Stat 302 Winter 07/08 - Solutions to Suggested Problems: Chapter 1

- 4. There are 4! possible arrangements. By assigning instruments to Jay, Jack, John and Jim, in that order, we see by the generalized basic principle that there are $2 \cdot 1 \cdot 2 \cdot 1 = 4$ possibilities.
- 6. Each kitten can be identified by a code number i, j, k, l where each of i, j, k, l is any of the numbers from 1 to 7. The number i represents which wife is carrying the kitten, j then represents which of that wife's 7 sacks contain the kitten; k represents which of the 7 cats in sack j of wife i is the mother of the kitten; and l represents the number of the kitten of cat k in sack j of wife i. By the generalized principle there are thus $7 \cdot 7 \cdot 7 = 2401$ kittens
- 8. (a) 5! = 120

(b)
$$\frac{7!}{2!2!} = 1260$$

(c)
$$\frac{11!}{4!4!2!} = 34,650$$

(d)
$$\frac{7!}{2!2!} = 1260$$

- 11. (a) 6!
 - (b) 3!2!3!
 - (c) 3!4!

13.
$$\binom{20}{2}$$

18.
$$\binom{5}{2}\binom{6}{2}\binom{4}{3} = 600$$

- 19. (a) There are $\binom{8}{3}\binom{4}{3} + \binom{8}{3}\binom{2}{1}\binom{4}{2} = 896$ possible committees.

 There are $\binom{8}{3}\binom{4}{3}$ that do not contain either of the 2 men, and there are $\binom{8}{3}\binom{2}{1}\binom{4}{2}$ that contain exactly 1 of them.
 - (b) There are $\binom{6}{3}\binom{6}{3} + \binom{2}{1}\binom{6}{2}\binom{6}{3} = 1000$ possible committees.
 - (c) There are $\binom{7}{3}\binom{5}{3} + \binom{7}{2}\binom{5}{3} + \binom{7}{3}\binom{5}{3} = 910$ possible committees. There are $\binom{7}{3}\binom{5}{3}$ in which neither feuding party serves; $\binom{7}{2}\binom{5}{3}$ in which the feuding women serves; and $\binom{7}{3}\binom{5}{2}$ in which the feuding man serves.

- 21. $\frac{7!}{3!4!}$ = 35. Each path is a linear arrangement of 4 r's and 3 u's (r for right and u for up). For instance the arrangement r, r, u, u, r, r, u specifies the path whose first 2 steps are to the right, next 2 steps are up, next 2 are to the right, and final step is up.
- There are $\frac{4!}{2!2!}$ paths from A to the circled point; and $\frac{3!}{2!1!}$ paths from the circled point to B. Thus, by the basic principle, there are 18 different paths from A to B that go through the circled piont.
- 23. $3!2^3$

Theoretical ex.

10. Parts (a), (b), (c), and (d) are immediate. For part (e), we have the following:

$$k \binom{n}{k} = \frac{k!n!}{(n-k)!k!} = \frac{n!}{(n-k)!(k-1)!}$$
$$(n-k+1) \binom{n}{k-1} = \frac{(n-k+1)n!}{(n-k+1)!(k-1)!} = \frac{n!}{(n-k)!(k-1)!}$$
$$n \binom{n-1}{k-1} = \frac{n(n-1)!}{(n-k)!(k-1)!} = \frac{n!}{(n-k)!(k-1)!}$$