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ABSTRACT

In this report, we propose an original approach to solve Fredholm equations of

the second kind. We interpret the standard von Neumann expansion of the solution

as an expectation with respect to a probability distribution de�ned on an union of

subspaces of variable dimension. Based on this representation, it is possible to use

trans-dimensional Markov Chain Monte Carlo (MCMC) methods such as Reversible

Jump MCMC to approximate the solution numerically. This can be an attractive

alternative to standard Sequential Importance Sampling (SIS) methods routinely used

in this context. We sketch an application to value function estimation for a Markov

decision process.

Keywords: Fredholm equation, Trans-dimensional Markov Chain Monte Carlo,

Sequential Importance Sampling, Sequential Monte Carlo.
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I. Fredholm equations and Von Neumann�s expansion

Fredholm equations of the second kind and related problems appear in many scienti�c �elds

including optimal control [1], molecular population genetics [6] and physics [9]. Formally, we are

interested in solving the integral equation

f (x0) =

Z
E

K (x0; x1) f (x1) dx1 + g (x0) (1)

where g : E ! R and K : E � E ! R are known and f : E ! R is unknown.

Let us de�ne K0 (x; y) , 1; K1 (x; y) , K (x; y) and

Kn (x; y) ,
Z
K (x; z)Kn�1 (z; y) dz:

If
1X
n=0

Z
E

jKn (x0; xn) g (xn)j dxn <1 (2)

then the solution of the Fredholm equation (1) admits the following Von Neumann�s series repre-

sentation; see [8], [9] for details:

f (x0) =

Z
E

K (x0; x1) f (x1) dx1 + g (x0)

=

Z
E

K (x0; x1)

�Z
E

K (x1; x2) f (x2) dx2 + g (x1)

�
dx1 + g (x0)

=

Z
E

Z
E

K (x0; x1)K (x1; x2) f (x2) dx1dx2 +

Z
E

K (x0; x1) g (x1) dy + g (x0)

and, by iterating

f (x0) = g (x0) +
1X
n=1

Z
En

 
nY
k=1

K (xk�1; xk)

!
g (xn) dx1:n (3)

where we use the notation xi:j , (xi; : : : ; xj) for i � j:

By introducing the notation

f0 (x0) = g (x0) (4)

and setting for n � 1;

fn (x0:n) = g (xn)
nY
k=1

K (xk�1; xk) (5)

then it is possible to rewrite (3) as

f (x0) = f0 (x0) +
1X
n=1

Z
En

fn (x0:n) dx1:n: (6)

We will address two problems in this paper: how to estimate the function f (x0) over the set E

and how to estimate this function pointwise.
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II. Monte Carlo Methods to Solve Fredholm Equations

Computing (3) is challenging as it involves an in�nite sum of integrals of increasing dimension.

Monte Carlo methods are a natural approach to this problem.

A. Sequential Importance Sampling

1. Algorithm

The use of Monte Carlo methods to solve problems of this type can be traced back 50 years.

The standard approach consists of using Sequential Importance Sampling (SIS) to numerically

approximate (3); see for example [8], [9]. Consider a Markov chain with initial distribution/density

� (x) on E and a transition kernel M (x; y) which gives the probability or probability density of

moving to state y when the current state is x. We select � and M such that � (x) > 0 over E

and M (x; y) > 0 if K (x; y) 6= 0. Moreover, M is chosen to have an absorbing/cemetery state, say

fyg =2 E, such that M (x; fyg) = Pd for any x 2 E.

The algorithm proceeds as follows to approximate the function f :

� Simulate N independent Markov chain paths
n
X
(i)

0:k(i)+1

oN
i=1

until absorption (i.e. X(i)

k(i)+1
=

y).

� Calculate the associated importance weights

W1

�
X
(i)

0:k(i)

�
=

8>>>><>>>>:
1

�
�
X
(i)
0

�
0@k(i)Q
k=1

K

�
X
(i)

k(i)�1
;X

(i)

k(i)

�
M

�
X
(i)

k(i)�1
;X

(i)

k(i)

�
1A g

�
X
(i)

k(i)

�
Pd

if k(i) � 1;

g
�
X
(i)
0

�
�
�
X
(i)
0

�
Pd

if k(i) = 0:

(7)

� The empirical measure

bf (x0) = 1

N

NX
i=1

W1

�
X
(i)

0:k(i)

�
�
�
x0 �X(i)

0

�
(8)

is an unbiased Monte Carlo approximation of the function f (i.e. for any setA, E
hR
A
bf (x0) dx0i =R

A
f (x0) dx0).

If we are interested in estimating the function f (x0) at a given point say x0 = x, then we

simulate paths
n
X
(i)

0:k(i)+1

oN
i=1

starting from X
(i)
0 = x according to M until absorption/death and
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the importance weights become

W2

�
X
(i)

0:k(i)

�
=

8>>>><>>>>:

0@k(i)Q
k=1

K

�
X
(i)

k(i)�1
;X

(i)

k(i)

�
M

�
X
(i)

k(i)�1
;X

(i)

k(i)

�
1A g

�
X
(i)

k(i)

�
Pd

if k(i) � 1;

g(x)
Pd

if k(i) = 0:

(9)

We obtain the following unbiased estimate of f (x)

bf (x) = 1

N

NX
i=1

W2

�
x;X

(i)

1:k(i)

�
: (10)

2. Importance Sampling on Path Space

To check the unbiasedness of the estimates (8) and (10), we use a slightly non-standard argument

which will later prove useful.

The �rst method to estimate the function f through (8) can be interpreted as an importance

sampling technique using an importance distribution �1 (n; x0:n) de�ned on the path space F1 ,U1
k=0 fkg � Ek+1 where

�1 (n; x0:n) = p1;n�1;n (x0:n) (11)

with p1;n the probability that the simulated path is of length n + 1 (i.e. X0:n 2 En+1 and

Xn+1 = fyg) and �1;n (x0:n) the probability or probability density of a path conditional upon this

path being of length n+ 1. We have

p1;n = Pr
�
X0:n 2 En+1; Xn+1 = fyg

�
= (1� Pd)n Pd; (12)

and

�1;n (x0:n) =

� (x0)
nQ
k=1

M (xk�1; xk)

(1� Pd)n
. (13)

Now using (6) and importance sampling, this yields

f (x0) =
f0 (x0)

�1 (0; x0)
�1 (0; x0) +

1X
n=1

Z
En

fn (x0:n)

�1 (n; x0:n)
�1 (n; x0:n) dx1:n (14)

= E�1
�
fk (X0:k)

�1 (k;X0:k)

�

By sampling
n
k(i); X

(i)

0:k(i)

o
(i = 1; : : : ; N) according to �1, we can obtain the following approxi-

mation

bf (x0) = 1

N

NX
i=1

fk(i)
�
X
(i)

0:k(i)

�
�1

�
k(i); X

(i)

0:k(i)

��
X
(i)
0
(x0) : (15)
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It is straightforward to check using (4), (5), (7), (11), (12) and (13) that

fk(i)
�
X
(i)

0:k(i)

�
�1

�
k(i); X

(i)

0:k(i)

� =W1

�
X
(i)

0:k(i)

�
;

thus establishing the unbiasedness of (8).

Similarly, the second method to compute f (x) pointwise using (10) corresponds to an impor-

tance sampling method on the space F2 ,
U1
k=0 fkg � Ek. The importance distribution is given

by �2 (0; x1:0) , �2 (0) = Pd and for n � 1

�2 (n; x1:n) = p2;n�2;n (x1:n)

with

p2;n = Pr (X1:n 2 En; Xn+1 = f�g) = (1� Pd)n Pd; (16)

and

�2;n (x1:n) =

M (x; x1)
nQ
k=2

M (xk�1; xk)

(1� Pd)n
. (17)

Using the importance sampling identity

f (x) =
f0 (x)

�2 (0)
�2 (0) +

1X
n=1

Z
En

fn (x; x1:n)

�2 (n; x1:n)
�2 (n; x1:n) dx1:n (18)

= E�2
�
fk (x;X1::k)

�2 (k;X1:k)

�

then sampling
n
k(i); X

(i)

0:k(i)

o
(i = 1; : : : ; N) according to �2, we obtain the following approximation

bf (x) = 1

N

NX
i=1

fk(i)
�
x;X

(i)

1:k(i)

�
�2

�
k(i); X

(i)

1:k(i)

� : (19)

Using (4), (5), (9), (16) and (17), we have

fn

�
x;X

(i)

1:k(i)

�
�2

�
k(i); X

(i)

1:k(i)

� =W2

�
x;X

(i)

1:k(i)

�
thus establishing the unbiasedness of (10).

3. Limitations of SIS

The estimates (15) and (19) will have a reasonable Monte Carlo variance if the variance of the ab-

solute value of the weights is small. However, this can be di¢ cult to ensure using the standard SIS

approach. First, it imposes an arbitrary geometric distribution for the simulated paths length (12),
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(16) which might be inappropriate. Second, a product of terms K
�
X
(i)
k�1; X

(i)
k

�
=M

�
X
(i)
k�1; X

(i)
k

�
appears in the expression of the weights if M 6= K 1 ; its variance typically increases approxi-

mately exponentially fast with the length of the paths. Third, if we are interested in estimating

the function on E using (15), the initial distribution � appears in the denominator of (7). This

distribution has to be selected very carefully to ensure that the variance of the resulting weights

will be �nite.

The performance of SIS algorithms can usually be dramatically improved by introducing a

resampling step [2], [3]. The basic idea is to monitor the variance of importance weights over time

and to discard paths with small weights and multiply paths with high weights; resampled paths

are given an equal weight. However, even with an incorporated resampling step, SIS might still

be ine¢ cient in this context as we are interested in estimating a function at time 0. Each time it

is used, the resampling step decreases the diversity in the number of paths left from time 0 to the

current time index.

B. Importance Sampling using Trans-dimensional MCMC

In this paper, we propose an alternative approach in which we do not limit ourselves to imputing

paths sequentially. The importance sampling identity (14) is valid for any distribution �1 such

that
R
En fn (x0:n) dx1:n 6= 0 ) p1;n > 0 and fn (x0:n) 6= 0 ) �1;n (x0:n) 6= 0. Similarly (18) is

valid when
R
En fn (x; x1:n) dx1:n 6= 0 ) p2;n > 0 and fn (x; x1:n) 6= 0 ) �2;n (x1:n) 6= 0. We now

show how it is possible to structure e¢ cient importance distributions which can be sampled from

using trans-dimensional MCMC methods.

1. Optimal Importance Distributions

We propose selecting importance distributions �1 (n; x0:n) [resp. �2 (n; x1:n)] which minimize the

variance of the absolute value of the importance weights in (15) [resp. (19)] in order to reduce the

Monte Carlo variance of these estimates.

Let us �rst consider the case (15). We de�ne �1 (n; x0:n) on F1 as follows. The renormalized

1 In many applications K is not a Markov kernel and it is impossible to select M = K:
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version of the absolute value of fn (x0:n) is given by

�1;n (x0:n) = c
�1
1;n jfn (x0:n)j (20)

with

c1;n =

Z
En+1

jfn (x0:n)j dx0:n:

Note that if g (x) � 0 and K (x; y) � 0 for any x; y 2 E, then assumption (2) ensures cn < 1.

However, in the more general case, we need to make the additional assumption cn <1 for any n.

We also consider

p1;n = c
�1
1 c1;n (21)

where

c1 =
1X
n=0

c1;n: (22)

It is assumed here that c1 <1; this is true if (2) holds. In this case,

f (x0) = c1;0 sgn (f0 (x0))�1;0 (x0) +
1X
n=1

c1;n

Z
En

sgn (fn (x0:n))�1;n (x0:n) dx1:n

= c1 sgn (f0 (x0))�1 (0; x0) + c1
1X
n=1

Z
En

sgn (fn (x0:n))�1 (n; x0:n) dx1:n

where

sgn (u) =

8>><>>:
1 if u � 0;

�1 if u < 0:

Given N � 1 random samples
n
k(i); X

(i)

0:k(i)

o
distributed according to �1, it is possible to

approximate (3) by

bf (x0) = c1
N

NX
i=1

sgn
�
fk(i)

�
X
(i)

0:k(i)

��
�
�
x0 �X(i)

0

�
:

This is clearly the optimal importance distribution as the variance of the absolute values of the

importance weights is equal to zero. However, it is usually impossible to sample from �1 (n; x0:n)

exactly and to compute c1 in closed-form.

We claim that these two problems can be satisfactorily solved in most cases using trans-

dimensional MCMC. To sample from �1, which is a distribution de�ned on a union of subspaces

of di¤erent dimensions, we can use any trans-dimensional MCMC method such as the popular

Reversible Jump MCMC (RJMCMC) algorithm [4], [5]. This idea involves building a F1-valued
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ergodic Markov chain
n
k(i); X

(i)

0:k(i)

o
i�1

which admits �1 as an invariant distribution. This is a

generalization of the standard Metropolis-Hastings algorithm. As i!1, one obtains (correlated)

samples distributed according to �1. Moreover, under the standard and realistic assumption that

c1;0 =

Z
E

jg (x)j dx

is known or can be estimated numerically; then we can obtain the following estimate of c namely

bc1 = c1;0bp1;0
where bp1;0 is the proportion of random samples such that k(i) = 0; i.e.

bp1;0 = 1

N

NX
i=1

�0

�
k(i)
�
: (23)

Let us now consider the case (19). The importance distribution is de�ned on F 02 =
U1
k=1 fkg�

Ek with

�2 (n; x1:n) = p2;n�2;n (x1:n) (24)

where

�2;n (x1:n) = c�12;n jfn (x; x1:n)j ; (25)

c2;n =

Z
En

jfn (x; x1:n)j dx1:n

and

p2;n = c
�1
2 c2;n; (26)

c2 =
1X
n=1

c2;n: (27)

It is assumed that c2 <1; this is satis�ed if (2) holds. In this case,

f (x) = f0 (x) +
1X
n=1

c2;n

Z
En

sgn (fn (x; x1:n))�n (x1:n) dx1:n

= f0 (x) + c2

1X
n=1

Z
En

sgn (fn (x; x1:n))� (n; x1:n) dx1:n:

Given N � 1 random samples
n�
k(i); X

(i)

1:k(i)

�oN
i=1

distributed according to �2, it is possible to

approximate (3) by

bf (x) = f0 (x) + c2
N

NX
i=1

sgn
�
fk(i)

�
x;X

(i)

1:k(i)

��
:
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To sample from �2, we can use trans-dimensional MCMC. To estimate c2, we use the fact that

if

c2;1 =

Z
E

jf1 (x; x1)j dx1 =
Z
E

jg (x1)K (x; x1)j dx1

is known or can be estimated numerically then we can obtain the following estimate of c2

bc2 = c2;1bp2;1
where bp2;1 is the proportion of random samples such that k(i) = 1; i.e.

bp2;1 = 1

N

NX
i=1

�1

�
k(i)
�
: (28)

2. A Reversible Jump Markov chain Monte Carlo algorithm

For sake of completeness, we describe here a simple RJMCMC algorithm to sample from �1 as

de�ned by (20), (21) and (22). A very similar algorithm could be propose to sample from �2 as

de�ned by (24), (25), (26) and (27). More elaborate algorithms are discussed in [5].

This algorithm is based on update, birth and death moves. Each move is respectively selected

with probability uk(i) , bk(i) and dk(i) where uk(i)+bk(i)+dk(i) = 1 at iteration i. We also introduce

two proposal distributions on E denoted by qu (x; �) and qb (�) :We denote the uniform distribution

on A by U (A).

Initialization.

� Set
�
k(1); X

(1)

0:k(1)

�
randomly or deterministically.

Iteration i � 2:

� Sample U � U [0; 1] :

If U � uk(i�1)

Update move

� Set k(i) = k(i�1), sample J � U
��
0; 1; : : : ; k(i)

	�
and X�

J � qu
�
X
(i�1)
J ; �

�
.

�With probability

min

8<:1; �1
�
k(i);

�
X
(i�1)
0:J�1; X

�
J ; X

(i�1)
J+1:k(i)

��
qu

�
X�
J ; X

(i�1)
J

�
�1

�
k(i); X

(i�1)
0:k(i)

�
qu

�
X
(i�1)
J ; X�

J

�
9=; (29)

set X(i)

0:k(i)
=
�
X
(i�1)
0:J�1; X

�
J ; X

(i�1)
J+1:k(i)

�
; otherwise set X(i)

0:k(i)
= X

(i�1)
0:k(i�1)

:
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Else If U � uk(i�1) + bk(i�1) ,

Birth move

� Sample J � U
�
0; 1; : : : ; k(i�1)

	
, sample X�

J � qb (�).

�With probability

min

8<:1; �1
�
k(i�1) + 1;

�
X
(i�1)
0:J�1; X

�
J ; X

(i�1)
J:k(i�1)

��
dk(i�1)+1

�1

�
k(i�1); X

(i�1)
0:k(i�1)

�
qb (X�

J) bk(i�1)

9=; (30)

set k(i) = k(i�1) + 1, X(i)
0:k =

�
X
(i�1)
0:J�1; X

�
J ; X

(i�1)
J:k(i�1)

�
; otherwise set k(i) = k(i�1),

X
(i)

0:k(i)
= X

(i�1)
0:k(i�1)

:

Else

Death move

� Sample J � U
�
0; 1; : : : ; k(i�1)

	
.

�With probability

min

8<:1; �1
�
k(i�1) � 1;

�
X
(i�1)
0:J�1; X

(i�1)
J+1:k(i�1)

��
qb

�
X
(i�1)
J

�
bk(i�1)�1

�1

�
k(i�1); X

(i�1)
0:k(i�1)

�
dk(i�1)

9=; (31)

set k(i) = k(i�1) � 1, X(i)

0:k(i)
=
�
X
(i�1)
0:J�1; X

(i�1)
J+1:k(i�1)

�
; otherwise set k(i) = k(i�1),

X
(i)

0:k(i)
= X

(i�1)
0:k(i�1)

:

To compute (29), (30) and (31), one needs to be able to compute ratios of the form

�1 (l; x0:l)

�1 (k; x0:k)
=
cl�1;l (x0:l)

ck�1;k (x0:k)
=

���� fl (x0:l)fk (x0:k)

���� :
This can be performed easily as fl (x0:l) and fk (x0:k) are given by (5). It is easy to check that the

invariant distribution of this Markov chain is �1. Establishing ergodicity has to be performed on

a case by case basis.

III. Application to Value Function Estimation

A. Model

Our motivating application is related to control. We consider a Markov process fXkgk�0 on E

with transition kernel P . Let us introduce a reward function r : E ! R+ and a discount factor

10




 2 (0; 1). When the process is in state x at time k it accumulates a reward 
kr (x). Thus the

expected reward starting from X0 = x is given by

V (x) = EX0=x

" 1X
k=0


kr (Xk)

#
:

The expected reward is called the value function in optimal control [1]. Under standard regularity

assumptions, it can be established that the value function satis�es

V (x) = 


Z
E

P (x; y)V (y) dy + r (x) ;

that is a Fredholm equation of the second kind (1) where f (x) = V (x), K (x; y) = 
P (x; y) and

g (x) = r (x).

B. Example

We present here a simple example where all calculations can be performed analytically which em-

phasizes the limitations of SIS in this context. We denote by N
�
m;�2

�
the Gaussian distribution

of mean m and variance �2 and

N
�
x;m;�2

�
=

1p
2��

exp

 
� (x�m)

2

2�2

!
:

We set P (x; y) = N
�
y;�x; �21

�
(with j�j < 1) and r (x) = N

�
x; 0; �2r

�
. In this case, one has

Xkj (X0 = x) � N
�
mk (x) ; �

2
k

�
with m0 (x) = x; �

2
0 = 0 and for k � 1

mk (x) = �
kx, �2k =

 
kX
i=1

�2(i�1)

!
�21:

It follows that

f (x) =
1X
k=0


kN
�
mk (x) ; 0; �

2
k + �

2
r

�
:

Assume one considers a SIS method to solve this problem. A sensible choice for M is

M (x; y) = (1� Pd)P (x; y) + Pd� (x� �) :

If one is interested in estimating the function at a given point x0 = x, then the importance weights

are given by (9); that is

W2

�
X
(i)

0:k(i)

�
=

8>><>>:
�



(1�Pd)

�k(i) g�X(i)

k(i)

�
Pd

if k(i) � 1;

g(x)
Pd

if k(i) = 0:

11



The variance of the importance weights is given by

var
h
W2

�
x;X

(i)

1:k(i)

�i
=

1

2Pd
p
��r

1X
k=0

�

2

1� Pd

�k
N
�
mk (x) ; 0; �

2
k + �

2
r=2
�
� f2 (x) : (32)

This variance (32) will only be �nite if 
2

1�Pd < 1. In this case, the optimal importance function

�1;n can easily be computed in closed-form as p1;n is known and �1;n (x0:n) is a Gaussian; the

variance of the associated estimate is zero.

When estimating the function f (x0), we consider the importance weights (7) given by

W1

�
X
(i)

0:k(i)

�
=

8>>><>>>:
1

�
�
X
(i)
0

� � 

(1�Pd)

�k(i) g�X(i)

k(i)

�
Pd

if k(i) � 1;

g
�
X
(i)
0

�
�
�
X
(i)
0

�
Pd

if k(i) = 0:

The variance of the importance weights is equal to

var
h
W1

�
X
(i)

0:k(i)

�i
=

1

2Pd
p
��r

 1X
k=1

�

2

1� Pd

�k Z
1

� (x0)
N
�
mk (x0) ; 0; �

2
k + �

2
r=2
�
dx0

!

�
�Z

f (x0) dx0

�2
: (33)

Assume we consider � (x0) = N
�
x0; 0; �

2
�
, then to ensure that the variance (33) is �nite, it

requires 
2

1�Pd < 1 and

�2 >
�21

1� �2 +
�2r
2
:

For more complex problems, it could be impossible to determine analytically what are the necessary

conditions on � to ensure the variance is �nite. In this case, the optimal importance function �2;n

admits a closed-form and the variance of the associated estimate is zero.

IV. Discussion

A similar methodology can be developed in any situation where we face a convergent series of

integrals/sums; each term being possibly of di¤erent dimension. In particular, this could be

applied to the solving of large linear/nonlinear systems of equations and would be an alternative

to [7].

V. Note

The �rst version of this report was written in 2002. After having updated this report in 2004,

we realized that a related idea had previously appeared in computer graphics [10]. However, it

12



is di¢ cult to follow the developments in this paper for people who are not familiar with this

�eld, including the authors of this report. We believe that this report provides a more general

methodology and might also be more accessible. In the 2007 update, we have added the reference

[7], corrected a couple of typos and updated (once more) the a¢ liations of both authors.
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