

E (XkXl ) = 1� p2 + 0�
�
1� p2

�
= p2

thus

E
�
X 2
�
=

n

∑
k=1

E
�
X 2k
�
+

n

∑
k=1,l>k

E (XkXl )

= n� p + n (n� 1)� p2

Finally we have

Var (X ) = np + n (n� 1)� p2 � (np)2
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Variance of the Binomial Random Variable

Proof 2. We have Var (X ) = E
�
X 2
�
� E (X )2 where

E
�
X 2
�
= ∑n

k=0 k
2P (X = k) = ∑n

k=1 k
2
�
n
k

�
pk (1� p)n�k

= ∑n
k=1 k n

�
n� 1
k � 1

�
p pk�1 (1� p)n�k

= ∑n
k=1 k n

�
n� 1
k � 1

�
p pk�1 (1� p)n�k = np ∑n

k=1 k
�
n� 1
k � 1

�
pk�1 (1� p)n�k

= np∑m
l=0 (l + 1)

m!
l ! (m�l)! p

l (1� p)m�l = np E [Y + 1]

where Y is Binomial (n� 1, p) so E [Y + 1] = (n� 1) p + 1. Finally
Var (X ) = np [(n� 1) p + 1]� (np)2 = np (1� p) .
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Example: Blood test

A large number, N, of people are subjected to a blood test. This can
be administered in two ways: (1) Each person can be tested
separately, in this case N tests are required, (2) the blood samples of
k persons can be pooled and analyzed together. If this test is
negative, this one test su¢ ces for the k people. If the test is positive,
each of the k persons must be tested separately, and in all, k + 1
tests are required for the k people. Assume that the proba p that a
test is positive is the same for all people and that these events are
independent.

(a) Find the probability that the test for a pooled sample of k people
will be positive.

(b) What is the expected value and variance of the number Y of tests
necessary under plan (2)? (Assume that N is divisible by k.)
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Example: Blood test

(a) We have

P (pooled sample +) = P (at least one of the k people +)

= 1� P (no people +) = 1� (1� p)k .
(b) We have N = Mk so M pooled samples. Let Xi be a Bernoulli
variable of parameter q = 1� (1� p)k corresponding to
success=�pooled sample +� then

Y = (1� X1) + (k + 1)X1 + (1� X2) +
(k + 1)X2...+ (1� XM ) + (k + 1)XM

= M + k (X1 + X2 + � � �+ XM )
where X = X1 + X2 + � � �+ XM is a Binomial of parameters (M, q).
So we have

E (Y ) = M + E (X ) = M + kMq,

Var (Y ) = k2Var (X ) = k2Mq (1� q) .
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Poisson Random Variable

A discrete r.v. X taking values 0, 1, 2, ... is said to be a Poisson r.v.
with parameter λ, λ > 0, if

p (i) = P (X = i) = e�λ λi

i !
.

This is indeed a probability distribution as

∞

∑
i=0
p (i) =

∞

∑
i=0
e�λ λi

i !
= e�λ

∞

∑
i=0

λi

i !| {z }
=eλ

= 1.

This expresses the probability of a number of events occurring in a
�xed period of time if these events occur with a known average rate λ.
This is used absolutely everywhere as many natural phenomena are
Poisson distributed: the number of soldiers killed by horse-kicks each
year in each corps in the Prussian cavalry, the number of phone calls
at a call center per minute, the number of murders in London etc.
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Example: Misprints in a textbook

Example: There are 50 misprints in a book which has 250 pages and
assume these errors follow a Poisson distribution of parameter
λ = 50/250 = 0.2. Find the probability that page 100 has no
misprints. Find the probability that page 100 has 2 misprints.

Answer: If we let X be the r.v. denoting the number of misprints on
page 100 (or any other page), X is a Poisson r.v. with parameter
λ = 0.2. So we have

Proba no misprint = P (X = 0) = e�0.2
(0.2)0

0!
= e�0.2 = 0.819,

Proba 2 misprints = P (X = 2) = e�0.2
(0.2)2

2!
= 0.0164.
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Poisson as an approximation to Binomial

If we consider a binomial r.v. X of parameters (n, p) such that n is
large and p is small enough so that np is moderate then the binomial
distribution can be well-approximated by the Poisson distribution of
parameter λ = np.
We have indeed for λ = np , p = λ

n

P (X = k) =

�
n
k

�
pk (1� p)n�k

=
n!

k ! (n� k)!

�
λ

n

�k �
1� λ

n

�n�k
=

n (n� 1) � � � (n� k + 1)
nk

λk

k !

�
1� λ

n

�n�
1� λ

n

�k
= 1.

�
1� 1

n

�
� � �
�
1� k � 1

n

�
λk

k !

�
1� λ

n

�n�
1� λ

n

�k
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Poisson as an approximation to Binomial

Now recall from your calculus course that

lim
n!∞

�
1� λ

n

�n
= e�λ, lim

n!∞

�
1� λ

n

��k
= 1,

lim
n!∞

�
1� j

n

�
= 1

so

lim
n!∞

P (X = k) = e�λ λk

k !
.

Practically this means that if a large number of trials n are made
which have a success probability p such that np is moderate then we
can approximate the total number of successes by a Poisson r.v. of
parameter λ = np.
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Example: Sampling a population

A certain disease occurs in 1.2% of the population. 100 people are
selected at random from the population. This is a binomial
experiment, where the number of trials 100 is large, and the expected
number of people with the disease is µ = 100� 0.12 = 1.2 is small.
Assume we want to compute the probability of no people having the
disease in a sample of 100. Let X being the number of people having
the disease, then X is binomial of parameters n = 100 and
p = 1.2/100 and

P (X = 0) =
�
100
0

��
1.2
100

�0 �
1� 1.2

100

�100
= 0.299016

We can approximate X by a Poisson random variable of parameter
µ = 1.2. We obtain in this case

P (X = 0) = e�µ µ0

0!
= .301194
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Example: Sampling a population

The probability that exactly 2 people in the sample of 100 have the
disease is following the binomial distribution

P (X = 2) =
�
100
2

��
1.2
100

�2 �
1� 1.2

100

�98
= 0.2183

whereas the Poisson approximation gives

P (X = 2) = e�µ µ2

2!
= 0.2169.
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Example: Random Seeds

You have a 10 meter by 10 meter plot of land, which is divided into a
grid of 100 squares. You scatter 500 seeds on this plot. We assume
that each seed falls at random, so that it is equally likely to fall on
any of the 100 squares. Consider the square in the upper left hand
corner. What is the probability that exactly 4 seeds fall on it? What
is the probability that 0 seeds fall on it?
Think of this as dropping 500 seeds, one after the other, and
recording whether the seed falls into the upper left hand square or
not. �Success�means falling into the square, and that happens with
probability 1/100 = .01. So, n = 500, and p = 0.1. The expected
number of successes is np = 5. By the Poisson approximation, we
have

P(exactly 4 seeds) � e�5 5
4

4!
= 0.175.

The probability of no seeds is

P(no seed) � e�5 = 0.0067.
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Example: Lunch Hour at UBC

During the noon lunch hour, 47 customers will walk through the door
of the post o¢ ce. Assume that each person arrives at a random time,
independent of the other customers. What is the probability that
more than one person walks through the door during the �rst minute?

To see why this is binomial, think of each of the 47 persons choosing
at random a minute during which to arrive. The probability that they
choose the �rst minute is then 1/60. Thus, we have 47 repetitions of
a trial, where the probability of success is 1/60. The expected
number of successes is np = 47/60 � 0.783.
To �nd the probability, we say

P(more than 1 arrival) = 1� P(no arrival)
� 1� e�0.783 � 0.783e�0.783

� 0.185.
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Mean of a Poisson Random Variable

We have E (X ) = λ.

We have

E (X ) =
∞

∑
i=0
i P (X = i) =

∞

∑
i=0
i e�λ λi

i !

= e�λ
∞

∑
i=0

λ λi�1

(i � 1)!

= e�λλ
∞

∑
j=0

λj

j !
(change j  i � 1)

= e�λλeλ = λ.

Note that this is in agreement with our approximation of Binomial by
Poisson. A Binomial has mean np and we approximate it by a Poisson
of parameter λ = np which is also the mean of the Poisson
distribution.
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Variance of a Poisson Random Variable

We have Var (X ) = E
�
X 2
�
� E (X )2 = λ.

Proof: We have

E
�
X 2
�
=

∞

∑
i=0
i2 e�λ λi

i !
=

∞

∑
i=1
i2 e�λ λi

i !

= e�λ
∞

∑
i=1
i

λ λi�1

(i � 1)! = λ
∞

∑
j=0
(j + 1) e�λ λj

j !

= λE (Y + 1)

where Y is a Poisson random variable of parameter λ, hence
E (Y + 1) = λ+ 1.
We can now conclude

Var (X ) = λ (λ+ 1)� λ2 = λ.

Note that for Poisson random variable, we have
E (X ) = Var (X ) = λ. For binomial we have E (X ) = np and
Var (X ) = np (1� p) and so Var (X ) � E (X ) only if p << 1.
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Example: Waiting at the bus stop

Example: Assume that 6 buses per hour stop at your bus stop. If the
buses were arriving exactly every 10 minutes, then your average
waiting time would be 5 minutes; i.e. you wait between 0 and 10
minutes. What is the probability that you are going to wait at least 5
minutes without seeing any bus if the buses follow a Poisson
distribution? What is the proba to wait at least 10 minutes? What is
the proba of seeing two buses in 10 minutes?
Answer: If we let X1 be the number of buses arriving in 5 minutes, it
is a Poisson r.v. with parameter 0.5 (average rate 6 per hour). So we
have

P (X1 = 0) = e�0.5 = 0.60.

If we let X2 be the number of buses arriving in 10 minutes, it is a
Poisson r.v. with parameter 1. So we have

P (X2 = 0) = e�1 = 0.368, P (X2 = 2) = e�1
12

2!
= 0.184.
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Example: Murders in London

Each year the London Metropolitan Police record around 160
murders, and this has been stable for the last 5 years. Each of these
murders is an individual crime that cannot be predicted. It may
appear strange, but this very randomness means that the overall
pattern of murders is in some ways quite predictable.

Assuming the number of murders are Poisson distributed, compute
the probability of having no murder during a day, 3 or more murders
in one day, a week without any murder.

AD () Feb. 2010 22 / 23



Example: Murders in London

We have an average rate per day of λ = 160/365 � 0.44.
Peaceful day (no murder). The proba that of having no murder is
P (X = 0) = e�λ = 0.64.

Bloody day (3 or more murders). The proba is
P (X � 3) = 1� e�λ � λe�λ � λ2

2 e
�λ = 0.0103 � 3.75

365

Peaceful week (no murder over a week). We have a Poisson
distribution λ0 = 160/365� 7

P (X = 0) = e�λ0 � 0.0465 � 2.4
52
.
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