
Stat 302 Assignment 2 (solution)

Q1. (a) Suppose X is the number of UBC students infected by H1N1 and follows

a Poisson random variable with λ = 5 per week, then

P (X > 10) = 1−
10∑
i=1

P (X = i)

= 0.0137.

(b) Suppose random variable Y is the number of weeks with more than 10

infected students. Clearly Y follows a binomial distribution with n = 4 and

p = P (X > 10) = 0.0137. Then

P (Y ≥ 2) = 1− P (Y = 0)− P (Y = 1)

(or P (Y = 2) + P (Y = 3) + P (Y = 4))

= 0.0011.

Q2. (a)

f(k; n, p)

f(k − 1; n, p)
=

(
n
k

)
pk(1− p)n−k

(
n

k−1

)
pk−1(1− p)n−k+1

=
n− k + 1

k
× p

1− p

= 1 +
(n + 1)p− k

k(1− p)
.

(b)

P (X ≥ k) =
n∑

i=k

(
n

i

)
pi(1− p)n−i

=
n∑

i=k

(
n

n− i

)
pi(1− p)n−i

=
0∑

j=n−k

(
n

j

)
pn−j(1− p)j, j = n− i

= P (Y ≤ n− k).
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Q3. Denote X as the number of alpha particles emitted per minute by a radioac-

tive substance, and we know X follows a Poisson process with rate λ = 4 per

minute.

(a) P (X = 3) = 43e−4

3!
= 0.1953.

(b) P (X ≤ 3) =
∑3

i=0
4ie−4

i!
= 0.4335.

(c) Let Yi denote the interval length between the (i− 1)th and the ith event,

which is described by a Poisson process. Then Yi’s are i.i.d. random variables

following exponential distribution with p.d.f. fY (y) = λe−λy, y > 0. The expected

time is

E(
100∑
i=1

Yi) =
100∑
i=1

E(Yi)

= 100E(Yi)

= 100× 1

4
= 25minutes.

Q4. (a) Denote the time of crashes within one year as X, which follows Poisson

distribution with rate of λ = 1.5 per year. Then the probability that three or

more crashes will occur next year is

P (X ≥ 3) = 1− P (X ≤ 2)

= 1−
2∑

i=0

1.5ie−1.5

i!

= 0.1912.

(b) Suppose Z0, Z1 and Z2 as the occurrence time of three consecutive crashes,

and Y1 and Y2 are the in-between times, that is, Y1 = Z1 − Z0, Y2 = Z2 − Z1.

Assuming a Poisson process with rate λ1 = 1.5/12 per month, we know that Y1

and Y2 are i.i.d. random variables following exponential distribution with rate λ1.

The question IS asking P (Y2 < 3). Then

P (Y2 < 3) = 1− e−3λ1

= 0.3127.
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If you were unfortunately misled to work with P (Y1 + Y2 < 3), here are two

possible solutions.

• Smart solution provided by students ˇ “) : We could consider 3 months as

one unit, and let X represent the number of plane crashes in that period.

Obviously X follows a Poisson distribution with a rate of λ2 = 1.5/4. Then

the probability that next two plane crashes occur within three months can

be represented by:

P (X ≥ 2) = 1−
1∑

i=0

λi
2e
−λ2

i!

= 0.055.

• Another complicated solution: Since Y1 and Y2 are i.i.d. random variables,

W = Y1 + Y2 follows Gamma distribution Gamma(2, 1/λ0). Therefore, we

obtain P (W < 3) = 0.055.

Q5. We first compute the c.d.f. FX(k) and then obtain the p.m.f. as

pX(k) = P (X = k) = P (X ≤ k)− P (X ≤ k − 1)

= FX(k)− FX(k − 1), k = 1, 2, . . . , 10

We have

FX(k) = P (X ≤ k)

= P (max(X1, X2, X3) ≤ k)

= P (X1 ≤ k, X2 ≤ k, X3 ≤ k)

= P (X1 ≤ k)P (X2 ≤ k)P (X3 ≤ k),

where the last equality follows from the independence of the events {X1 ≤ k},
{X2 ≤ k}, {X3 ≤ k}. Next we determine P (X1 ≤ k).

Because your test scores are (integer) values between 1 and 10 with equal

probability 1/10, i.e.

P (X1 = k) =
1

10
, k = 1, 2, . . . , 10
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Therefore,

P (X1 ≤ k) = P (X1 = 1) + P (X1 = 2) + · · ·+ P (X1 = k) =
k

10
.

Similarly, P (X2 ≤ k) = P (X3 ≤ k) = k
10

. So FX(k) = ( k
10

)3. Thus the p.m.f. is

given by

pX(k) = FX(k)− FX(k − 1) =

(
k

10

)3

−
(

k − 1

10

)3

, k = 1, 2, . . . , 10.

Q6. (a) Solution I.

The time of your arrival, denoted by X, is a uniform random variable on the

interval from 7:10 to 7:30, i.e. X ∼ U(0, 20). The p.d.f. of X is

fX(x) =





1
20

for 0 ≤ x ≤ 20,

0 otherwise

see Fig. 1(a).

Let A and B be the events

A = {arrive at station between 7:10 and 7:15} = {0 ≤ X ≤ 5} = {you board the 7:15 train},
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B = {arrive at station between 7:15 and 7:30} = {5 ≤ X ≤ 20} = {you board the 7:30 train}.

Then

P (A) = P (0 ≤ X ≤ 5) =

∫ 5

0

1

20
dx =

[
1

20
x

]5

0

=
5

20
=

1

4

and

P (B) = P (5 ≤ X ≤ 20) =

∫ 20

5

1

20
dx =

[
1

20
x

]20

5

=
15

20
=

3

4

Let Y be the waiting time.

Conditioning on the event A, your waiting time Y is also uniform and takes

values between 0 and 5 minutes, i.e. Y |A ∼ U(0, 5). Therefore the p.d.f. of Y |A
is

fY |A(y) =





1
5

for 0 ≤ y ≤ 5,

0 otherwise

See Fig. 1(b).

Similarly, conditioned on B, Y is uniform and takes values between 0 and 15

minutes, i.e. Y |B ∼ U(0, 15). Therefore the p.d.f. of Y |B is

fY |B(y) =





1
15

for 0 ≤ y ≤ 15,

0 otherwise

See Fig. 1(c).

The p.d.f of Y is obtained by

fY (y) = P (A)fY |A(y) + P (B)fY |B(y).

In particular, for 0 ≤ y ≤ 5,

fY (y) =
1

4
× 1

5
+

3

4
× 1

15
=

1

10
;

for 5 < y ≤ 15, fY |A(y) = 0, hence,

fY (y) =
1

4
× 0 +

3

4
× 1

15
=

1

20
.
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We can also express the p.d.f. of Y as follows:

fY (y) =





1
10

for 0 ≤ y ≤ 5,

1
20

for 5 < y ≤ 15,

0 otherwise

The p.d.f of Y is shown in Fig. 1(d).

Solution II. According to the question, the following graph displays the rela-

tionship between arriving time X and waiting time Y .
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We also know that

{Y ≤ y} =





∅ for y < 0,

{5− y ≤ X ≤ 5} ∪ {20− y ≤ X ≤ 20} for 0 ≤ y ≤ 5,

{0 ≤ X ≤ 5} ∪ {20− y ≤ X ≤ 20} for 5 < y ≤ 15,

{0 ≤ X ≤ 20} for 15 < y.
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Therefore, we can obtain the c.d.f. of Y

F (y) =





0 for y < 0,

P (5− y ≤ X ≤ 5) + P (20− y ≤ X ≤ 20) for 0 ≤ y ≤ 5,

P (0 ≤ X ≤ 5) + P (20− y ≤ X ≤ 20) for 5 < y ≤ 15,

1 for 15 < y.

=





0 for y < 0,
∫ 5

5−y
1
20

dy +
∫ 20

20−y
1
20

dy = y
10

for 0 ≤ y ≤ 5,
∫ 5

0
1
20

dy +
∫ 20

20−y
1
20

dy = 5+y
20

for 5 < y ≤ 15,

1 for 15 < y.

Then we may have the p.d.f. of Y .

(b) The waiting time Y should between 0 to 15 minutes, the expectation of Y

is given by

E(Y ) =

∫ 15

0

y · fY (y)dy =

∫ 5

0

y
1

10
dy +

∫ 15

5

y
1

20
dy

=

[
1

20
y2

]5

0

+

[
1

40
y2

]15

5

=
52

20
+

152 − 52

40
= 6.25,

(c) Denote by m the median waiting time, by the definition of median, the

c.d.f. of Y at m should be 1/2. i.e. FY (m) = 1/2. From (a) we know,

FY (m) = P (Y ≤ m) =

∫ m

0

fY (y)dy

=





0 for m < 0
∫ m

0
1
10

dy for 0 ≤ m ≤ 5,
∫ 5

0
1
10

dy +
∫ m

5
1
20

dy for 5 < m ≤ 15,

1 for m > 15

It is easy to see that when m = 5, FY (m) =
∫ 5

0
1
10

dy = 1/2. So the median waiting

time is 5 minutes.
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(d) The median is a “better” summary because Y is a skewed distribution.

Q7. The c.d.f. of X is given by

FX(t) = P (X ≤ t) =

∫ t

0

fX(x)dx

=





0 for t ≤ 0
∫ t

0
1
8
xdx for 0 < t < 4,

1 for t ≥ 4

=





0 for t ≤ 0

t2/16 for 0 < t < 4,

1 for t ≥ 4

(a) P (X ≤ t) = 1/4 implies

∫ t

0

1

8
xdx =

[
1

16
x2

]t

0

=
t2

16
= 1/4.

Thus, t = 2.

(b) P (X ≥ t) = 1/2 implies P (X < t) = 1/2.

From P (X < t) = P (X ≤ t) = t2

16
= 1/2, we obtain t =

√
8 = 2.8284

(c) Possible value of Y are {0, 1, 2, 3, 4}. Y is discrete random variable. The

p.m.f. of Y is given by

P (Y = 0) = P{(X ≤ 0.5) ∪ (X = 1.5) ∪ (X = 2.5) ∪ (X = 3.5)}
= P (X ≤ 0.5) =

0.52

16
=

1

64

P (Y = 1) = P (0.5 < X < 1.5) = P (X < 1.5)− P (X < 0.5) =
1.52 − 0.52

16
=

1

8

P (Y = 2) = P (1.5 < X < 2.5) = P (X < 2.5)− P (X < 1.5) =
2.52 − 1.52

16
=

2

8
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P (Y = 3) = P (2.5 < X < 3.5) = P (X < 3.5)− P (X < 2.5) =
3.52 − 2.52

16
=

3

8

P (Y = 4) = P (X ≥ 3.5) = 1− 3.52

16
=

15

64

Q8. Let X1 denote the lifetime of component 1, X2 denote the lifetime of

component 2, and X3 denote the lifetime of component 3.

The lifetime (in day) of each component approximately follows an exponential

distribution with a mean lifetime of 100 days, i.e. Xi ∼ exp(λ) and E(Xi) = 100

for i = 1, 2, 3. Note that the expectation of exponential random variable is 1/λ,

therefore, in this question, the parameter λ = 1/100 = 0.01 per day. Hence, the

p.d.f. of Xi is f(x) = 0.01e−0.01x, x ≥ 0 and the c.d.f. of Xi is F (x) = P (X ≤
x) = 1− e−0.01x, x ≥ 0.

(a)The lifetime of the first component is X1 ∼ exp(0.01).

P (50 ≤ X1 ≤ 100) = F (100)− F (50)

= [1− e−0.01×100]− [1− e−0.01×50]

= (1− e−1.0)− (1− e−0.5) = 0.63212− 0.39347 = 0.23865

(b) The probability that component i (i = 1, 2, 3) has lifetimes between 50

and 150 days is

P (50 ≤ Xi ≤ 150) = F (150)−F (50) = (1−e−1.5)−(1−e−0.5) = 0.77687−0.39347 = 0.3834

Let Y denote the number of components (of the 3) with lifetime between 50 and

150 days, then Y ∼ Binomial(3, 0.3834). Therefore,

P (Y = 2) =

(
3

2

)
0.38342(1− 0.3834)1 = 0.2719

(c) Denote by T the lifetime of the entire system. Since the components are

arranged in series, we have T = min{X1, X2, X3}. The c.d.f. of T is

FT (t) = P (T ≤ t) = 1− P (T > t) = 1− P (min{X1, X2, X3} > t)

= 1− P (X1 > t, X2 > t, X3 > t)

= 1− P (X1 > t)P (X2 > t)P (X3 > t)
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= 1− [1− P (X1 ≤ t)][1− P (X2 ≤ t)][1− P (X3 ≤ t)]

= 1− [1− (1− e−0.01t)]3

= 1− [e−0.01t]3 = 1− e−0.03t, t ≥ 0.

where the forth equality follows from the independence of the events {X1 > t},
{X2 > t}, {X3 > t}. Notice that T ∼ exp(0.03). Thus, the mean of T is

1/0.03 = 33.33.

Denote by m the median lifetime, we need to solve FT (m) = 1/2, i.e. 1 −
e−0.03m = 1/2. e−0.03m = 0.5 ⇒ m = log(0.5)

−0.03
= 23.105. Thus, the median lifetime

is 23.105 days.

(d) If the 3 components are arranged in parallel, the lifetime of entire system

is T = max{X1, X2, X3}. Similar as Q5, the c.d.f. of T is given by

FT (t) = P (T ≤ t)

= P (max(X1, X2, X3) ≤ t)

= P (X1 ≤ t,X2 ≤ t,X3 ≤ t)

= P (X1 ≤ t)P (X2 ≤ t)P (X3 ≤ t)

= (1− e−0.01t)3, t ≥ 0.

where the last equality follows from the independence of the events {X1 ≤ k},
{X2 ≤ k}, {X3 ≤ k}. Next we determine P (X1 ≤ k).

The median lifetime can be solved from FT (m) = 1/2 = 0.5, i.e.

(1− e−0.01m)3 = 0.5

e−0.01m = 1− 3
√

0.5 ⇒ m =
log(1− 3

√
0.5)

−0.01
= 157.8426

If the 3 components are arranged in parallel, the median lifetime of entire system

is 157.84 days, which is much longer than the median lifetime when the system is

arranged in series.

Q9. Suppose

X ∼ N(µ, σ2) = N(3, 4)

and Z denotes the standard normal distribution.
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(a)

P (X > 4) = P

(
X − 3

2
>

1

2

)

= P

(
Z >

1

2

)

= 1− Φ(.5) = 0.3085.

(b)

P (2 < X < 4) = P

(
−1

2
<

X − 3

2
<

1

2

)

= P

(
−1

2
< Z <

1

2

)

= Φ(.5)− Φ(−.5) = 0.3829.

(c)

P (|X − 3| < 2) = P

( |X − 3|
2

< 1

)

= P (−1 < Z < 1)

= Φ(1)− Φ(−1) = 0.6827.

(d) P (|X − 3| < 2) is larger than P (|X − 2| < 2), because X is symmetric

distributed and centered around 3.

(e) Since P (|X − 3| < c) = 0.90, we know P (X − 3 < c) = 0.95.

P (X − 3 < c) = 0.95

P

(
X − 3

2
<

c

2

)
= 0.95

P
(
Z <

c

2

)
= 0.95

c

2
= 1.645

c = 3.29.

Q10. Suppose X ∼ N(µ, σ2) where µ is unknown and σ = 0.05µ.
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(a) We need to set a value for µ such that P (X < 25) = 0.1.

P (X < 25) = 0.1

P

(
X − µ

.05µ
<

25− µ

.05µ

)
= 0.1

P

(
Z <

25− µ

.05µ

)
= 0.1

25− µ

.05µ
= −1.28

µ = 26.7094.

(b) We just need to replace 25 with 50 and redo the above procedure to find

the solution µ = 53.4188.
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