MIDTERM - STATISTICS 302 (Section 202)

March 8, 2010

Student Name (Please print):

Student Number:

Notes:

- Total points equal 100.
- Show the work leading to your solutions in the space provided. Indicate clearly the part of the problem to which the work relates.

1

• This is a closed book midterm.

[25] <u>Problem 1</u>: Two friends, John and Linda, take the Stat 302 midterm exam. They have equal probability of getting an A. The probability that at least one of them gets an A is 0.70 and that both get an A is 0.30.

- [7] (a) What is the probability that Linda gets an A?
- [9] (b) What is the probability that John gets an A given that Linda did?
- [9] (c) What is the probability that both get an A given that at least one of them did?

Answer to Problem 1

Answer to Problem 1 (continued)

[25] <u>Problem 2</u>: Calculate the reliability of the following system of independent components $\{a_1, a_2, ..., a_7\}$. The numbers in the boxes are the **failure probabilities** for the corresponding components. Components in the subsystems I, II and III are **in parallel** (that is, the subsystem works if any of its components does). The subsystems I, II and III are **in series** (that is, the system works only if all the subsystems do).

Answer to Problem 2

Answer to Problem 2 (continued)

[25] <u>Problem 3</u>: A rare but costly flaw affects a fraction 0.005 of the electronic boards built by a company. A test to detect this flaw has probability 0.999 of resulting positive when the flaw is present and probability 0.02 of resulting positive when the flaw is not present.
[12] (a) What is the probability that the test on a randomly chosen board results positive?

[13] (b) What is the probability that the flaw is present given that the test resulted negative?

Answer to Problem 3 (continued)

[25] <u>Problem 4</u>: A discrete random variable, X, has the probability mass function given below.

x	-1	0	1	2	3	4	5
$\int f\left(x\right)$	0.10	c_1	0.20	c_2	0.20	0.10	0.05

It is known that

$$\mu_X = E\left(X\right) = 1.55$$

8

[10](a) Determine c_1 and c_2 .

[10](b) Calculate $\sigma_X^2 = Var(X)$. [5] (c) Let $Y = 2X^2 + 3$. Find $\mu_Y = E(Y)$.

Answer to Problem 4

Answer to Problem 4 (continued)