
CPSC 535
Importance Sampling Methods

AD

8th February 2007

AD () 8th February 2007 1 / 42



Importance Sampling

Normalized Importance Sampling.

Importance Sampling versus Rejection Sampling.

AD () 8th February 2007 2 / 42



Importance Sampling

Normalized Importance Sampling.

Importance Sampling versus Rejection Sampling.

AD () 8th February 2007 2 / 42



Importance Sampling

Normalized Importance Sampling.

Importance Sampling versus Rejection Sampling.

AD () 8th February 2007 2 / 42



Let π (x) be a probability density on X .

Monte Carlo approximation is given by

bπN (x) = 1
N

N

∑
i=1

δX (i ) (x) where X
(i ) i.i.d.� π.

For any ϕ : X !R

EbπN (ϕ (X )) = 1
N

N

∑
i=1

ϕ
�
X (i )

�
� Eπ (ϕ (X ))

More precisely, we have

EfX (i )g
�
EbπN (ϕ (X ))� = Eπ (ϕ (X )) ,

varfX (i )g
�
EbπN (ϕ (X ))� =

varπ (ϕ (X ))
N

.
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Accept-Reject Procedure

Direct methods feasible for standard distributions: inverse method,
composition, etc.

In case where π ∝ π� does not admit any standard form, we can use
a proposal distribution q on X where q ∝ q�.
We need q to �dominate�π; i.e.

C = sup
x2X

π� (x)
q� (x)

< +∞.
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Consider C 0 � C . Then the accept/reject procedure proceeds as follows:

Accept/Reject procedure

1 Sample Y�q and U � U (0, 1).

2 If U < π�(Y )
C 0q�(Y ) then return Y ; otherwise return to step 1.
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This is a simple generic algorithm but it requires coming up with a
bound C .

Its performance typically degrade exponentially fast with the
dimension of X .
It seems you are wasting some information by rejecting samples.

You need to wait a random time to obtain some samples from π.

Is it possible to �recycle� these samples?
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Importance Sampling

Consider again the target distribution π and the proposal distribution
q. We only require

π (x) > 0) q (x) > 0.

In this case, the Importance Sampling (IS) identity is

π (x) = w (x) q (x)

where the so-called Importance Weight is given by

w (x) =
π(x)
q(x)

It follows that

Eπ(ϕ(X )) =
Z
X

ϕ(x)π(x)dx =
Z
X

ϕ(x)
π(x)
q(x)

q(x)dx

= Eq(w(X )ϕ(X ))
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Monte Carlo approximation of q is

bqN (x) = 1
N

N

∑
i=1

δX (i ) (x) where X
(i ) i.i.d.� q.

It corresponds to the following approximation

bπN (x) = 1
N

N

∑
i=1
w(X (i ))δX (i ) (x) .

It follows that an estimate of Eπ(ϕ(X )) = Eq(w(X )ϕ(X )) is

EbqN (w(X )ϕ(X )) = 1
N

N

∑
i=1
w(X (i ))ϕ(X (i )).
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We have
EfX (i )g [EbqN (w(X )ϕ (X ))] = Eπ (ϕ (X ))

and

varfX (i )g (EbqN (ϕ (X ))) =
varq (w(X )ϕ (X ))

N

=
Eπ

�
w(X )ϕ2 (X )

�
�E2

π (ϕ (X ))
N

In practice, it is recommended to ensure

Eπ (w(X )) =
Z

π2 (x)
q (x)

dx < ∞.

Even if it is not necessary, it is actually even better to ensure that

sup
x2X

w (x) < ∞.
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Figure: IS approximation obtained using a Student-t IS distribution
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We try to compute Z r x
1� x π (x) dx

where

π (x) =
Γ ((ν+ 1) /2)p

νπΓ (ν/2)

�
1+

x
ν

��(ν+1)/2
is a t-student distribution with ν > 1 (you can sample from it by
composition N (0, 1) /Ga (ν/2, ν/2)) using Monte Carlo.

We use q1 (x) = π (x), q2 (x) =
Γ(1)p

νπΓ(1/2)

�
1+ x

νσ

��1 (Cauchy
distribution) and q3 (x) = N

�
x ; 0, ν

ν�2
�
(variance chosen to match

the variance of π (x))

It is easy to see that

π (x)
q2 (x)

< ∞ and
Z

π (x)2

q3 (x)
dx = ∞,

π (x)
q3 (x)

is unbounded
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Figure: Performance for ν = 12 with q1 (solid line), q2 (dashes) and q3 (light
dots). Final values 1.14, 1.14 and 1.16 vs true value 1.13
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We now try to compute Z ∞

2.1
x5π (x) dx

We try to use the same importance distribution but also use the fact
that using a change of variables u = 1/x , we haveZ ∞

2.1
x5π (x) dx =

Z 1/2.1

0
u�7π (1/u) du

=
1
2.1

Z 1/2.1

0
2.1u�7π (1/u) du

which is the expectation of 2.1u�7π (1/u) with respect to
U [0, 1/2.1] .

AD () 8th February 2007 15 / 42



We now try to compute Z ∞

2.1
x5π (x) dx

We try to use the same importance distribution but also use the fact
that using a change of variables u = 1/x , we haveZ ∞

2.1
x5π (x) dx =

Z 1/2.1

0
u�7π (1/u) du

=
1
2.1

Z 1/2.1

0
2.1u�7π (1/u) du

which is the expectation of 2.1u�7π (1/u) with respect to
U [0, 1/2.1] .

AD () 8th February 2007 15 / 42



Figure: Performance for ν = 12 with q1 (solid), q2 (short dashes), q3 (dots),
uniform (long dashes). Final values 6.75, 6.48, 7.06 and 6.48 vs true value 6.54
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Optimal Importance function

For a given test function, one can minimize the IS variance using

qopt (x) =
jϕ (x)jπ (x)R

X jϕ (x)jπ (x) dx

Proof:

varq (w(X )ϕ (X )) =
Z
q (x)

π2 (x)
q2 (x)

ϕ2 (x) dx�
�Z

π (x) ϕ (x) dx
�2

and Z
q (x)

π2 (x)
q2 (x)

ϕ2 (x) dx �
�Z

q (x)
π (x) jϕ (x)j

q (x)
dx
�2

=

�Z
π (x) jϕ (x)j dx

�2
.

This lower bound is attained for qopt (x) .
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Normalized Importance Sampling

In most if not all applications we are interested in, standard IS cannot
be used as the importance weights w (x) = π (x) /q (x) cannot be
evaluated in closed-form. In practice, we typically only know
π (x) ∝ π� (x) and q (x) ∝ q� (x) .

Normalized IS identity is based on

π (x) =
π� (x)R
π� (x) dx

=
w � (x) q� (x)R
w � (x) q� (x) dx

=
w � (x) q (x)R
w � (x) q (x) dx

=
w (x) q (x)R
w (x) q (x) dx

where

w � (x) =
π� (x)
q� (x)

.
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For any test function ϕ, we can also write

Eπ (ϕ (X )) =
Eq (w � (X ) ϕ (X ))

Eq (w � (X ))
=

Eq (w (X ) ϕ (X ))
Eq (w (X ))

.

Given a Monte Carlo approximation of q; bqN (x) = 1
N ∑N

i=1 δX (i ) (x)
then

bπN (x) = ∑N
i=1W

(i )δX (i ) (x) where W
(i ) =

w �(X (i ))
∑N
j=1 w �(X (j))

,

EbπN (ϕ (X )) = ∑N
i=1W

(i )ϕ
�
X (i )

�
.

The estimates are a ratio of estimates.
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Contrary to standard IS, this estimate is biased but by the LLN it is
asymptotically consistent.

Derivation of the asymptotic bias and variance based on the delta
method.
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Asymptotic Bias and Variance

Assume you have Z = g (A,B) with E (A) = µA and E (B) = µB
then a two-dimensional Taylor expansion gives around µ = (µA, µB )

Z � g (µ) + (A� µA)
∂g
∂a
(µ) + (B � µB )

∂g
∂b
(µ) .

It follows that
E (Z ) � g (µ) ,

Var (Z ) � σ2A
∂g
∂a

2

(µ) + σ2B
∂g
∂b

2

(µ) + 2
∂g
∂a
(µ)

∂g
∂b
(µ) σA,B .

In our case

Z = EbπN (ϕ (X )) = EbqN (w � (X ) ϕ (X ))
EbqN (w � (X )) =

A
B
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We have

∂g
∂a
(µ)

∂g
∂b
(µ) = �µA

µ3B
,

∂g
∂a

2

(µ) =
1

µ2B
,

∂g
∂b

2

(µ) =
µ2A
µ4B
,

µA = Eq (w � (X ) ϕ (X )) , µB = Eq (w � (X )) ,

σ2A =
varq (w � (X ) ϕ (X ))

N
, σ2B =

varq (w � (X ))
N

σA,B =
Eq

�
w � (X )2 ϕ (X )

�
� µA.µB

N
.
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It follows that

var
�
EbπN (ϕ (X ))�

� σ2A
∂g
∂a

2

(µ) + σ2B
∂g
∂b

2

(µ) + 2
∂g
∂a
(µ)

∂g
∂b
(µ) σA,B

=
σ2A
µ2B
+

σ2Bµ2A
µ4B

� 2µAσA,B
µ3B

Asymptotically, we have a central limit theorem
p
N
�
EbπN (ϕ (X ))�Eπ (ϕ (X ))

�
) N

�
0, σ2IS (ϕ)

�
where

σ2IS (ϕ) =
Z

π2 (x)
q (x)

(ϕ (x)�Eπ (ϕ))
2 dx
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� σ2A
∂g
∂a

2

(µ) + σ2B
∂g
∂b

2

(µ) + 2
∂g
∂a
(µ)

∂g
∂b
(µ) σA,B

=
σ2A
µ2B
+

σ2Bµ2A
µ4B

� 2µAσA,B
µ3B

Asymptotically, we have a central limit theorem
p
N
�
EbπN (ϕ (X ))�Eπ (ϕ (X ))

�
) N

�
0, σ2IS (ϕ)

�
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σ2IS (ϕ) =
Z

π2 (x)
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2 dx

AD () 8th February 2007 23 / 42



In practice, it is now necessary but highly recommended to select the
proposal q such that

sup
x2X

w (x) < ∞ or equivalently sup
x2X

w � (x) < ∞.

There is some empirical evidence that Normalized IS performs better
than standard IS in numerous cases.
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Using a second order Taylor expansion

Z � g (µ) + (A� µA)
∂g
∂a (µ) + (B � µB )

∂g
∂b (µ)

+ 1
2 (A� µA)

2 ∂2g
∂a2 (µ) +

1
2 (B � µB )

2 ∂2g
∂b2 (µ)

+ (A� µA) (B � µB )
∂2g

∂a∂b (µ)

gives

E
�
EbπN (ϕ (X ))� � g (µ) + 1

2σ2A
∂2g
∂a2 (µ) +

1
2σ2B

∂2g
∂b2 (µ)

+σA,B
∂2g

∂a∂b (µ) .

It follows that asymptotically we have

N
�
EbπN (ϕ (X ))�Eπ (ϕ (X ))

�
! �

Z
π2 (x)
q (x)

(ϕ (x)�Eπ (ϕ)) dx .

We have Bias2 of order 1/N2 and Variance of order 1/N.
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The asymptotic variance (and also the asymptotic bias) can be
consistently estimated from the data using

\σ2IS (ϕ)
N

=
bσ2Abµ2B + bσ

2
Bbµ2Abµ4B � 2bµAbσA,Bbµ3B .

You can also compute the variance of the variance estimate; see
Geweke (1989).
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Application to Bayesian Statistics

Consider a Bayesian model: prior π (θ) and likelihood f (x j θ) .

The posterior distribution is given by

π ( θj x) = π(θ)f ( x jθ)R
Θ π(θ)f ( x jθ)d θ

∝ π� (θj x)
where π� ( θj x) = π (θ) f (x j θ) .

We can use the prior distribution as a candidate distribution
q (θ) = q� (θ) = π (θ).

We also get an estimate of the marginal likelihoodZ
Θ

π (θ) f (x j θ) dθ.
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Example: Application to Bayesian analysis of Markov chain. Consider
a two state Markov chain with transition matrix F�

p1 1� p1
1� p2 p2

�
that is Pr (Xt+1 = 1jXt = 1) = 1� Pr (Xt+1 = 2jXt = 1) = p1 and
Pr (Xt+1 = 2jXt = 2) = 1� Pr (Xt+1 = 1jXt = 2) = p2. Physical
constraints tell us that p1 + p2 < 1.

Assume we observe x1, ..., xm and the prior is

π (p1, p2) = 2Ip1+p2�1

then the posterior is

π (p1, p2j x1:m) ∝ pm1,11 (1� p1)m1,2 (1� p2)m2,1 pm2,22 Ip1+p2�1

where

mi ,j =
m�1
∑
t=1

Ixt=iIxt+1=i

The posterior does not admit a standard expression and its
normalizing constant is unnknown. We can sample from it using
rejection sampling.
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We are interested in estimating E [ ϕi (p1, p2)j x1:m ] for
ϕ1 (p1, p2) = p1, ϕ2 (p1, p2) = p2, ϕ3 (p1, p2) = p1/ (1� p1),
ϕ4 (p1, p2) = p2/ (1� p2) and ϕ5 (p1, p2) = log

p1(1�p2)
p2(1�p1) using

Importance Sampling.

If there was no on p1 + p2 < 1 and π (p1, p2) was uniform on
[0, 1]� [0, 1] , then the posterior would be

π0 (p1, p2j x1:m) = Be (p1;m1,1 + 1,m1,2 + 1)
Be (p2;m2,2 + 1,m2,1 + 1)

but this is ine¢ cient as for the given data (m1,1,m1,2,m2,2,m2,1) we
have π0 (p1 + p2 < 1j x1:m) = 0.21.

The form of the posterior suggests using a Dirichlet distribution with
density

π1 (p1, p2j x1:m) ∝ pm1,11 pm2,22 (1� p1 � p2)m1,2+m2,1

but π (p1, p2j x1:m) /π1 (p1, p2j x1:m) is unbounded.
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(Geweke, 1989) proposed using the normal approximation to the
binomial distribution

π2 (p1, p2j x1:m) ∝ exp
�
� (m1,1 +m1,2) (p1 � bp1)2 / (2bp1 (1� bp1))�

� exp
�
� (m2,1 +m2,2) (p2 � bp2)2 / (2bp2 (1� bp2))� Ip1+p2�1

where bp1 = m1,1/ (m1,1 +m1,2) , bp1 = m2,2/ (m2,2 +m2,1). Then to
simulate from this distribution, we simulate �rst π2 (p1j x1:m) and
then π2 (p2j x1:m , p1) which are univariate truncated Gaussian
distribution which can be sampled using the inverse cdf method. The
ratio π (p1, p2j x1:m) /π2 (p1, p2j x1:m) is upper bounded.

A �nal one consists of using

π3 (p1, p2j x1:m) = Be (p1;m1,1 + 1,m1,2 + 1)π3 (p2j x1:m , p1)

where π (p2j x1:m , p1) ∝ (1� p2)m2,1 pm2,22 Ip2�1�p1 is badly
approximated through π3 (p2j x1:m , p1) = 2

(1�p1)2
p2Ip2�1�p1 . It is

straightforward to check that π (p1, p2j x1:m) /π3 (p1, p2j x1:m) ∝
(1� p2)m2,1 pm2,22 / 2

(1�p1)2
p2 < ∞.
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Performance for N = 10, 000

Distribution ϕ1 ϕ2 ϕ3 ϕ4 ϕ5
π1 0.748 0.139 3.184 0.163 2.957
π2 0.689 0.210 2.319 0.283 2.211
π3 0.697 0.189 2.379 0.241 2.358
π 0.697 0.189 2.373 0.240 2.358

Sampling from π using rejection sampling works well but is
computationally expensive. π3 is computationally much cheaper
whereas π1 does extremely poorly as expected.
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Optimal Normalized Importance Sampling

For a given test function, one can minimize the normalized IS
asymptotic variance using

qopt (x) =
jϕ (x)�Eπ (ϕ)jπ (x)R

X jϕ (x)�Eπ (ϕ)jπ (x) dx

Proof: R
q (x) π2(x )

q2(x ) (ϕ (x)�Eπ (ϕ))
2 dx

�
�R
q (x) π(x )jϕ(x )�Eπ(ϕ)j

q(x ) dx
�2

=
�R

π (x) jϕ (x)�Eπ (ϕ)j dx
�2

and this lower bound is attained for qopt (x) .

This result is practically useless because it requires knowing Eπ (ϕ)
but it suggests approximations.
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E¤ective Sample Size

In statistics, we are usually not interested in a speci�c ϕ but in several
functions and we prefer having q (x) as close as possible to π (x) .

For �at functions, one can approximate the variance by

var
�
EbπN (ϕ (X ))� � (1+ varq (w (X ))) var (Eπ (ϕ (X )))

N
.

Simple interpretation: The N weighted samples are approximately
equivalent to M unweighted samples from π where

M =
N

1+ varq (w (X ))
� N.
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Computing Ratio of Normalizing Constant

However, we are often interested in estimating the ratio of
normalizing constantsR

π� (x) dxR
q� (x) dx

=
Z
w � (x) q (x) dx = Eq [w � (X )] .

using

EbqN [w � (X )] = 1
N

N

∑
i=1
w �
�
X (i )

�

It is unbiased and has variance

var [EbqN [w � (X )]] = varq (w � (X ))
N

.
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Clearly if you have q (x) = π (x) then

var [EbqN [w � (X )]] = 0

However if q (x) = π (x) then the estimate is simply

EbqN [w � (X )] =
R

π� (x) dxR
q� (x) dx

.

Open Question: How could you come up with a good estimate ofR
π� (x) dx based on samples of π.
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IS is more powerful than you think.

Assume you have say to compute the importance weight

w (θ) ∝
Z
f (x , z j θ) dz

i.e. the likelihood is very complex and might not admit a closed-form
expression.

You do NOT need to compute w
�

θ(i )
�
exactly, an unbiased estimate

of it is su¢ cient.
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Limitations of Importance Sampling

Consider the case where X= Rn

π (θ) =
1

(2π)n/2 exp

 
�∑n

i=1 θ2i
2

!
and

qσ (θ) =
1

(2πσ2)n/2 exp

 
�∑n

i=1 θ2i
2σ2

!

We have for any σ > 1

wσ (θ) =
π (θ)

qσ (θ)
= σn exp

 
�

n

∑
i=1

θ2i
2

�
1� 1

σ2

�!
� σn for any θ

and

varqσ

�
π (θ)

qσ (θ)

�
= σnσ0n � 1 with σ02 =

σ2

σ2 � 1/2
> 1

Despites having a very good proposal then the variance of the weights
increases exponentially fast with the dimension of the problem.
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Normalized Importance Sampling versus Rejection
Sampling

Given N samples from q, we estimate Eπ (ϕ (X )) through IS

EISbπN (ϕ (X )) =
∑N
i=1 w

�
�
X (i )

�
ϕ
�
X (i )

�
∑N
i=1 w �

�
X (i )

�
or we ��lter� the samples through rejection and propose instead

ERSbπN (ϕ (X )) = 1
K

K

∑
k=1

ϕ
�
X (ik )

�
where K � N is a random variable corresponding to the number of
samples accepted.

We want to know which strategy performs the best.

AD () 8th February 2007 38 / 42



Normalized Importance Sampling versus Rejection
Sampling

Given N samples from q, we estimate Eπ (ϕ (X )) through IS

EISbπN (ϕ (X )) =
∑N
i=1 w

�
�
X (i )

�
ϕ
�
X (i )

�
∑N
i=1 w �

�
X (i )

�
or we ��lter� the samples through rejection and propose instead

ERSbπN (ϕ (X )) = 1
K

K

∑
k=1

ϕ
�
X (ik )

�
where K � N is a random variable corresponding to the number of
samples accepted.

We want to know which strategy performs the best.

AD () 8th February 2007 38 / 42



De�ne the arti�cial target π (x , y) on X � [0, 1] as

π (x , y) =

(
Cq�(x )R
π�(x )dx

, for
n
(x , y) : x 2 X and y 2

h
0, π�(x )
Cq�(x )

io
0 otherwise

then Z
π (x , y) dy =

Z π�(x )
Cq�(x )

0

Cq� (x)R
π� (x) dx

dy = π (x) .

Now let us consider the proposal distribution

q (x , y) = q (x)U[0,1] (y) for (x , y) 2 X � [0, 1] .
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Then rejection sampling is nothing but IS on X � [0, 1] where

w (x , y) =
π (x , y)

q (x)U[0,1] (y)
=

(
C
R
q�(x )dxR

π�(x )dx
for y 2

h
0, π�(x )
Cq�(x )

i
0, otherwise.

We have

ERSbπN (ϕ (X )) = 1
K

K

∑
k=1

ϕ
�
X (ik )

�
=

∑N
i=1 w

�
X (i ),Y (i )

�
ϕ
�
X (i )

�
∑N
i=1 w

�
X (i ),Y (i )

� .

Compared to standard IS, RS performs IS on an enlarged space.
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The variance of the importance weights from RS is higher than for
standard IS:

varq [w (X ,Y )] � varq [w (X )] .

More precisely, we have

var [w (X ,Y )] = var [E [w (X ,Y )jX ]] +E [var [w (X ,Y )jX ]]
= var [w (X )] +E [var [w (X ,Y )jX ]] .

To compute integrals, Rejection sampling is ine¢ cient and you should
simply use IS.
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Like Rejection, IS is useful for small non-standard distributions but
collapses for most �interesting�problems.

In both cases, the problem is to be able to design �clever�proposal
distributions.

Towards the end of this course, we will present advanced dynamic
methods to address this problem.
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