Stat 302: Midterm

Formula Sheet

- $n!=n \times(n-1) \times \cdots \times 2 \times 1$
- ${ }_{n} P_{r}={ }_{p}\binom{n}{r}=n \times(n-1) \times \cdots \times(n-r+1)=\frac{n!}{(n-r)!}$
- ${ }_{n} C_{r}={ }_{c}\binom{n}{r}=\frac{n!}{r!(n-r)!}$
- The number of ways partitioning n distinct objects into k groups containing $n_{1}, n_{2}, \ldots, n_{k}$ objects, respectively, is $\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}$, where $\sum_{i=1}^{k} n_{i}=n$.
- For events E, F and G,
- Commutative laws: $E \cup F=F \cup E ; E \cap F=F \cap E$
- Associative laws: $(E \cup F) \cup G=E \cup(F \cup G) ;(E \cap F) \cap G=E \cap(F \cap G)$
- Distributive laws: $(E \cap F) \cup G=(E \cup G) \cap(F \cup G) ;(E \cup F) \cap G=(E \cap G) \cup(F \cap G)$
- For events $E_{1}, E_{2}, \ldots, E_{n}$,
- DeMorgan's laws: $\left(\bigcup_{i=1}^{n} E_{i}\right)^{c}=\bigcap_{i=1}^{n} E_{i}^{c} ;\left(\bigcap_{i=1}^{n} E_{i}\right)^{c}=\bigcup_{i=1}^{n} E_{i}^{c}$
- If events E and F are mutually exclusive, then $E \cap F=\phi$, where ϕ denotes the null set
- For mutually exclusive events E_{1}, E_{2}, \ldots, we have $P\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right)$
- Probability rules

1. $P\left(E^{c}\right)=1-P(E)$
2. If $E \subset F$, then $P(E) \leq P(F)$
3. $P(E \cup F)=P(E)+P(F)-P(E \cap F)$
4.

$$
\begin{aligned}
P\left(\bigcup_{i=1}^{n} E_{i}\right) & =\sum_{i=1}^{n} P\left(E_{i}\right)-\sum_{1 \leq i<j \leq n} P\left(E_{i} \cap E_{j}\right)+\sum_{1 \leq i<j<k \leq n} P\left(E_{i} \cap E_{j} \cap E_{k}\right)-\cdots \\
& +(-1)^{n+1} P\left(E_{1} \cap E_{2} \cap \cdots \cap E_{n}\right)
\end{aligned}
$$

5. If all outcomes in \mathcal{S} are equally likely, then $P(E)=\frac{\text { Number of outcomes in } E}{\text { Number of outcomes in } \mathcal{S}}$

- Conditional probability of E given F, where $P(F)>0$,

$$
P(E \mid F)=\frac{P(E \cap F)}{P(F)}
$$

- More about conditional probability

1. $P\left(E^{c} \mid F\right)=1-P(E \mid F)$
2. If E_{1}, E_{2}, \ldots are mutually exclusive, then $P\left(\bigcup_{i=1}^{\infty} E_{i} \mid F\right)=\sum_{i=1}^{\infty} P\left(E_{i} \mid F\right)$

- Bayes' formula: If $F_{1}, F_{2}, \ldots, F_{n}$ are mutually exclusive, then

$$
P\left(F_{i} \mid E\right)=\frac{P\left(F_{i} \cap E\right)}{P(E)}=\frac{P\left(E \mid F_{i}\right) P\left(F_{i}\right)}{\sum_{j=1}^{n} P\left(E \mid F_{j}\right) P\left(F_{j}\right)}
$$

- Odds of event $E: \frac{P(E)}{P\left(E^{c}\right)}$ or $\frac{P(E)}{1-P(E)}$
- Independence of events E and F :

1. $P(E \mid F)=P(E)$
2. $P(F \mid E)=P(F)$
3. $P(E \cap F)=P(E) \times P(F)$

- Conditional independence of events E and F given G :

1. $P(E \mid F \cap G)=P(E \mid G)$
2. $P(F \mid E \cap G)=P(F \mid G)$
3. $P(E \cap F \mid G)=P(E \mid G) \times P(F \mid G)$

- Probability mass function: $p(a)=P(X=a)$
- Cumulative distribution function: $F(b)=P(X \leq b)$
- Expected value, expectation, mean: $E(X)=\sum_{\text {all } \mathrm{x}} x p(x)$
- Expectation of $g(x): E(g(X))=\sum_{\text {all }}^{\mathbf{x}} g(x) p(x)$
- Variance $V(X)$ and standard deviation $S D(X)=\sqrt{V(X)}$:

$$
V(X)=\sum_{\text {all } \mathrm{x}}(x-\mu)^{2} p(x)=E\left(X^{2}\right)-\mu^{2}, \text { where } \mu=E(X)
$$

- Rules about $E(X)$ and $V(X)$:

For any real numbers a and b, real functions g_{1} and g_{2}, and random variables X and Y,

1. $E(a X+b)=a E(X)+b$
2. $E\left(a g_{1}(X)+b g_{2}(Y)\right)=a E\left(g_{1}(X)\right)+b E\left(g_{2}(Y)\right)$
3. $V(a X+b)=a^{2} V(X)$

- Common discrete random variables:

1. Bernoulli: $X \sim \operatorname{Bernoulli}(p)$
(a) $p(x)=p^{x}(1-p)^{1-x}$, where $x \in\{0,1\}$
(b) $E(X)=p, V(X)=p(1-p)$
2. Binomial: $X \sim \operatorname{Bin}(n, p)$
(a) $p(x)=\binom{n}{x} p^{x}(1-p)^{n-x}$, where $x \in\{0,1,2, \ldots, n\}$
(b) $E(X)=n p, V(X)=n p(1-p)$
3. Geometric: $X \sim \operatorname{Geom}(p)$
(a) $p(x)=(1-p)^{x-1} p$, where $x \in\{1,2,3, \ldots\}$
(b) $E(X)=\frac{1}{p}, V(X)=\frac{1-p}{p^{2}}$
(c) $F(x)=1-(1-p)^{x}$
4. Negative Binomial: $X \sim N e g . \operatorname{Bin}(r, p)$
(a) $p(x)=\binom{x-1}{r-1} p^{r}(1-p)^{x-r}$, where $x \in\{r, r+1, \ldots\}$
(b) $E(X)=\frac{r}{p}, V(X)=\frac{r(1-p)}{p^{2}}$
5. Poisson: $X \sim \operatorname{Poisson}(\lambda t)$,
where λ is the expected number of "events" that occur per unit time and t is the number of time units
(a) $p(x)=\frac{(\lambda t)^{x} e^{-\lambda t}}{x!}$, where $x \in\{0,1,2, \ldots$,
(b) $E(X)=\lambda t, V(X)=\lambda t$
(c) Poisson Approximation to the Binomial:

If $X \sim \operatorname{Bin}(n, p), n$ is sufficiently large, and p or $(1-p)$ is small enough such that $\min (n p, n(1-$ $p))<5$, then

$$
X \stackrel{\text { approx. }}{\sim} \text { Poisson }(\lambda t=n p)
$$

6. Hypergeometric: $X \sim$ Hypergeom (N, n, m)
(a) $p(x)=\frac{\binom{m}{x}\binom{N-m}{n-x}}{\binom{N}{n}}$, where $x \in\{0,1, \ldots, n\}$
(b) $E(X)=\frac{n m}{N}, V(X)=\frac{n m}{N}\left(1-\frac{m}{N}\right)\left(\frac{N-n}{N-1}\right)$
