Stat 302 Winter 07/08 - Solutions to Suggested Problems: Chapter 3

$$5. \qquad \frac{6}{15} \frac{5}{14} \frac{9}{13} \frac{8}{12}$$

12. (a)
$$(.9)(.8)(.7) = .504$$

(b) Let F_i denote the event that she failed the *i*th exam.

$$P(F_2|F_1^c F_2^c F_3^c)^c) = \frac{P(F_1^c F_2)}{1 - 504} = \frac{(.9)(.2)}{.496} = .3629$$

16. With S being survival and C being C section of a randomly chosen delivery, we have that

$$.98 = P(S) = P(S \mid C).15 + P(S \mid C^2).85$$

= $.96(.15) + P(S \mid C^2).85$

Hence

$$P(S \mid C^{c}) \approx .9835.$$

18. (a)
$$P(\text{Ind} | \text{voted}) = \frac{P(\text{voted} | \text{Ind})P(\text{Ind})}{\sum P(\text{voted} | \text{type})P(\text{type})}$$

= $\frac{.35(.46)}{.35(.46) + .62(.3) + .58(.24)} \approx 331$

(b)
$$P\{\text{Lib} \mid \text{voted}\} = \frac{.62(.30)}{.35(.46) + .62(.3) + .58(.24)} \approx .383$$

(c)
$$P\{\text{Con} \mid \text{voted}\} = \frac{.58(.24)}{.35(.46) + .62(.3) + .58(.24)} \approx .286$$

(d)
$$P\{\text{voted}\} = .35(.46) + .62(.3) + .58(.24) = .4862$$

That is, 48.62 percent of the voters voted.

26. Let *M* be the event that the person is male, and let *C* be the event that he or she is color blind. Also, let *p* denote the proportion of the population that is male.

$$P(M \mid C) = \frac{P(C \mid M)P(M)}{P(C \mid M)P(M) + P(C \mid M^c)P(M^c)} = \frac{(.05)p}{(.05)p + (.0025)(1-p)}$$

28. Let *A* denote the event that the next card is the ace of spades and let *B* be the event that it is the two of clubs.

(a)
$$P{A} = P{\text{next card is an ace}}P{A \mid \text{next card is an ace}}$$

= $\frac{3}{32}\frac{1}{4} = \frac{3}{128}$

(b) Let C be the event that the two of clubs appeared among the first 20 cards.

$$P(B) = P(B \mid C)P(C) + P(B \mid C^{\circ})P(C^{\circ})$$
$$= 0\frac{19}{48} + \frac{1}{32}\frac{29}{48} = \frac{29}{1536}$$

33. Let V be the event that the letter is a vowel. Then

$$P(E \mid V) = \frac{P(V \mid E)P(E)}{P(V \mid E)P(E) + P(V \mid A)P(A)} = \frac{(1/2)(2/5)}{(1/2)(2/5) + (2/5)(3/5)} = 5/11$$

37. (a) $P\{\text{fair } | h\} = \frac{\frac{1}{2} \frac{1}{2}}{\frac{1}{2} \frac{1}{2} + \frac{1}{2}} = \frac{1}{3}$.

(b)
$$P\{\text{fair } | hh\} = \frac{\frac{1}{4}\frac{1}{2}}{\frac{1}{4}\frac{1}{2} + \frac{1}{2}} = \frac{1}{5}.$$

- (c) 1
- 48. (a) $P\{\text{silver in other } | \text{silver found}\}$

$$= \frac{P\{S \text{ in other, } S \text{ found}\}}{P\{S \text{ found}\}}.$$

To compute these probabilities, condition on the cabinet selected.

$$= \frac{1/2}{P\{S \text{ found} | A\} 1/2 + P\{S \text{ found} | B\} 1/2}$$
$$= \frac{1}{1+1/2} = \frac{2}{3}.$$

57. (a)
$$2p(1-p)$$

(b)
$$\binom{3}{2} p^2 (1-p)$$

(c)
$$P\{\text{up on first} \mid \text{up 1 after 3}\}\$$

= $P\{\text{up first, up 1 after 3}\}/[3p^2(1-p)]$
= $p2p(1-p)/[3p^2(1-p)] = 2/3$.

61. Because the non-albino child has an albino sibling we know that both its parents are carriers. Hence, the probability that the non-albino child is not a carrier is

$$P(A, A | A, a \text{ or } a, A \text{ or } A, A) = \frac{1}{3}$$

Where the first gene member in each gene pair is from the mother and the second from the father. Hence, with probability 2/3 the non-albino child is a carrier.

(a) Condition on whether the non-albino child is a carrier. With C denoting this event, and O_i the event that the ith offspring is albino, we have:

$$P(O_1) = P(O_1 \mid C)P(C) + P(O_1 \mid C^c)P(C^c)$$

= (1/4)(2/3) + 0(1/3) = 1/6

(b)
$$P(O_2|O_1^c) = \frac{P(O_1^cO_2)}{P(O_1^c)}$$

$$= \frac{P(O_1^cO_2|C)P(C) + P(O_1^cO_2|C^c)P(C^c)}{5/6}$$

$$= \frac{(3/4)(1/4)(2/3) + 0(1/3)}{5/6} = \frac{3}{20}$$

Theoretical Ex.

2. If $A \subset B$

$$P(A \mid B) = \frac{P(A)}{P(B)}, P(A \mid B^c) = 0, \qquad P(B \mid A) = 1, \qquad P(B \mid A^c) = \frac{P(BA^c)}{P(A^c)}$$

4. Let N_i denote the event that the ball is not found in a search of box i, and let B_j denote the event that it is in box j.

$$\begin{split} P(B_{j} \mid N_{i}) &= \frac{P(N_{i} \mid B_{j}) P(B_{j})}{P(N_{i} \mid B_{i}) P(B_{i}) + P(N_{i} \mid B_{i}^{c}) P(B_{i}^{c})} \\ &= \frac{P_{j}}{(1 - \alpha_{i}) P_{i} + 1 - P_{i}} & \text{if } j \neq i \\ &= \frac{(1 - \alpha_{i}) P_{i}}{(1 - \alpha_{j}) P_{i} + 1 - P_{i}} & \text{if } j = i \end{split}$$

25.
$$P(E | F) = P(EF)/P(F)$$

$$P(E \mid FG)P(G \mid F) = \frac{P(EFG)}{P(FG)} \frac{P(FG)}{P(F)} = \frac{P(EFG)}{P(F)}$$

$$P(E \mid FG^c)P(G^c \mid F) = \frac{P(EFG^c)}{P(F)}.$$

The result now follows since

$$P(EF) = P(EFG) + P(EFG^c)$$