March 8, 2010

Student Name (Please print): \qquad

Student Number: \qquad
\qquad

Notes:

- Total points equal 100 .
- Show the work leading to your solutions in the space provided. Indicate clearly the part of the problem to which the work relates.
- This is a closed book midterm.
[25] Problem 1: Two friends, John and Linda, take the Stat 302 midterm exam. They have equal probability of getting an A. The probability that at least one of them gets an A is $\mathbf{0 . 7 0}$ and that both get an A is $\mathbf{0 . 3 0}$.
[7] (a) What is the probability that Linda gets an A?
[9] (b) What is the probability that John gets an A given that Linda did?
[9] (c) What is the probability that both get an A given that at least one of them did?

Answer to Problem 1

Answer to Problem 1 (continued)
[25] Problem 2: Calculate the reliability of the following system of independent components $\left\{a_{1}, a_{2}, \ldots, a_{7}\right\}$. The numbers in the boxes are the failure probabilities for the corresponding components. Components in the subsystems I, II and III are in parallel (that is, the subsystem works if any of its components does). The subsystems I, II and III are in series (that is, the system works only if all the subsystems do).

Answer to Problem 2

Answer to Problem 2 (continued)
[25] Problem 3: A rare but costly flaw affects a fraction $\mathbf{0 . 0 0 5}$ of the electronic boards built by a company. A test to detect this flaw has probability 0.999 of resulting positive when the flaw is present and probability $\mathbf{0 . 0 2}$ of resulting positive when the flaw is not present.
[12] (a) What is the probability that the test on a randomly chosen board results positive?
[13] (b) What is the probability that the flaw is present given that the test resulted negative?

Answer to Problem 3 (continued)
[25] Problem 4: A discrete random variable, X, has the probability mass function given below.

x	-1	0	1	2	3	4	5
$f(x)$	0.10	c_{1}	0.20	c_{2}	0.20	0.10	0.05

It is known that

$$
\mu_{X}=E(X)=1.55
$$

[10](a) Determine c_{1} and c_{2}.
[10](b) Calculate $\sigma_{X}^{2}=\operatorname{Var}(X)$.
[5] (c) Let $Y=2 X^{2}+3$. Find $\mu_{Y}=E(Y)$.

Answer to Problem 4

Answer to Problem 4 (continued)

