CPSC 535

Sequential Importance Sampling \& Resampling

AD

13th February 2007

- Sequential Importance Sampling
- Sequential Importance Sampling
- Resampling

Importance Sampling Review

- Let $\pi(x)=\frac{\gamma(x)}{Z}$ and $q(x)$ be pdf on \mathcal{X} such that $\pi(x)>0 \Rightarrow q(x)>0$.

Importance Sampling Review

- Let $\pi(x)=\frac{\gamma(x)}{Z}$ and $q(x)$ be pdf on \mathcal{X} such that $\pi(x)>0 \Rightarrow q(x)>0$.
- IS is based on the identities

$$
\begin{aligned}
\pi(x) & =\frac{w(x) q(x)}{Z}, Z=\int w(x) q(x) d x \\
\text { where } w(x) & =\frac{\gamma(x)}{q(x)} \propto \frac{\pi(x)}{q(x)}
\end{aligned}
$$

Importance Sampling Review

- Let $\pi(x)=\frac{\gamma(x)}{Z}$ and $q(x)$ be pdf on \mathcal{X} such that $\pi(x)>0 \Rightarrow q(x)>0$.
- IS is based on the identities

$$
\begin{aligned}
\pi(x) & =\frac{w(x) q(x)}{Z}, Z=\int w(x) q(x) d x \\
\text { where } w(x) & =\frac{\gamma(x)}{q(x)} \propto \frac{\pi(x)}{q(x)}
\end{aligned}
$$

- Given

$$
\widehat{q}_{N}(x)=\frac{1}{N} \sum_{i=1}^{N} \delta_{X^{(i)}}(x) \text { where } X \stackrel{(i) \stackrel{\text { i.i.d. }}{\sim} q}{ }
$$

then

$$
\begin{aligned}
\hat{Z} & =\frac{1}{N} \sum_{i=1}^{N} w\left(X^{(i)}\right) \\
\widehat{\pi}_{N}(x) & =\sum_{i=1}^{N} W_{i} \delta_{X^{(i)}}(x) \text { where } W_{i} \propto w\left(X^{(i)}\right), \sum_{i=1}^{N} W_{i}=1
\end{aligned}
$$

Sequential Importance Sampling

- In practice, IS will "work" well if q is close to π; it is difficult to design such a q if \mathcal{X} is an high-dimensional space.

Sequential Importance Sampling

- In practice, IS will "work" well if q is close to π; it is difficult to design such a q if \mathcal{X} is an high-dimensional space.
- A simple way to come up with reasonably good proposal distributions consists of building the proposal sequentially; i.e. if $x=\left(x_{1}, \ldots, x_{n}\right)$ then we propose to build an importance distribution of the form

$$
q_{n}\left(x_{1: n}\right)=q_{1}\left(x_{1}\right) q_{2}\left(x_{2} \mid x_{1}\right) \cdots q_{n}\left(x_{n} \mid x_{1: n-1}\right)
$$

Sequential Importance Sampling

- In practice, IS will "work" well if q is close to π; it is difficult to design such a q if \mathcal{X} is an high-dimensional space.
- A simple way to come up with reasonably good proposal distributions consists of building the proposal sequentially; i.e. if $x=\left(x_{1}, \ldots, x_{n}\right)$ then we propose to build an importance distribution of the form

$$
q_{n}\left(x_{1: n}\right)=q_{1}\left(x_{1}\right) q_{2}\left(x_{2} \mid x_{1}\right) \cdots q_{n}\left(x_{n} \mid x_{1: n-1}\right)
$$

- The advantage of this approach is that we've broken up the original design problem in n "simpler" models.

Sequential Importance Sampling

- In practice, IS will "work" well if q is close to π; it is difficult to design such a q if \mathcal{X} is an high-dimensional space.
- A simple way to come up with reasonably good proposal distributions consists of building the proposal sequentially; i.e. if $x=\left(x_{1}, \ldots, x_{n}\right)$ then we propose to build an importance distribution of the form

$$
q_{n}\left(x_{1: n}\right)=q_{1}\left(x_{1}\right) q_{2}\left(x_{2} \mid x_{1}\right) \cdots q_{n}\left(x_{n} \mid x_{1: n-1}\right)
$$

- The advantage of this approach is that we've broken up the original design problem in n "simpler" models.
- Given the fact that

$$
\pi\left(x_{1: n}\right)=\pi_{n}\left(x_{1: n}\right)=\pi_{n}\left(x_{1}\right) \pi_{n}\left(x_{2} \mid x_{1}\right) \cdots \pi_{n}\left(x_{n} \mid x_{1: n-1}\right),
$$

where $\pi_{n}\left(x_{k} \mid x_{1: k-1}\right) \propto \gamma_{n}\left(x_{k} \mid x_{1: k-1}\right)$ it seems sensible to take

$$
q_{k}\left(x_{k} \mid x_{1: k-1}\right) \approx \pi_{n}\left(x_{k} \mid x_{1: k-1}\right)
$$

- At time $k=1$, sample $X_{1}^{(i)} \sim q_{1}(\cdot)$ and set $w_{1}\left(X_{1}^{(i)}\right)=\frac{\gamma_{1}\left(X_{1}^{(i)}\right)}{q_{1}\left(X_{1}^{(i)}\right)}$.
- At time $k=1$, sample $X_{1}^{(i)} \sim q_{1}(\cdot)$ and set $w_{1}\left(X_{1}^{(i)}\right)=\frac{\gamma_{1}\left(X_{1}^{(i)}\right)}{q_{1}\left(X_{1}^{(i)}\right)}$.
- At time $k \geq 2$
- At time $k=1$, sample $X_{1}^{(i)} \sim q_{1}(\cdot)$ and set $w_{1}\left(X_{1}^{(i)}\right)=\frac{\gamma_{1}\left(X_{1}^{(i)}\right)}{q_{1}\left(X_{1}^{(i)}\right)}$.
- At time $k \geq 2$
- sample $X_{k}^{(i)} \sim q_{k}\left(\cdot \mid X_{1: k-1}^{(i)}\right)$
- At time $k=1$, sample $X_{1}^{(i)} \sim q_{1}(\cdot)$ and set $w_{1}\left(X_{1}^{(i)}\right)=\frac{\gamma_{1}\left(X_{1}^{(i)}\right)}{q_{1}\left(X_{1}^{(i)}\right)}$.
- At time $k \geq 2$
- sample $X_{k}^{(i)} \sim q_{k}\left(\cdot \mid X_{1: k-1}^{(i)}\right)$
- compute $w_{k}\left(X_{1: k}^{(i)}\right)=w_{k-1}\left(X_{1: k-1}^{(i)}\right) \frac{\gamma_{n}\left(X_{k}^{(i)} \mid X_{1: k-1}^{(i)}\right)}{q_{k}\left(X_{k}^{(i)} \mid X_{1: k-1}^{(i)}\right)}$.
- At time $k=1$, sample $X_{1}^{(i)} \sim q_{1}(\cdot)$ and set $w_{1}\left(X_{1}^{(i)}\right)=\frac{\gamma_{1}\left(X_{1}^{(i)}\right)}{q_{1}\left(X_{1}^{(i)}\right)}$.
- At time $k \geq 2$
- sample $X_{k}^{(i)} \sim q_{k}\left(\cdot \mid X_{1: k-1}^{(i)}\right)$
- compute $w_{k}\left(X_{1: k}^{(i)}\right)=w_{k-1}\left(X_{1: k-1}^{(i)}\right) \frac{\gamma_{n}\left(X_{k}^{(i)} \mid X_{1: k-1}^{(i)}\right)}{q_{k}\left(X_{k}^{(i)} \mid X_{1: k-1}^{(i)}\right)}$.
- Clearly at time n we have obtained $X_{1: n}^{(i)} \sim q_{n}$ and indeed $w_{n}\left(X_{1: n}^{(i)}\right)=\frac{\gamma_{n}\left(X_{1: n}^{(i)}\right)}{q_{n}\left(X_{1: n}^{(i)}\right)}$.
- At time $k=1$, sample $X_{1}^{(i)} \sim q_{1}(\cdot)$ and set $w_{1}\left(X_{1}^{(i)}\right)=\frac{\gamma_{1}\left(X_{1}^{(i)}\right)}{q_{1}\left(X_{1}^{(i)}\right)}$.
- At time $k \geq 2$
- sample $X_{k}^{(i)} \sim q_{k}\left(\cdot \mid X_{1: k-1}^{(i)}\right)$
- compute $w_{k}\left(X_{1: k}^{(i)}\right)=w_{k-1}\left(X_{1: k-1}^{(i)}\right) \frac{\gamma_{n}\left(X_{k}^{(i)} \mid X_{1: k-1}^{(i)}\right)}{q_{k}\left(X_{k}^{(i)} \mid X_{1: k-1}^{(i)}\right)}$.
- Clearly at time n we have obtained $X_{1: n}^{(i)} \sim q_{n}$ and indeed $w_{n}\left(X_{1: n}^{(i)}\right)=\frac{\gamma_{n}\left(X_{1: n}^{(i)}\right)}{q_{n}\left(X_{1: n}^{(i)}\right)}$.
- Although this algorithm is simple, it typically cannot be implemented as $\pi_{n}\left(x_{k} \mid x_{1: k-1}\right)$ is unknown even up to a normalizing constant.
- Now consider the following modification where we define a sequence of intermediate target distributions $\pi_{1}\left(x_{1}\right)$, $\pi_{2}\left(x_{1: 2}\right), \ldots, \pi_{n-1}\left(x_{1: n-1}\right)$ to move smoothly towards $\pi_{n}\left(x_{1: n}\right)$; that is at each time k we provide an IS approximation of $\pi_{k}\left(x_{1: k}\right)$.
- Now consider the following modification where we define a sequence of intermediate target distributions $\pi_{1}\left(x_{1}\right)$, $\pi_{2}\left(x_{1: 2}\right), \ldots, \pi_{n-1}\left(x_{1: n-1}\right)$ to move smoothly towards $\pi_{n}\left(x_{1: n}\right)$; that is at each time k we provide an IS approximation of $\pi_{k}\left(x_{1: k}\right)$.
- By construction, we know $\pi_{k}\left(x_{1: k}\right)$ up to a normalizing constant

$$
\pi_{k}\left(x_{1: k}\right)=\frac{\gamma_{k}\left(x_{1: k}\right)}{Z_{k}}
$$

- Now consider the following modification where we define a sequence of intermediate target distributions $\pi_{1}\left(x_{1}\right)$, $\pi_{2}\left(x_{1: 2}\right), \ldots, \pi_{n-1}\left(x_{1: n-1}\right)$ to move smoothly towards $\pi_{n}\left(x_{1: n}\right)$; that is at each time k we provide an IS approximation of $\pi_{k}\left(x_{1: k}\right)$.
- By construction, we know $\pi_{k}\left(x_{1: k}\right)$ up to a normalizing constant

$$
\pi_{k}\left(x_{1: k}\right)=\frac{\gamma_{k}\left(x_{1: k}\right)}{Z_{k}}
$$

- We also use an importance distribution

$$
\begin{aligned}
q_{n}\left(x_{1: n}\right) & =q_{1}\left(x_{1}\right) q_{2}\left(x_{2} \mid x_{1}\right) \cdots q_{n}\left(x_{n} \mid x_{1: n-1}\right) \\
& =q_{n-1}\left(x_{1: n-1}\right) q_{n}\left(x_{n} \mid x_{1: n-1}\right) \\
& =q_{k}\left(x_{1: k}\right) \prod_{j=k+1}^{n} q_{j}\left(x_{j} \mid x_{1: j-1}\right)
\end{aligned}
$$

but it is now such that

$$
q_{k}\left(x_{k} \mid x_{1: k-1}\right) \approx \pi_{k}\left(x_{k} \mid x_{1: k-1}\right)
$$

- At time $k=1$, sample $X_{1}^{(i)} \sim q_{1}(\cdot)$ and set $w_{1}\left(X_{1}^{(i)}\right)=\frac{\gamma_{1}\left(X_{1}^{(i)}\right)}{q_{1}\left(X_{1}^{(i)}\right)}$.
- At time $k=1$, sample $X_{1}^{(i)} \sim q_{1}(\cdot)$ and set $w_{1}\left(X_{1}^{(i)}\right)=\frac{\gamma_{1}\left(X_{1}^{(i)}\right)}{q_{1}\left(X_{1}^{(i)}\right)}$.
- At time $k \geq 2$
- At time $k=1$, sample $X_{1}^{(i)} \sim q_{1}(\cdot)$ and set $w_{1}\left(X_{1}^{(i)}\right)=\frac{\gamma_{1}\left(X_{1}^{(i)}\right)}{q_{1}\left(X_{1}^{(i)}\right)}$.
- At time $k \geq 2$
- sample $X_{k}^{(i)} \sim q_{k}\left(\cdot \mid X_{1: k-1}^{(i)}\right)$
- At time $k=1$, sample $X_{1}^{(i)} \sim q_{1}(\cdot)$ and set $w_{1}\left(X_{1}^{(i)}\right)=\frac{\gamma_{1}\left(X_{1}^{(i)}\right)}{q_{1}\left(X_{1}^{(i)}\right)}$.
- At time $k \geq 2$
- sample $X_{k}^{(i)} \sim q_{k}\left(\cdot \mid X_{1: k-1}^{(i)}\right)$
- compute $w_{k}\left(X_{1: k}^{(i)}\right)=w_{k-1}\left(X_{1: k-1}^{(i)}\right) \frac{\gamma_{k}\left(X_{1: k}^{(i)}\right)}{\gamma_{k-1}\left(X_{1: k-1}^{(i)}\right) q_{k}\left(X_{k}^{(i)} \mid X_{1: k-1}^{(i)}\right)}$.
- At time $k=1$, sample $X_{1}^{(i)} \sim q_{1}(\cdot)$ and set $w_{1}\left(X_{1}^{(i)}\right)=\frac{\gamma_{1}\left(X_{1}^{(i)}\right)}{q_{1}\left(X_{1}^{(i)}\right)}$.
- At time $k \geq 2$
- sample $X_{k}^{(i)} \sim q_{k}\left(\cdot \mid X_{1: k-1}^{(i)}\right)$
- compute $w_{k}\left(X_{1: k}^{(i)}\right)=w_{k-1}\left(X_{1: k-1}^{(i)}\right) \frac{\gamma_{k}\left(X_{1: k}^{(i)}\right)}{\gamma_{k-1}\left(X_{1: k-1}^{(i)}\right) q_{k}\left(X_{k}^{(i)} \mid X_{1: k-1}^{(i)}\right)}$.
- At any time k, we have

$$
X_{1: k}^{(i)} \sim q_{k}\left(x_{1: k}\right), w_{k}\left(X_{1: k}^{(i)}\right)=\frac{\gamma_{k}\left(X_{1: k}^{(i)}\right)}{q_{k}\left(X_{1: k}^{(i)}\right)}
$$

that is an IS approximation of $\pi_{k}\left(x_{1: k}\right)$ and of Z_{k}.

- To check that is indeed true, note that

$$
w_{1}\left(x_{1}\right)=\frac{\gamma_{1}\left(x_{1}\right)}{q_{1}\left(x_{1}\right)}
$$

and

$$
\begin{aligned}
w_{k}\left(x_{1: k}\right) & =\frac{\gamma_{1}\left(x_{1}\right)}{q_{1}\left(x_{1}\right)} \prod_{j=1}^{k} \frac{\gamma_{j}\left(x_{1: j}\right)}{\gamma_{j-1}\left(x_{1: j-1}\right) q_{j}\left(x_{j} \mid x_{1: j-1}\right)} \\
& =\frac{\gamma_{k}\left(x_{1: k}\right)}{q_{1}\left(x_{1}\right) q_{2}\left(x_{2} \mid x_{1}\right) \cdots q_{k}\left(x_{k} \mid x_{1: k-1}\right)} \\
& =\frac{\gamma_{k}\left(x_{1: k}\right)}{q_{k}\left(x_{1: k}\right)}
\end{aligned}
$$

- To check that is indeed true, note that

$$
w_{1}\left(x_{1}\right)=\frac{\gamma_{1}\left(x_{1}\right)}{q_{1}\left(x_{1}\right)}
$$

and

$$
\begin{aligned}
w_{k}\left(x_{1: k}\right) & =\frac{\gamma_{1}\left(x_{1}\right)}{q_{1}\left(x_{1}\right)} \prod_{j=1}^{k} \frac{\gamma_{j}\left(x_{1: j}\right)}{\gamma_{j-1}\left(x_{1: j-1}\right) q_{j}\left(x_{j} \mid x_{1: j-1}\right)} \\
& =\frac{\gamma_{k}\left(x_{1: k}\right)}{q_{1}\left(x_{1}\right) q_{2}\left(x_{2} \mid x_{1}\right) \cdots q_{k}\left(x_{k} \mid x_{1: k-1}\right)} \\
& =\frac{\gamma_{k}\left(x_{1: k}\right)}{q_{k}\left(x_{1: k}\right)}
\end{aligned}
$$

- A key problem remains to be solved, how to select $\pi_{k}\left(x_{1: k}\right)$?
- Example: Bayesian inference for hidden Markov models

Hidden Markov process: $X_{1} \sim \mu, X_{k} \mid\left(X_{k-1}=x_{k-1}\right) \sim f\left(\cdot \mid x_{k-1}\right)$
Observation process: $Y_{k} \mid\left(X_{k}=x_{k}\right) \sim g\left(\cdot \mid x_{k}\right)$

- Example: Bayesian inference for hidden Markov models

Hidden Markov process: $X_{1} \sim \mu, X_{k} \mid\left(X_{k-1}=x_{k-1}\right) \sim f\left(\cdot \mid x_{k-1}\right)$
Observation process: $Y_{k} \mid\left(X_{k}=x_{k}\right) \sim g\left(\cdot \mid x_{k}\right)$

- This class of models appears in numerous areas: statistics, vision, robotics, econometrics, tracking etc.
- Example: Bayesian inference for hidden Markov models

Hidden Markov process: $X_{1} \sim \mu, X_{k} \mid\left(X_{k-1}=x_{k-1}\right) \sim f\left(\cdot \mid x_{k-1}\right)$
Observation process: $Y_{k} \mid\left(X_{k}=x_{k}\right) \sim g\left(\cdot \mid x_{k}\right)$

- This class of models appears in numerous areas: statistics, vision, robotics, econometrics, tracking etc.
- Assume we receive $y_{1: n}$, we are interested in sampling from

$$
\pi_{n}\left(x_{1: n}\right)=p\left(x_{1: n} \mid y_{1: n}\right)=\frac{p\left(x_{1: n}, y_{1: n}\right)}{p\left(y_{1: n}\right)}
$$

and estimating $p\left(y_{1: n}\right)$ where

$$
\begin{aligned}
& \gamma_{n}\left(x_{1: n}\right)=p\left(x_{1: n}, y_{1: n}\right)=\mu\left(x_{1}\right) \prod_{k=2}^{n} f\left(x_{k} \mid x_{k-1}\right) \prod_{k=1}^{n} g\left(y_{k} \mid x_{k}\right) \\
& Z_{n}=p\left(y_{1: n}\right)=\int \cdots \int \mu\left(x_{1}\right) \prod_{k=2}^{n} f\left(x_{k} \mid x_{k-1}\right) \prod_{k=1}^{n} g\left(y_{k} \mid x_{k}\right) d x_{1: n}
\end{aligned}
$$

Sequential Importance Sampling for Hidden Markov Models

- If we are interested only in $p\left(x_{1: n} \mid y_{1: n}\right)$ for a fixed n, then the "best" sequential strategy would be to construct importance distributions

$$
q_{k}\left(x_{k} \mid x_{1: k-1}\right) \approx \pi_{n}\left(x_{k} \mid x_{1: k-1}\right)=p\left(x_{k} \mid y_{k: n}, x_{k-1}\right)
$$

This is typically impossible because $p\left(x_{k} \mid y_{k: n}, x_{k-1}\right)$ is unknown even up to a normalizing constant

$$
p\left(x_{k} \mid y_{k: n}, x_{k-1}\right) \propto f\left(x_{k} \mid x_{k-1}\right) p\left(y_{k: n} \mid x_{k}\right)
$$

where

$$
p\left(y_{k: n} \mid x_{k}\right)=\int \cdots \int \prod_{j=k+1}^{n} f\left(x_{j} \mid x_{j-1}\right) \prod_{j=k}^{n} g\left(y_{j} \mid x_{j}\right) d x_{k+1: n}
$$

Sequential Importance Sampling for Hidden Markov Models

- If we are interested only in $p\left(x_{1: n} \mid y_{1: n}\right)$ for a fixed n, then the "best" sequential strategy would be to construct importance distributions

$$
q_{k}\left(x_{k} \mid x_{1: k-1}\right) \approx \pi_{n}\left(x_{k} \mid x_{1: k-1}\right)=p\left(x_{k} \mid y_{k: n}, x_{k-1}\right) .
$$

This is typically impossible because $p\left(x_{k} \mid y_{k: n}, x_{k-1}\right)$ is unknown even up to a normalizing constant

$$
p\left(x_{k} \mid y_{k: n}, x_{k-1}\right) \propto f\left(x_{k} \mid x_{k-1}\right) p\left(y_{k: n} \mid x_{k}\right)
$$

where

$$
p\left(y_{k: n} \mid x_{k}\right)=\int \cdots \int \prod_{j=k+1}^{n} f\left(x_{j} \mid x_{j-1}\right) \prod_{j=k}^{n} g\left(y_{j} \mid x_{j}\right) d x_{k+1: n}
$$

- Alternatively, we can simply propose to sample from an intermediate sequence of distributions $\pi_{k}\left(x_{1: k}\right)$. In this context, a natural choice consists of using

$$
\pi_{k}\left(x_{1: k}\right)=p\left(x_{1: k} \mid y_{1: k}\right) .
$$

This is only one possibility but very important in practice.

- We pick the proposal distributions such that

$$
\begin{aligned}
q_{k}\left(x_{k} \mid x_{1: k-1}\right) & \approx \pi_{k}\left(x_{k} \mid x_{1: k-1}\right)=p\left(x_{k} \mid y_{k}, x_{k-1}\right) \\
& \propto f\left(x_{k} \mid x_{k-1}\right) g\left(y_{k} \mid x_{k}\right)
\end{aligned}
$$

- We pick the proposal distributions such that

$$
\begin{aligned}
q_{k}\left(x_{k} \mid x_{1: k-1}\right) & \approx \pi_{k}\left(x_{k} \mid x_{1: k-1}\right)=p\left(x_{k} \mid y_{k}, x_{k-1}\right) \\
& \propto f\left(x_{k} \mid x_{k-1}\right) g\left(y_{k} \mid x_{k}\right)
\end{aligned}
$$

- We will use the notation $q\left(x_{k} \mid y_{k}, x_{k-1}\right)$ in this context and

$$
q\left(x_{1: k} \mid y_{1: k}\right)=q\left(x_{1} \mid y_{1}\right) q\left(x_{2} \mid y_{2}, x_{1}\right) \cdots q\left(x_{k} \mid y_{k}, x_{k-1}\right)
$$

- We pick the proposal distributions such that

$$
\begin{aligned}
q_{k}\left(x_{k} \mid x_{1: k-1}\right) & \approx \pi_{k}\left(x_{k} \mid x_{1: k-1}\right)=p\left(x_{k} \mid y_{k}, x_{k-1}\right) \\
& \propto f\left(x_{k} \mid x_{k-1}\right) g\left(y_{k} \mid x_{k}\right)
\end{aligned}
$$

- We will use the notation $q\left(x_{k} \mid y_{k}, x_{k-1}\right)$ in this context and

$$
q\left(x_{1: k} \mid y_{1: k}\right)=q\left(x_{1} \mid y_{1}\right) q\left(x_{2} \mid y_{2}, x_{1}\right) \cdots q\left(x_{k} \mid y_{k}, x_{k-1}\right)
$$

- Note that we will sample $X_{k}^{(i)}$ using only the observation y_{k} available at time k.
- At time $k=1$, sample $X_{1}^{(i)} \sim q_{1}(\cdot)$ and set

$$
w_{1}\left(X_{1}^{(i)}\right)=\frac{\mu\left(X_{1}^{(i)}\right) g\left(y_{1} \mid X_{1}^{(i)}\right)}{q\left(X_{1}^{(i)} \mid y_{1}\right)} .
$$

- At time $k=1$, sample $X_{1}^{(i)} \sim q_{1}(\cdot)$ and set
$w_{1}\left(X_{1}^{(i)}\right)=\frac{\mu\left(X_{1}^{(i)}\right) g\left(y_{1} \mid X_{1}^{(i)}\right)}{q\left(X_{1}^{(i)} \mid y_{1}\right)}$.
- At time $k \geq 2$
- At time $k=1$, sample $X_{1}^{(i)} \sim q_{1}(\cdot)$ and set

$$
w_{1}\left(X_{1}^{(i)}\right)=\frac{\mu\left(X_{1}^{(i)}\right) g\left(y_{1} \mid X_{1}^{(i)}\right)}{q\left(X_{1}^{(i)} \mid y_{1}\right)} .
$$

- At time $k \geq 2$
- sample $X_{k}^{(i)} \sim q\left(\cdot \mid y_{k}, X_{k-1}^{(i)}\right)$
- At time $k=1$, sample $X_{1}^{(i)} \sim q_{1}(\cdot)$ and set

$$
w_{1}\left(X_{1}^{(i)}\right)=\frac{\mu\left(X_{1}^{(i)}\right) g\left(y_{1} \mid X_{1}^{(i)}\right)}{q\left(X_{1}^{(i)} \mid y_{1}\right)} .
$$

- At time $k \geq 2$
- sample $X_{k}^{(i)} \sim q\left(\cdot \mid y_{k}, X_{k-1}^{(i)}\right)$
- compute

$$
\begin{aligned}
& w_{k}\left(X_{1: k}^{(i)}\right)=w_{k-1}\left(X_{1: k-1}^{(i)}\right) \frac{p\left(X_{1: k}^{(i)}, y_{1: k}\right)}{p\left(X_{1: k-1}^{(i)}, y_{1: k-1}\right) q\left(X_{k}^{(i)} \mid y_{k}, X_{k-1}^{(i)}\right)}= \\
& w_{k-1}\left(X_{1: k-1}^{(i)}\right) \frac{f\left(X_{k}^{(i)} \mid X_{k-1}^{(i)}\right) g\left(y_{k} \mid X_{k}^{(i)}\right)}{q\left(X_{k}^{(i)} \mid y_{k}, X_{k-1}^{(i)}\right)} .
\end{aligned}
$$

- At time $k=1$, sample $X_{1}^{(i)} \sim q_{1}(\cdot)$ and set $w_{1}\left(X_{1}^{(i)}\right)=\frac{\mu\left(X_{1}^{(i)}\right) g\left(y_{1} \mid X_{1}^{(i)}\right)}{q\left(X_{1}^{(i)} \mid y_{1}\right)}$.
- At time $k \geq 2$
- sample $X_{k}^{(i)} \sim q\left(\cdot \mid y_{k}, X_{k-1}^{(i)}\right)$
- compute

$$
\begin{aligned}
& w_{k}\left(X_{1: k}^{(i)}\right)=w_{k-1}\left(X_{1: k-1}^{(i)}\right) \frac{p\left(X_{1: k}^{(i)}, y_{1: k}\right)}{p\left(X_{1: k-1}^{(i)}, y_{1: k-1}\right) q\left(X_{k}^{(i)} \mid y_{k}, X_{k-1}^{(i)}\right)}= \\
& w_{k-1}\left(X_{1: k-1}^{(i)}\right) \frac{f\left(X_{k}^{(i)} \mid X_{k-1}^{(i)}\right) g\left(y_{k} \mid X_{k}^{(i)}\right)}{q\left(X_{k}^{(i)} \mid y_{k}, X_{k-1}^{(i)}\right)} .
\end{aligned}
$$

- At any time k, we have

$$
X_{1: k}^{(i)} \sim q\left(x_{1: k} \mid y_{1: k}\right), w_{k}\left(X_{1: k}^{(i)}\right)=\frac{p\left(X_{1: k}^{(i)}, y_{1: k}\right)}{q\left(X_{1: k}^{(i)} \mid y_{1: k}\right)}
$$

that is an IS approximation of $\pi_{k}\left(x_{1: k}\right)=p\left(x_{1: k} \mid y_{1: k}\right)$ and of $Z_{k}=p\left(y_{1: k}\right)$.

- This algorithm provides an approximation of ALL the distributions $p\left(x_{1: k} \mid y_{1: k}\right)$ for any $k \geq 1$.
- This algorithm provides an approximation of ALL the distributions $p\left(x_{1: k} \mid y_{1: k}\right)$ for any $k \geq 1$.
- It can be implemented for real time applications.
- This algorithm provides an approximation of ALL the distributions $p\left(x_{1: k} \mid y_{1: k}\right)$ for any $k \geq 1$.
- It can be implemented for real time applications.
- The computational complexity at each time step is fixed.
- A "locally" optimal choice consists of selecting

$$
q\left(x_{k} \mid y_{1: k}, x_{k-1}\right)=p\left(x_{k} \mid y_{k}, x_{k-1}\right)=\frac{f\left(x_{k} \mid x_{k-1}\right) g\left(y_{k} \mid x_{k}\right)}{\int f\left(x_{k} \mid x_{k-1}\right) g\left(y_{k} \mid x_{k}\right) d x_{k}}
$$

which yields

$$
\frac{f\left(x_{k} \mid x_{k-1}\right) g\left(y_{k} \mid x_{k}\right)}{q\left(x_{k} \mid y_{1: k}, x_{k-1}\right)}=\int f\left(x_{k} \mid x_{k-1}\right) g\left(y_{k} \mid x_{k}\right) d x_{k} .
$$

- A "locally" optimal choice consists of selecting

$$
q\left(x_{k} \mid y_{1: k}, x_{k-1}\right)=p\left(x_{k} \mid y_{k}, x_{k-1}\right)=\frac{f\left(x_{k} \mid x_{k-1}\right) g\left(y_{k} \mid x_{k}\right)}{\int f\left(x_{k} \mid x_{k-1}\right) g\left(y_{k} \mid x_{k}\right) d x_{k}}
$$

which yields

$$
\frac{f\left(x_{k} \mid x_{k-1}\right) g\left(y_{k} \mid x_{k}\right)}{q\left(x_{k} \mid y_{1: k}, x_{k-1}\right)}=\int f\left(x_{k} \mid x_{k-1}\right) g\left(y_{k} \mid x_{k}\right) d x_{k} .
$$

- We might not be able to compute $\int f\left(x_{k} \mid x_{k-1}\right) g\left(y_{k} \mid x_{k}\right) d x_{k}$ so we can either get an unbiased estimate of it or approximate $p\left(x_{k} \mid y_{k}, x_{k-1}\right)$ using standard techniques (EKF, Unscented...).
- A "locally" optimal choice consists of selecting

$$
q\left(x_{k} \mid y_{1: k}, x_{k-1}\right)=p\left(x_{k} \mid y_{k}, x_{k-1}\right)=\frac{f\left(x_{k} \mid x_{k-1}\right) g\left(y_{k} \mid x_{k}\right)}{\int f\left(x_{k} \mid x_{k-1}\right) g\left(y_{k} \mid x_{k}\right) d x_{k}}
$$

which yields

$$
\frac{f\left(x_{k} \mid x_{k-1}\right) g\left(y_{k} \mid x_{k}\right)}{q\left(x_{k} \mid y_{1: k}, x_{k-1}\right)}=\int f\left(x_{k} \mid x_{k-1}\right) g\left(y_{k} \mid x_{k}\right) d x_{k} .
$$

- We might not be able to compute $\int f\left(x_{k} \mid x_{k-1}\right) g\left(y_{k} \mid x_{k}\right) d x_{k}$ so we can either get an unbiased estimate of it or approximate $p\left(x_{k} \mid y_{k}, x_{k-1}\right)$ using standard techniques (EKF, Unscented...).
- The lazy user can simply select

$$
q\left(x_{k} \mid y_{1: k}, x_{k-1}\right)=p\left(x_{k} \mid x_{k-1}\right)
$$

which yields

$$
\frac{f\left(x_{k} \mid x_{k-1}\right) g\left(y_{k} \mid x_{k}\right)}{q\left(x_{k} \mid y_{1: k}, x_{k-1}\right)}=g\left(y_{k} \mid x_{k}\right)
$$

- We present a simple application to stochastic volatility model where

$$
\begin{aligned}
f\left(x_{k} \mid x_{k-1}\right) & =\mathcal{N}\left(x_{k ;} ; x_{k-1}, \sigma^{2}\right) \\
g\left(y_{k} \mid x_{k}\right) & =\mathcal{N}\left(y_{k} ; 0, \beta^{2} \exp \left(x_{k}\right)\right) .
\end{aligned}
$$

- We present a simple application to stochastic volatility model where

$$
\begin{aligned}
f\left(x_{k} \mid x_{k-1}\right) & =\mathcal{N}\left(x_{k ; \phi} x_{k-1}, \sigma^{2}\right), \\
g\left(y_{k} \mid x_{k}\right) & =\mathcal{N}\left(y_{k} ; 0, \beta^{2} \exp \left(x_{k}\right)\right) .
\end{aligned}
$$

- We cannot sample from $p\left(x_{k} \mid y_{k}, x_{k-1}\right)$ but it is unimodal and we can compute numerically its mode $m_{k}\left(x_{k-1}\right)$ and use a t-distribution with 5 degrees of freedom and scale set as the inverse of the negated second-order of $\log p\left(x_{k} \mid y_{k}, x_{k-1}\right)$ evaluated at $m_{k}\left(x_{k-1}\right)$ and given by

$$
\sigma_{k}^{2}\left(x_{k-1}\right)=\left(\frac{1}{\sigma^{2}}+\frac{y_{k}^{2}}{2 \beta^{2}} \exp \left(-m_{k}\left(x_{k-1}\right)\right)\right)^{-1}
$$

Figure: Histograms of the base 10 logarithm of $W_{n}^{(i)}$ for $n=1$ (top), $n=50$ (middle) and $n=100$ (bottom).

- The algorithm performance collapse as n increases... After a few time steps, only a very small number of particles have non negligible weights.
- You should not be surprised: This algorithm is nothing but an implementation of IS where we have restricted the structure of the importance distribution.
- You should not be surprised: This algorithm is nothing but an implementation of IS where we have restricted the structure of the importance distribution.
- As the dimension of the target $p\left(x_{1: n} \mid y_{1: n}\right)$ increases over time, the problem is becoming increasingly difficult. In practice, the discrepancy between the target and the IS distribution $q\left(x_{1: n} \mid y_{1: n}\right)$ can only also increase (on average).
- You should not be surprised: This algorithm is nothing but an implementation of IS where we have restricted the structure of the importance distribution.
- As the dimension of the target $p\left(x_{1: n} \mid y_{1: n}\right)$ increases over time, the problem is becoming increasingly difficult. In practice, the discrepancy between the target and the IS distribution $q\left(x_{1: n} \mid y_{1: n}\right)$ can only also increase (on average).
- As n increases the variance of the weights increases (typically geometrically) and the IS approximation collapses.
- You should not be surprised: This algorithm is nothing but an implementation of IS where we have restricted the structure of the importance distribution.
- As the dimension of the target $p\left(x_{1: n} \mid y_{1: n}\right)$ increases over time, the problem is becoming increasingly difficult. In practice, the discrepancy between the target and the IS distribution $q\left(x_{1: n} \mid y_{1: n}\right)$ can only also increase (on average).
- As n increases the variance of the weights increases (typically geometrically) and the IS approximation collapses.
- You can use any IS distribution you want (even the locally optimal one), the algorithm will collapse.
- You should not be surprised: This algorithm is nothing but an implementation of IS where we have restricted the structure of the importance distribution.
- As the dimension of the target $p\left(x_{1: n} \mid y_{1: n}\right)$ increases over time, the problem is becoming increasingly difficult. In practice, the discrepancy between the target and the IS distribution $q\left(x_{1: n} \mid y_{1: n}\right)$ can only also increase (on average).
- As n increases the variance of the weights increases (typically geometrically) and the IS approximation collapses.
- You can use any IS distribution you want (even the locally optimal one), the algorithm will collapse.
- These negative remarks also hold for the general case and not only for hidden Markov models.

Summary

- Sequential Importance Sampling is an attractive idea: sequential and parallelizable, only requires designing low-dimensional proposal distributions.

Summary

- Sequential Importance Sampling is an attractive idea: sequential and parallelizable, only requires designing low-dimensional proposal distributions.
- Sequential Importance Sampling can only work for moderate size problems.

Summary

- Sequential Importance Sampling is an attractive idea: sequential and parallelizable, only requires designing low-dimensional proposal distributions.
- Sequential Importance Sampling can only work for moderate size problems.
- Is there a way to partially fix this problem?

Resampling

- Intuitive KEY idea: As the time index k increases, the variance of the unnormalized weights $\left\{w_{k}\left(X_{1: k}^{(i)}\right)\right\}$ increases and all the mass is concentrated on a few random samples/particles. We propose to reset the approximation by getting rid in a principled way of the particles with low weights $W_{k}^{(i)}$ (relative to $1 / N$) and multiply the particles with high weights $W_{k}^{(i)}$ (relative to $1 / N$).

Resampling

- Intuitive KEY idea: As the time index k increases, the variance of the unnormalized weights $\left\{w_{k}\left(X_{1: k}^{(i)}\right)\right\}$ increases and all the mass is concentrated on a few random samples/particles. We propose to reset the approximation by getting rid in a principled way of the particles with low weights $W_{k}^{(i)}$ (relative to $1 / N$) and multiply the particles with high weights $W_{k}^{(i)}$ (relative to $1 / N$).
- The main reason is that if a particle at time n has a low weight then typically it will still have a low weight at time $n+1$ (though I can easily give you a counterexample).

Resampling

- Intuitive KEY idea: As the time index k increases, the variance of the unnormalized weights $\left\{w_{k}\left(X_{1: k}^{(i)}\right)\right\}$ increases and all the mass is concentrated on a few random samples/particles. We propose to reset the approximation by getting rid in a principled way of the particles with low weights $W_{k}^{(i)}$ (relative to $1 / N$) and multiply the particles with high weights $W_{k}^{(i)}$ (relative to $1 / N$).
- The main reason is that if a particle at time n has a low weight then typically it will still have a low weight at time $n+1$ (though I can easily give you a counterexample).
- You want to focus your computational efforts on the "promising" parts of the space.
- At time k, IS provides the following approximation of $\pi_{k}\left(x_{1: k}\right)$

$$
\widehat{\pi}_{k}\left(x_{1: k}\right)=\sum_{i=1}^{N} W_{k}^{(i)} \delta_{X_{1: k}^{(i)}}\left(x_{1: k}\right) .
$$

- At time k, IS provides the following approximation of $\pi_{k}\left(x_{1: k}\right)$

$$
\widehat{\pi}_{k}\left(x_{1: k}\right)=\sum_{i=1}^{N} W_{k}^{(i)} \delta_{X_{1: k}^{(i)}}\left(x_{1: k}\right) .
$$

- The simplest resampling schemes consists of sampling N times $\widetilde{X}_{1: k}^{(i)} \sim \widehat{\pi}_{k}\left(x_{1: k}\right)$ to build the new approximation

$$
\widetilde{\pi}_{k}\left(x_{1: k}\right)=\frac{1}{N} \sum_{i=1}^{N} \delta_{\widetilde{x}_{1: k}^{(i)}}\left(x_{1: k}\right) .
$$

- At time k, IS provides the following approximation of $\pi_{k}\left(x_{1: k}\right)$

$$
\widehat{\pi}_{k}\left(x_{1: k}\right)=\sum_{i=1}^{N} W_{k}^{(i)} \delta_{x_{1: k}^{(i)}}\left(x_{1: k}\right) .
$$

- The simplest resampling schemes consists of sampling N times $\widetilde{X}_{1: k}^{(i)} \sim \widehat{\pi}_{k}\left(x_{1: k}\right)$ to build the new approximation

$$
\widetilde{\pi}_{k}\left(x_{1: k}\right)=\frac{1}{N} \sum_{i=1}^{N} \delta_{\widetilde{x}_{1: k}^{(i)}}\left(x_{1: k}\right)
$$

- The new resampled particles $\left\{\widetilde{X}_{1: k}^{(i)}\right\}$ are approximately distributed according to $\pi_{k}\left(x_{1: k}\right)$ but statistically dependent. This is theoretically much more difficult to study.
- Note that we can rewrite

$$
\tilde{\pi}_{k}\left(x_{1: k}\right)=\sum_{i=1}^{N} \frac{N_{k}^{(i)}}{N} \delta_{X_{1: k}^{(i)}}\left(x_{1: k}\right)
$$

where $\left(N_{k}^{(1)}, \ldots, N_{k}^{(N)}\right) \sim \mathcal{M}\left(N ; W_{k}^{(1)}, \ldots, W_{k}^{(N)}\right)$ thus
$\mathbb{E}\left[N_{k}^{(i)}\right]=N W_{k}^{(i)}, \operatorname{var}\left[N_{k}^{(1)}\right]=N W_{k}^{(i)}\left(1-W_{k}^{(i)}\right)$.

- Note that we can rewrite

$$
\tilde{\pi}_{k}\left(x_{1: k}\right)=\sum_{i=1}^{N} \frac{N_{k}^{(i)}}{N} \delta_{X_{1: k}^{(i)}}\left(x_{1: k}\right)
$$

where $\left(N_{k}^{(1)}, \ldots, N_{k}^{(N)}\right) \sim \mathcal{M}\left(N ; W_{k}^{(1)}, \ldots, W_{k}^{(N)}\right)$ thus
$\mathbb{E}\left[N_{k}^{(i)}\right]=N W_{k}^{(i)}, \operatorname{var}\left[N_{k}^{(1)}\right]=N W_{k}^{(i)}\left(1-W_{k}^{(i)}\right)$.

- It follows that the resampling step is an unbiased operation

$$
\mathbb{E}\left[\widetilde{\pi}_{k}\left(x_{1: k}\right) \mid \widehat{\pi}_{k}\left(x_{1: k}\right)\right]=\widehat{\pi}_{k}\left(x_{1: k}\right)
$$

but clearly it introduces some errors "locally" in time. That is for any test function, we have

$$
\operatorname{var}_{\tilde{\pi}_{k}}\left[\varphi\left(X_{1: k}\right)\right] \geq \operatorname{var}_{\widehat{\pi}_{k}}\left[\varphi\left(X_{1: k}\right)\right]
$$

- Note that we can rewrite

$$
\tilde{\pi}_{k}\left(x_{1: k}\right)=\sum_{i=1}^{N} \frac{N_{k}^{(i)}}{N} \delta_{x_{1: k}^{(i)}}\left(x_{1: k}\right)
$$

where $\left(N_{k}^{(1)}, \ldots, N_{k}^{(N)}\right) \sim \mathcal{M}\left(N ; W_{k}^{(1)}, \ldots, W_{k}^{(N)}\right)$ thus
$\mathbb{E}\left[N_{k}^{(i)}\right]=N W_{k}^{(i)}, \operatorname{var}\left[N_{k}^{(1)}\right]=N W_{k}^{(i)}\left(1-W_{k}^{(i)}\right)$.

- It follows that the resampling step is an unbiased operation

$$
\mathbb{E}\left[\widetilde{\pi}_{k}\left(x_{1: k}\right) \mid \widehat{\pi}_{k}\left(x_{1: k}\right)\right]=\widehat{\pi}_{k}\left(x_{1: k}\right)
$$

but clearly it introduces some errors "locally" in time. That is for any test function, we have

$$
\operatorname{var}_{\tilde{\pi}_{k}}\left[\varphi\left(X_{1: k}\right)\right] \geq \operatorname{var}_{\widehat{\pi}_{k}}\left[\varphi\left(X_{1: k}\right)\right]
$$

- Better resampling steps can be designed such that $\mathbb{E}\left[N_{k}^{(i)}\right]=N W_{k}^{(i)}$ but $\operatorname{var}\left[N_{k}^{(i)}\right]<N W_{k}^{(i)}\left(1-W_{k}^{(i)}\right)$.
- Note that we can rewrite

$$
\tilde{\pi}_{k}\left(x_{1: k}\right)=\sum_{i=1}^{N} \frac{N_{k}^{(i)}}{N} \delta_{x_{1: k}^{(i)}}\left(x_{1: k}\right)
$$

where $\left(N_{k}^{(1)}, \ldots, N_{k}^{(N)}\right) \sim \mathcal{M}\left(N ; W_{k}^{(1)}, \ldots, W_{k}^{(N)}\right)$ thus
$\mathbb{E}\left[N_{k}^{(i)}\right]=N W_{k}^{(i)}, \operatorname{var}\left[N_{k}^{(1)}\right]=N W_{k}^{(i)}\left(1-W_{k}^{(i)}\right)$.

- It follows that the resampling step is an unbiased operation

$$
\mathbb{E}\left[\widetilde{\pi}_{k}\left(x_{1: k}\right) \mid \widehat{\pi}_{k}\left(x_{1: k}\right)\right]=\widehat{\pi}_{k}\left(x_{1: k}\right)
$$

but clearly it introduces some errors "locally" in time. That is for any test function, we have

$$
\operatorname{var}_{\tilde{\pi}_{k}}\left[\varphi\left(X_{1: k}\right)\right] \geq \operatorname{var}_{\widehat{\pi}_{k}}\left[\varphi\left(X_{1: k}\right)\right]
$$

- Better resampling steps can be designed such that $\mathbb{E}\left[N_{k}^{(i)}\right]=N W_{k}^{(i)}$ but $\operatorname{var}\left[N_{k}^{(i)}\right]<N W_{k}^{(i)}\left(1-W_{k}^{(i)}\right)$.
- Resampling is beneficial for future time steps.
- A popular alternative to multinomial resampling consists of selecting

$$
U_{1} \sim \mathcal{U}\left[0, \frac{1}{N}\right]
$$

and for $i=2, \ldots, N$

$$
U_{i}=U_{1}+\frac{i-1}{N}=U_{i-1}+\frac{1}{N}
$$

- A popular alternative to multinomial resampling consists of selecting

$$
U_{1} \sim \mathcal{U}\left[0, \frac{1}{N}\right]
$$

and for $i=2, \ldots, N$

$$
U_{i}=U_{1}+\frac{i-1}{N}=U_{i-1}+\frac{1}{N} .
$$

- Then we set

$$
N_{k}^{(i)}=\#\left\{U_{j}: \sum_{m=1}^{i-1} W_{k}^{(m)} \leq U_{j}<\sum_{m=1}^{i} W_{k}^{(m)}\right\}
$$

where $\sum_{m=1}^{0}=0$.

- A popular alternative to multinomial resampling consists of selecting

$$
U_{1} \sim \mathcal{U}\left[0, \frac{1}{N}\right]
$$

and for $i=2, \ldots, N$

$$
U_{i}=U_{1}+\frac{i-1}{N}=U_{i-1}+\frac{1}{N} .
$$

- Then we set

$$
N_{k}^{(i)}=\#\left\{U_{j}: \sum_{m=1}^{i-1} W_{k}^{(m)} \leq U_{j}<\sum_{m=1}^{i} W_{k}^{(m)}\right\}
$$

where $\sum_{m=1}^{0}=0$.

- It is trivial to check that $\mathbb{E}\left[N_{k}^{(i)}\right]=N W_{k}^{(i)}$.

Degeneracy Measures

- Resampling at each time step is harmful. We should resample only when necessary.

Degeneracy Measures

- Resampling at each time step is harmful. We should resample only when necessary.
- To measure the variation of the weights, we can use the Effective Sample Size (ESS) or the coefficient of variation CV

$$
E S S=\left(\sum_{i=1}^{N}\left(W_{n}^{(i)}\right)^{2}\right)^{-1}, C V=\left(\frac{1}{N} \sum_{i=1}^{N}\left(N W_{n}^{(i)}-1\right)^{2}\right)^{1 / 2}
$$

Degeneracy Measures

- Resampling at each time step is harmful. We should resample only when necessary.
- To measure the variation of the weights, we can use the Effective Sample Size (ESS) or the coefficient of variation CV

$$
E S S=\left(\sum_{i=1}^{N}\left(W_{n}^{(i)}\right)^{2}\right)^{-1}, C V=\left(\frac{1}{N} \sum_{i=1}^{N}\left(N W_{n}^{(i)}-1\right)^{2}\right)^{1 / 2}
$$

- We have $E S S=N$ and $C V=0$ if $W_{n}^{(i)}=1 / N$ for any i.

Degeneracy Measures

- Resampling at each time step is harmful. We should resample only when necessary.
- To measure the variation of the weights, we can use the Effective Sample Size (ESS) or the coefficient of variation CV

$$
E S S=\left(\sum_{i=1}^{N}\left(W_{n}^{(i)}\right)^{2}\right)^{-1}, C V=\left(\frac{1}{N} \sum_{i=1}^{N}\left(N W_{n}^{(i)}-1\right)^{2}\right)^{1 / 2}
$$

- We have $E S S=N$ and $C V=0$ if $W_{n}^{(i)}=1 / N$ for any i.
- We have $E S S=1$ and $C V=\sqrt{N-1}$ if $W_{n}^{(i)}=1$ and $W_{n}^{(j)}=1$ for $j \neq i$.
- We can also use the entropy

$$
E n t=-\sum_{i=1}^{N} W_{n}^{(i)} \log _{2}\left(W_{n}^{(i)}\right)
$$

- We can also use the entropy

$$
E n t=-\sum_{i=1}^{N} W_{n}^{(i)} \log _{2}\left(W_{n}^{(i)}\right)
$$

- We have Ent $=\log _{2}(N)$ if $W_{n}^{(i)}=1 / N$ for any i. We have Ent $=0$ if $W_{n}^{(i)}=1$ and $W_{n}^{(j)}=1$ for $j \neq i$.
- We can also use the entropy

$$
E n t=-\sum_{i=1}^{N} W_{n}^{(i)} \log _{2}\left(W_{n}^{(i)}\right)
$$

- We have Ent $=\log _{2}(N)$ if $W_{n}^{(i)}=1 / N$ for any i. We have Ent $=0$ if $W_{n}^{(i)}=1$ and $W_{n}^{(j)}=1$ for $j \neq i$.
- Dynamic Resampling: If the variation of the weights as measured by ESS, CV or Ent is too high, then resample the particles.

Generic Sequential Monte Carlo Scheme

- At time $k=1$, sample $X_{1}^{(i)} \sim q_{1}(\cdot)$ and set $w_{1}\left(X_{1}^{(i)}\right)=\frac{\gamma_{1}\left(X_{1}^{(i)}\right)}{q_{1}\left(X_{1}^{(i)}\right)}$.

Generic Sequential Monte Carlo Scheme

- At time $k=1$, sample $X_{1}^{(i)} \sim q_{1}(\cdot)$ and set $w_{1}\left(X_{1}^{(i)}\right)=\frac{\gamma_{1}\left(X_{1}^{(i)}\right)}{q_{1}\left(X_{1}^{(i)}\right)}$.
- Resample $\left\{X_{1}^{(i)}, W_{1}^{(i)}\right\}$ to obtain new particles also denoted $\left\{X_{1}^{(i)}\right\}$

Generic Sequential Monte Carlo Scheme

- At time $k=1$, sample $X_{1}^{(i)} \sim q_{1}(\cdot)$ and set $w_{1}\left(X_{1}^{(i)}\right)=\frac{\gamma_{1}\left(X_{1}^{(i)}\right)}{q_{1}\left(X_{1}^{(i)}\right)}$.
- Resample $\left\{X_{1}^{(i)}, W_{1}^{(i)}\right\}$ to obtain new particles also denoted $\left\{X_{1}^{(i)}\right\}$
- At time $k \geq 2$

Generic Sequential Monte Carlo Scheme

- At time $k=1$, sample $X_{1}^{(i)} \sim q_{1}(\cdot)$ and set $w_{1}\left(X_{1}^{(i)}\right)=\frac{\gamma_{1}\left(X_{1}^{(i)}\right)}{q_{1}\left(X_{1}^{(i)}\right)}$.
- Resample $\left\{X_{1}^{(i)}, W_{1}^{(i)}\right\}$ to obtain new particles also denoted $\left\{X_{1}^{(i)}\right\}$
- At time $k \geq 2$
- sample $X_{k}^{(i)} \sim q_{k}\left(\cdot \mid X_{1: k-1}^{(i)}\right)$

Generic Sequential Monte Carlo Scheme

- At time $k=1$, sample $X_{1}^{(i)} \sim q_{1}(\cdot)$ and set $w_{1}\left(X_{1}^{(i)}\right)=\frac{\gamma_{1}\left(X_{1}^{(i)}\right)}{q_{1}\left(X_{1}^{(i)}\right)}$.
- Resample $\left\{X_{1}^{(i)}, W_{1}^{(i)}\right\}$ to obtain new particles also denoted $\left\{X_{1}^{(i)}\right\}$
- At time $k \geq 2$
- sample $X_{k}^{(i)} \sim q_{k}\left(\cdot \mid X_{1: k-1}^{(i)}\right)$
- compute $w_{k}\left(X_{1: k}^{(i)}\right)=\frac{\gamma_{k}\left(X_{1: k}^{(i)}\right)}{\gamma_{k-1}\left(X_{1: k-1}^{(i)}\right) q_{k}\left(X_{k}^{(i)} X_{1: k-1}^{(i)}\right)}$.

Generic Sequential Monte Carlo Scheme

- At time $k=1$, sample $X_{1}^{(i)} \sim q_{1}(\cdot)$ and set $w_{1}\left(X_{1}^{(i)}\right)=\frac{\gamma_{1}\left(X_{1}^{(i)}\right)}{q_{1}\left(X_{1}^{(i)}\right)}$.
- Resample $\left\{X_{1}^{(i)}, W_{1}^{(i)}\right\}$ to obtain new particles also denoted $\left\{X_{1}^{(i)}\right\}$
- At time $k \geq 2$
- sample $X_{k}^{(i)} \sim q_{k}\left(\cdot \mid X_{1: k-1}^{(i)}\right)$
- compute $w_{k}\left(X_{1: k}^{(i)}\right)=\frac{\gamma_{k}\left(X_{1: k}^{(i)}\right)}{\gamma_{k-1}\left(X_{1: k-1}^{(i)}\right) q_{k}\left(X_{k}^{(i)} \mid X_{1: k-1}^{(i)}\right)}$.
- Resample $\left\{X_{1: k}^{(i)}, W_{k}^{(i)}\right\}$ to obtain new particles also denoted $\left\{X_{1: k}^{(i)}\right\}$
- At any time k, we have two approximation of $\pi_{k}\left(x_{1: k}\right)$

$$
\begin{aligned}
& \hat{\pi}_{k}\left(x_{1: k}\right)=\sum_{i=1}^{N} W_{k}^{(i)} \delta_{x_{1: k}^{(i)}}\left(x_{1: k}\right) \text { (before resampling) } \\
& \widetilde{\pi}_{k}\left(x_{1: k}\right)=\frac{1}{N} \sum_{i=1}^{N} \delta_{x_{1: k}^{(i)}}\left(x_{1: k}\right) \text { (after resampling). }
\end{aligned}
$$

- At any time k, we have two approximation of $\pi_{k}\left(x_{1: k}\right)$

$$
\begin{aligned}
& \hat{\pi}_{k}\left(x_{1: k}\right)=\sum_{i=1}^{N} W_{k}^{(i)} \delta_{x_{1: k}^{(i)}}\left(x_{1: k}\right) \text { (before resampling) } \\
& \widetilde{\pi}_{k}\left(x_{1: k}\right)=\frac{1}{N} \sum_{i=1}^{N} \delta_{x_{1: k}^{(i)}}\left(x_{1: k}\right) \text { (after resampling). }
\end{aligned}
$$

- We also have

$$
\frac{\widehat{Z_{k}}}{Z_{k-1}}=\frac{1}{N} \sum_{i=1}^{N} w_{k}\left(X_{1: k}^{(i)}\right)
$$

Sequential Monte Carlo for Hidden Markov Models

- At time $k=1$, sample $X_{1}^{(i)} \sim q_{1}(\cdot)$ and set

$$
w_{1}\left(X_{1}^{(i)}\right)=\frac{\mu\left(X_{1}^{(i)}\right) g\left(y_{1} \mid X_{1}^{(i)}\right)}{q\left(X_{1}^{(i)} \mid y_{1}\right)} .
$$

Sequential Monte Carlo for Hidden Markov Models

- At time $k=1$, sample $X_{1}^{(i)} \sim q_{1}(\cdot)$ and set
$w_{1}\left(X_{1}^{(i)}\right)=\frac{\mu\left(X_{1}^{(i)}\right) g\left(y_{1} \mid X_{1}^{(i)}\right)}{q\left(X_{1}^{(i)} \mid y_{1}\right)}$.
- Resample $\left\{X_{1}^{(i)}, W_{1}^{(i)}\right\}$ to obtain new particles also denoted $\left\{X_{1}^{(i)}\right\}$

Sequential Monte Carlo for Hidden Markov Models

- At time $k=1$, sample $X_{1}^{(i)} \sim q_{1}(\cdot)$ and set $w_{1}\left(X_{1}^{(i)}\right)=\frac{\mu\left(X_{1}^{(i)}\right) g\left(y_{1} \mid X_{1}^{(i)}\right)}{q\left(X_{1}^{(i)} \mid y_{1}\right)}$.
- Resample $\left\{X_{1}^{(i)}, W_{1}^{(i)}\right\}$ to obtain new particles also denoted $\left\{X_{1}^{(i)}\right\}$
- At time $k \geq 2$

Sequential Monte Carlo for Hidden Markov Models

- At time $k=1$, sample $X_{1}^{(i)} \sim q_{1}(\cdot)$ and set $w_{1}\left(X_{1}^{(i)}\right)=\frac{\mu\left(X_{1}^{(i)}\right) g\left(y_{1} \mid X_{1}^{(i)}\right)}{q\left(X_{1}^{(i)} \mid y_{1}\right)}$.
- Resample $\left\{X_{1}^{(i)}, W_{1}^{(i)}\right\}$ to obtain new particles also denoted $\left\{X_{1}^{(i)}\right\}$
- At time $k \geq 2$
- sample $X_{k}^{(i)} \sim q\left(\cdot \mid y_{k}, X_{k-1}^{(i)}\right)$

Sequential Monte Carlo for Hidden Markov Models

- At time $k=1$, sample $X_{1}^{(i)} \sim q_{1}(\cdot)$ and set
$w_{1}\left(X_{1}^{(i)}\right)=\frac{\mu\left(X_{1}^{(i)}\right) g\left(y_{1} \mid X_{1}^{(i)}\right)}{q\left(X_{1}^{(i)} \mid y_{1}\right)}$.
- Resample $\left\{X_{1}^{(i)}, W_{1}^{(i)}\right\}$ to obtain new particles also denoted $\left\{X_{1}^{(i)}\right\}$
- At time $k \geq 2$
- sample $X_{k}^{(i)} \sim q\left(\cdot \mid y_{k}, X_{k-1}^{(i)}\right)$
- compute $w_{k}\left(X_{1: k}^{(i)}\right)=\frac{f\left(X_{k}^{(i)} \mid X_{k-1}^{(i)}\right) g\left(y_{k} \mid X_{k}^{(i)}\right)}{q\left(X_{k}^{(i)} \mid y_{k}, X_{k-1}^{(i)}\right)}$.

Sequential Monte Carlo for Hidden Markov Models

- At time $k=1$, sample $X_{1}^{(i)} \sim q_{1}(\cdot)$ and set
$w_{1}\left(X_{1}^{(i)}\right)=\frac{\mu\left(X_{1}^{(i)}\right) g\left(y_{1} \mid X_{1}^{(i)}\right)}{q\left(X_{1}^{(i)} \mid y_{1}\right)}$.
- Resample $\left\{X_{1}^{(i)}, W_{1}^{(i)}\right\}$ to obtain new particles also denoted $\left\{X_{1}^{(i)}\right\}$
- At time $k \geq 2$
- sample $X_{k}^{(i)} \sim q\left(\cdot \mid y_{k}, X_{k-1}^{(i)}\right)$
- compute $w_{k}\left(X_{1: k}^{(i)}\right)=\frac{f\left(x_{k}^{(i)} \mid x_{k-1}^{(i)}\right) g\left(y_{k} \mid X_{k}^{(i)}\right)}{q\left(X_{k}^{(i)} \mid y_{k}, X_{k-1}^{(i)}\right)}$.
- Resample $\left\{X_{1: k}^{(i)}, W_{k}^{(i)}\right\}$ to obtain new particles also denoted $\left\{X_{1: k}^{(i)}\right\}$
- Example: Linear Gaussian model

$$
\begin{aligned}
& \qquad X_{1} \sim \mathcal{N}(0,1), X_{n}=\alpha X_{n-1}+\sigma_{v} V_{n}, \\
& Y_{n}=X_{n}+\sigma_{w} W_{n} \\
& \text { where } V_{n} \sim \mathcal{N}(0,1) \text { and } W_{n} \sim \mathcal{N}(0,1) .
\end{aligned}
$$

- Example: Linear Gaussian model

$$
\begin{aligned}
& X_{1} \sim \mathcal{N}(0,1), X_{n}=\alpha X_{n-1}+\sigma_{v} V_{n}, \\
& Y_{n}=X_{n}+\sigma_{w} W_{n}
\end{aligned}
$$

where $V_{n} \sim \mathcal{N}(0,1)$ and $W_{n} \sim \mathcal{N}(0,1)$.

- We know that $p\left(x_{1: n} \mid y_{1: n}\right)$ is Gaussian and its parameters can be computed using Kalman techniques. In particular $p\left(x_{n} \mid y_{1: n}\right)$ is also a Gaussian which can be computed using the Kalman filter.
- Example: Linear Gaussian model

$$
\begin{aligned}
& X_{1} \sim \mathcal{N}(0,1), X_{n}=\alpha X_{n-1}+\sigma_{v} V_{n}, \\
& Y_{n}=X_{n}+\sigma_{w} W_{n}
\end{aligned}
$$

where $V_{n} \sim \mathcal{N}(0,1)$ and $W_{n} \sim \mathcal{N}(0,1)$.

- We know that $p\left(x_{1: n} \mid y_{1: n}\right)$ is Gaussian and its parameters can be computed using Kalman techniques. In particular $p\left(x_{n} \mid y_{1: n}\right)$ is also a Gaussian which can be computed using the Kalman filter.
- We apply the SMC method with
$q\left(x_{k} \mid y_{k}, x_{k-1}\right)=f\left(x_{k} \mid x_{k-1}\right)=\mathcal{N}\left(x_{k} ; \alpha x_{n-1}, \sigma_{v}^{2}\right)$.

Figure: Histograms of the base 10 logarithm of $W_{n}^{(i)}$ for $n=1$ (top), $n=50$ (middle) and $n=100$ (bottom).

- By itself this graph does not mean that the procedure is efficient!

Figure: $p\left(x_{1} \mid y_{1}\right)$ and $\widehat{\mathbb{E}}\left[X_{1} \mid y_{1}\right]$ (top) and its particle approximation (bottom)

Figure: $p\left(x_{1} \mid y_{1}\right), p\left(x_{2} \mid y_{1: 2}\right)$ and $\widehat{\mathbb{E}}\left[X_{1} \mid y_{1}\right], \widehat{\mathbb{E}}\left[X_{2} \mid y_{1: 2}\right]$ (top) and particle approximation of $p\left(x_{1: 2} \mid y_{1: 2}\right)$ (bottom)

Figure: $p\left(x_{k} \mid y_{1: k}\right)$ and $\widehat{\mathbb{E}}\left[X_{k} \mid y_{1: k}\right]$ for $k=1,2,3$ (top) and particle approximation of $p\left(x_{1: 3} \mid y_{1: 3}\right)$ (bottom)

Figure: $p\left(x_{k} \mid y_{1: k}\right)$ and $\widehat{\mathbb{E}}\left[X_{k} \mid y_{1: k}\right]$ for $k=1, \ldots, 4$ (top) and particle approximation of $p\left(x_{1: 4} \mid y_{1: 4}\right)$ (bottom)

Figure: $p\left(x_{k} \mid y_{1: k}\right)$ and $\widehat{\mathbb{E}}\left[X_{k} \mid y_{1: k}\right]$ for $k=1, \ldots, 5$ (top) and particle approximation of $p\left(x_{1: 5} \mid y_{1: 5}\right)$ (bottom)

Figure: $p\left(x_{k} \mid y_{1: k}\right)$ and $\widehat{\mathbb{E}}\left[X_{k} \mid y_{1: k}\right]$ for $k=1, \ldots, 10$ (top) and particle approximation of $p\left(x_{1: 10} \mid y_{1: 10}\right)$ (bottom)

Figure: $p\left(x_{k} \mid y_{1: k}\right)$ and $\widehat{\mathbb{E}}\left[X_{k} \mid y_{1: k}\right]$ for $k=1, \ldots, 15$ (top) and particle approximation of $p\left(x_{1: 15} \mid y_{1: 15}\right)$ (bottom)

Figure: $p\left(x_{k} \mid y_{1: k}\right)$ and $\widehat{\mathbb{E}}\left[X_{k} \mid y_{1: k}\right]$ for $k=1, \ldots, 20$ (top) and particle approximation of $p\left(x_{1: 20} \mid y_{1: 20}\right)$ (bottom)

Figure: $p\left(x_{k} \mid y_{1: k}\right)$ and $\widehat{\mathbb{E}}\left[X_{k} \mid y_{1: k}\right]$ for $k=1, \ldots, 24$ (top) and particle approximation of $p\left(x_{1: 24} \mid y_{1: 24}\right)$ (bottom)

- This SMC strategy performs remarkably well in terms of estimation of the marginals $p\left(x_{k} \mid y_{1: k}\right)$. This is what is only necessary in many applications thankfully.
- This SMC strategy performs remarkably well in terms of estimation of the marginals $p\left(x_{k} \mid y_{1: k}\right)$. This is what is only necessary in many applications thankfully.
- However, the joint distribution $p\left(x_{1: k} \mid y_{1: k}\right)$ is poorly estimated when k is large; i.e. we have in the previous example

$$
\widehat{p}\left(x_{1: 11} \mid y_{1: 24}\right)=\delta_{X_{1: 11}}\left(x_{1: 11}\right)
$$

- This SMC strategy performs remarkably well in terms of estimation of the marginals $p\left(x_{k} \mid y_{1: k}\right)$. This is what is only necessary in many applications thankfully.
- However, the joint distribution $p\left(x_{1: k} \mid y_{1: k}\right)$ is poorly estimated when k is large; i.e. we have in the previous example

$$
\widehat{p}\left(x_{1: 11} \mid y_{1: 24}\right)=\delta_{x_{1: 11}}\left(x_{1: 11}\right)
$$

- The same conclusion holds for most sequences of distributions $\pi_{k}\left(x_{1: k}\right)$.
- This SMC strategy performs remarkably well in terms of estimation of the marginals $p\left(x_{k} \mid y_{1: k}\right)$. This is what is only necessary in many applications thankfully.
- However, the joint distribution $p\left(x_{1: k} \mid y_{1: k}\right)$ is poorly estimated when k is large; i.e. we have in the previous example

$$
\widehat{p}\left(x_{1: 11} \mid y_{1: 24}\right)=\delta_{x_{1: 11}}\left(x_{1: 11}\right)
$$

- The same conclusion holds for most sequences of distributions $\pi_{k}\left(x_{1: k}\right)$.
- Resampling only solves partially our problems.

Figure: SMC estimates of the marginal distributions $p\left(x_{n} \mid y_{1: n}\right)$.

Stochastic volatility model revisited using SMC.

Convergence of Sequential Monte Carlo

- Establishing convergence results for SMC is beyond the scope of this course but many results are available (e.g. Del Moral, 2004).

Convergence of Sequential Monte Carlo

- Establishing convergence results for SMC is beyond the scope of this course but many results are available (e.g. Del Moral, 2004).
- In particular we have for any bounded function φ and any $p>1$

$$
\mathbb{E}\left[\left|\int \varphi\left(x_{1: n}\right)\left(\widehat{\pi}_{n}\left(x_{1: n}\right)-\pi_{n}\left(x_{1: n}\right)\right) d x_{1: n}\right|^{p}\right]^{1 / p} \leq \frac{C_{n}\|\varphi\|_{\infty}}{N}
$$

Convergence of Sequential Monte Carlo

- Establishing convergence results for SMC is beyond the scope of this course but many results are available (e.g. Del Moral, 2004).
- In particular we have for any bounded function φ and any $p>1$

$$
\mathbb{E}\left[\left|\int \varphi\left(x_{1: n}\right)\left(\widehat{\pi}_{n}\left(x_{1: n}\right)-\pi_{n}\left(x_{1: n}\right)\right) d x_{1: n}\right|^{p}\right]^{1 / p} \leq \frac{C_{n}\|\varphi\|_{\infty}}{N}
$$

- It looks like a nice result... but it is rather useless as C_{n} increases polynomially/exponentially with time.

Convergence of Sequential Monte Carlo

- Establishing convergence results for SMC is beyond the scope of this course but many results are available (e.g. Del Moral, 2004).
- In particular we have for any bounded function φ and any $p>1$

$$
\mathbb{E}\left[\left|\int \varphi\left(x_{1: n}\right)\left(\widehat{\pi}_{n}\left(x_{1: n}\right)-\pi_{n}\left(x_{1: n}\right)\right) d x_{1: n}\right|^{p}\right]^{1 / p} \leq \frac{C_{n}\|\varphi\|_{\infty}}{N}
$$

- It looks like a nice result... but it is rather useless as C_{n} increases polynomially/exponentially with time.
- To achieve a fixed precision, this would require to use a time-increasing number of particles N.
- One cannot hope to estimate with a fixed precision a target distribution of increasing dimension.
- One cannot hope to estimate with a fixed precision a target distribution of increasing dimension.
- So at best, we can expect results of the following form
$\left[\left|\int \varphi\left(x_{n-L+1: n}\right)\left(\hat{\pi}_{n}\left(x_{n-L+1: n}\right)-\pi_{n}\left(x_{n-L+1: n}\right)\right) d x_{n-L+1: n}\right|^{p}\right]^{1 / p} \leq \frac{M_{L}\|\varphi\|_{\alpha}}{N}$
if the model has nice forgetting/mixing properties, i.e.

$$
\int\left|\pi_{n}\left(x_{n} \mid x_{1}\right)-\pi_{n}\left(x_{n} \mid x_{1}^{\prime}\right)\right| d x_{n} \leq \lambda^{n-1}
$$

with $0 \leq \lambda<1$.

- One cannot hope to estimate with a fixed precision a target distribution of increasing dimension.
- So at best, we can expect results of the following form
$\left[\left|\int \varphi\left(x_{n-L+1: n}\right)\left(\widehat{\pi}_{n}\left(x_{n-L+1: n}\right)-\pi_{n}\left(x_{n-L+1: n}\right)\right) d x_{n-L+1: n}\right|^{p}\right]^{1 / p} \leq \frac{M_{L}\|\varphi\|_{\alpha}}{N}$
if the model has nice forgetting/mixing properties, i.e.

$$
\int\left|\pi_{n}\left(x_{n} \mid x_{1}\right)-\pi_{n}\left(x_{n} \mid x_{1}^{\prime}\right)\right| d x_{n} \leq \lambda^{n-1}
$$

with $0 \leq \lambda<1$.

- In the HMM case, it means that

$$
\int\left|p\left(x_{n} \mid y_{1: n}, x_{1}\right)-p\left(x_{n} \mid y_{1: n}, x_{1}^{\prime}\right)\right| d x_{n} \leq \lambda^{n-1}
$$

- We can have also a CLT. For the standard IS,

$$
\begin{aligned}
& \sqrt{N}\left(\mathbb{E}_{\widehat{\pi}_{n}}\left(\varphi\left(X_{n}\right)\right)-\mathbb{E}_{\pi_{n}}\left(\varphi\left(X_{n}\right)\right)\right) \Rightarrow \mathcal{N}\left(0, \sigma_{I S, n}^{2}(\varphi)\right) \\
& \text { where } \sigma_{I S, n}^{2}(\varphi)=\int \frac{\pi_{n}^{2}\left(x_{1: n}\right)}{q_{n}\left(x_{1: n}\right)}\left(\varphi\left(x_{n}\right)-\mathbb{E}_{\pi_{n}}\left(\varphi\left(X_{n}\right)\right)\right)^{2} d x_{1: n} .
\end{aligned}
$$

- We can have also a CLT. For the standard IS,

$$
\begin{aligned}
& \sqrt{N}\left(\mathbb{E}_{\widehat{\pi}_{n}}\left(\varphi\left(X_{n}\right)\right)-\mathbb{E}_{\pi_{n}}\left(\varphi\left(X_{n}\right)\right)\right) \Rightarrow \mathcal{N}\left(0, \sigma_{I S, n}^{2}(\varphi)\right) \\
& \text { where } \sigma_{I S, n}^{2}(\varphi)=\int \frac{\pi_{n}^{2}\left(x_{1: n}\right)}{q_{n}\left(x_{1: n}\right)}\left(\varphi\left(x_{n}\right)-\mathbb{E}_{\pi_{n}}\left(\varphi\left(X_{n}\right)\right)\right)^{2} d x_{1: n} .
\end{aligned}
$$

- For SMC, we have
$\sqrt{N}\left(\int \varphi\left(x_{n}\right)\left(\widehat{\pi}_{n}\left(x_{n}\right)-\pi_{n}\left(x_{n}\right)\right) d x_{n}\right) \Rightarrow \mathcal{N}\left(0, \sigma_{S M C, n}^{2}(\varphi)\right)$ where $\sigma_{S M C, n}^{2}(\varphi)=\int \frac{\pi_{n}^{2}\left(x_{1}\right)}{q_{1}\left(x_{1}\right)}\left(\int \varphi\left(x_{n}\right) \pi_{n}\left(x_{n} \mid x_{1}\right) d x_{n}-\mathbb{E}_{\pi_{n}}\left(\varphi\left(X_{n}\right)\right)\right)^{2} d x_{1}$ $+\sum_{k=2}^{n-1} \int \frac{\pi_{n}\left(x_{k-1}, x_{k}\right)^{2}}{\pi_{k-1}\left(x_{k-1}\right) q_{k}\left(x_{k} \mid x_{k-1}\right)}\left(\int \varphi\left(x_{n}\right) \pi_{n}\left(x_{n} \mid x_{k}\right) d x_{n}-\mathbb{E}_{\pi_{n}}\left(\varphi\left(X_{n}\right)\right)\right)^{2} d x_{k}$ $+\int \frac{\pi_{n}\left(x_{n-1}, x_{n}\right)^{2}}{\pi_{n-1}\left(x_{n-1}\right) q_{n}\left(x_{n} \mid x_{n-1}\right)}\left(\varphi\left(x_{n}\right)-\mathbb{E}_{\pi_{n}}\left(\varphi\left(X_{n}\right)\right)\right)^{2} d x_{n-1: n}$.
- These results also demonstrate that one cannot expect to obtain good performance if the model has static parameters, i.e. if we have

$$
\begin{gathered}
X_{1} \sim \mu, \quad X_{k} \mid\left(X_{k-1}=x_{k-1}\right) \sim f_{\theta}\left(\cdot \mid x_{k-1}\right) \\
Y_{k} \mid\left(X_{k}=x_{k}\right) \sim g_{\theta}\left(\cdot \mid x_{k}\right)
\end{gathered}
$$

where $\theta \sim \pi(\theta)$ and we want to estimate $p\left(x_{1: n}, \theta \mid y_{1: n}\right)$.

- These results also demonstrate that one cannot expect to obtain good performance if the model has static parameters, i.e. if we have

$$
\begin{gathered}
X_{1} \sim \mu, \quad X_{k} \mid\left(X_{k-1}=x_{k-1}\right) \sim f_{\theta}\left(\cdot \mid x_{k-1}\right) \\
Y_{k} \mid\left(X_{k}=x_{k}\right) \sim g_{\theta}\left(\cdot \mid x_{k}\right)
\end{gathered}
$$

where $\theta \sim \pi(\theta)$ and we want to estimate $p\left(x_{1: n}, \theta \mid y_{1: n}\right)$.

- Indeed the dynamic model $Z_{n}=\left(X_{n}, \theta\right)$ is not ergodic as

$$
f\left(x^{\prime}, \theta^{\prime} \mid x, \theta\right)=\delta_{\theta}\left(\theta^{\prime}\right) f_{\theta}\left(x^{\prime} \mid x\right)
$$

- These results also demonstrate that one cannot expect to obtain good performance if the model has static parameters, i.e. if we have

$$
\begin{gathered}
X_{1} \sim \mu, \quad X_{k} \mid\left(X_{k-1}=x_{k-1}\right) \sim f_{\theta}\left(\cdot \mid x_{k-1}\right) \\
Y_{k} \mid\left(X_{k}=x_{k}\right) \sim g_{\theta}\left(\cdot \mid x_{k}\right)
\end{gathered}
$$

where $\theta \sim \pi(\theta)$ and we want to estimate $p\left(x_{1: n}, \theta \mid y_{1: n}\right)$.

- Indeed the dynamic model $Z_{n}=\left(X_{n}, \theta\right)$ is not ergodic as

$$
f\left(x^{\prime}, \theta^{\prime} \mid x, \theta\right)=\delta_{\theta}\left(\theta^{\prime}\right) f_{\theta}\left(x^{\prime} \mid x\right)
$$

- This is intuitive! At time 1, we sample N particles $\theta^{(i)}$ and these values are never ever modified later on.
- At first glance, this is really bad news. SMC appears unable to deal with static parameters
- At first glance, this is really bad news. SMC appears unable to deal with static parameters
- A dirty solution consists of adding noise to a fixed parameter to transform it as a time-varying parameter

$$
\theta_{n}=\theta_{n-1}+\varepsilon_{n} .
$$

- At first glance, this is really bad news. SMC appears unable to deal with static parameters
- A dirty solution consists of adding noise to a fixed parameter to transform it as a time-varying parameter

$$
\theta_{n}=\theta_{n-1}+\varepsilon_{n} .
$$

- This is not clean and we will discuss later on a rigorous approach which requires a "deeper" understanding of SMC.

