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@ Let 7 (x) be a probability density on X'.
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@ Let 7 (x) be a probability density on X'.

@ Monte Carlo approximation is given by

7T 1 ¢ A
i (x) = N Z‘sxm (x) where X(/ o

Il
—

@ Forany ¢ : & =R
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Let 77 (x) be a probability density on X.

Monte Carlo approximation is given by

=

N 1
Tty (x) =N

Sy (x) where X1 &

Il
—

Forany ¢ : & —R

More precisely, we have
Efxoy [Bay (9(X))] = Ex(e(X)),

var{X(,->} (IEﬁN (q)(X))) - T
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Accept-Reject Procedure

@ Direct methods feasible for standard distributions: inverse method,
composition, etc.
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Accept-Reject Procedure

@ Direct methods feasible for standard distributions: inverse method,
composition, etc.

@ In case where 71 & 71* does not admit any standard form, we can use
a proposal distribution g on X where g « g*.

@ We need g to ‘dominate’ 7; i.e.

C = sup (%)
xeX q>‘< (X)

< H-o00.
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Consider C' > C. Then the accept/reject procedure proceeds as follows:

Accept/Reject procedure

@ Sample Y~qgand U~ U (0,1).
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Consider C' > C. Then the accept/reject procedure proceeds as follows:

Accept/Reject procedure

@ Sample Y~qgand U~ U (0,1).

QIfU< & ,E( )) then return Y'; otherwise return to step 1.
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@ This is a simple generic algorithm but it requires coming up with a
bound C.
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@ This is a simple generic algorithm but it requires coming up with a
bound C.

@ Its performance typically degrade exponentially fast with the
dimension of X.
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@ Its performance typically degrade exponentially fast with the
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@ This is a simple generic algorithm but it requires coming up with a
bound C.

@ Its performance typically degrade exponentially fast with the
dimension of X.

@ It seems you are wasting some information by rejecting samples.

@ You need to wait a random time to obtain some samples from 7.
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This is a simple generic algorithm but it requires coming up with a
bound C.

Its performance typically degrade exponentially fast with the
dimension of X.

It seems you are wasting some information by rejecting samples.
You need to wait a random time to obtain some samples from 7.

Is it possible to “recycle” these samples?
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Importance Sampling

o Consider again the target distribution 7t and the proposal distribution
qg. We only require

mT(x)>0=q(x)>0.
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Importance Sampling

o Consider again the target distribution 7t and the proposal distribution
qg. We only require

mT(x)>0=q(x)>0.
@ In this case, the Importance Sampling (IS) identity is
7 (x) = w(x)q(x)

where the so-called Importance Weight is given by
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Importance Sampling

o Consider again the target distribution 7t and the proposal distribution
qg. We only require

mT(x)>0=q(x)>0.
@ In this case, the Importance Sampling (IS) identity is
7 (x) = w(x)q(x)

where the so-called Importance Weight is given by

o It follows that
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@ Monte Carlo approximation of g is
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@ Monte Carlo approximation of g is
. 1 (i) iid.
an (x) = N E‘SXU) (x) where X\ "~ g.
i=1

@ |t corresponds to the following approximation

1 ,
v (x) = N ; w(XM)5y 0 (x).
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@ Monte Carlo approximation of g is

1 N ii
—Eéx ) where X0 qg.
i=1

2

@ |t corresponds to the following approximation

y .
=N ) w(XD)oy) (x).
i=1
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@ We have

and
varpiy (Eg, (p (X)) = ZalX)e 0]
| Ex(w(X)9* (X)) ~ B2 (¢ (X))
N
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@ We have

and
varp iy (Eg, (p (X)) = Zal)e %)
| Ex(w(X)9* (X)) ~ B2 (¢ (X))
N

@ In practice, it is recommended to ensure

meanz/ﬁ@W<m
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@ We have

and
varpiy (Eg, (p (X)) = ZalX)e 0]
| Ex(w(X)9* (X)) ~ B2 (¢ (X))
N

@ In practice, it is recommended to ensure

B (w(x) = [ 7;2(%) b < oo

@ Even if it is not necessary, it is actually even better to ensure that

supw (x) < oo.
xekX
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Figure: 1S approximation obtained using a Gaussian IS distribution
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o We try to compute

/\/zn(x) dx

I'((v+1)/2) x\ —(v+1)/2
-\ T 2
() Vvrl (v/2) ( * 1/>
is a t-student distribution with v > 1 (you can sample from it by
composition N (0,1) /Ga(v/2,v/2)) using Monte Carlo.

where
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o We try to compute

/\/zn(x) dx

I'((v+1)/2) x\ —(v+1)/2
-\ T 2

() Vvrl (v/2) ( * )

is a t-student distribution with v > 1 (you can sample from it by

composition N (0,1) /Ga(v/2,v/2)) using Monte Carlo.

o We use g1 (x) = 1 (x), ¢ (x) = \/ﬁé(im) (1+2) ! (Cauchy

distribution) and g3 (x) = N (x;0, +%) (varlance chosen to match
the variance of 77 (x))

where
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o We try to compute

/\/zn(x) dx

I'((v+1)/2) x\ —(v+1)/2
-\ T 2

() Vvrl (v/2) ( * )

is a t-student distribution with v > 1 (you can sample from it by

composition N (0,1) /Ga(v/2,v/2)) using Monte Carlo.

o We use g1 (x) = 1 (x), ¢ (x) = \/ﬁé(im) (1+2) ! (Cauchy

distribution) and g3 (x) = N (x;0, +%) (varlance chosen to match
the variance of 77 (x))

where

@ |t is easy to see that

N(X) () T[(X)2 = 00 H(X) is unbounde
) < [ Gl g o umbounded
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Figure: Performance for v = 12 with g; (solid line), g (dashes) and g3 (light
dots). Final values 1.14, 1.14 and 1.16 vs true value 1.13
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@ We now try to compute

/:OX57T(X) dx
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e We now try to compute
oo
/ x°7t (x) dx
2.1

@ We try to use the same importance distribution but also use the fact
that using a change of variables v = 1/x, we have

o /2.
/ X7t (x) dx = /1 21u_77r(1/u)du
2

1 0
1

1/2.1
= —/ 2.1u™ " (1/u) du
2.1 Jo

which is the expectation of 2.1u~ "7t (1/u) with respect to
U[0,1/2.1].
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Figure: Performance for v = 12 with g; (solid), g» (short dashes), g3 (dots),
uniform (long dashes). Final values 6.75, 6.48, 7.06 and 6.48 vs true value 6.54
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Optimal Importance function

@ For a given test function, one can minimize the IS variance using

w000l ()
) = T ol (x) o
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Optimal Importance function

@ For a given test function, one can minimize the IS variance using

¢ ()] 7t (x)

) = T G ) o

—
Q
&
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N

2
(x |dx) .
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This lower bound is attained for g°P* (x) .



Normalized Importance Sampling

@ In most if not all applications we are interested in, standard IS cannot
be used as the importance weights w (x) = 7 (x) /g (x) cannot be
evaluated in closed-form. In practice, we typically only know

7T (x) o< 77 (x) and q (x) o< ¢* (x) .
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Normalized Importance Sampling

@ In most if not all applications we are interested in, standard IS cannot
be used as the importance weights w (x) = 7 (x) /g (x) cannot be
evaluated in closed-form. In practice, we typically only know

7 (x) & 7T (x) and q (x) &« ¢* (x).
@ Normalized IS identity is based on

m(x) = =

)
_ w* (x) g (x) o (x) g (x)
Jw*(x)g(x)dx [ w(x)q(x)dx
where (%)
ey T (x
Y= )
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@ For any test function ¢, we can also write

_E (W (X)9(X)) _Bg(w(X)g
EloX) = "5 1w 00) ~ B (wX)
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@ For any test function ¢, we can also write

LB (09(X) _ Eg(w(X)9(X)
B0 = TR e 00) T B w ()

e Given a Monte Carlo approximation of g; gy (x) = ﬁZfV:l Iy (x)
then

7in (x) =N, W08y (x) where W) = ( X
Ez, (¢ (X)) =X, wie (xm) _
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@ For any test function ¢, we can also write

_ B (X) 9 (X)) _ Eq(w(X) 9 (X))

Er (¢ (X)) = E, (w (X)) Eq (w (X))

e Given a Monte Carlo approximation of g; gy (x) = ﬁZi:l Iy (x)
then

Tty (X) = Z:N:1 W(i)(SXm (X) where W) =
Ez, (¢ (X)) =X, wie (xm) _

@ The estimates are a ratio of estimates.
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o Contrary to standard IS, this estimate is biased but by the LLN it is
asymptotically consistent.
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o Contrary to standard IS, this estimate is biased but by the LLN it is
asymptotically consistent.

@ Derivation of the asymptotic bias and variance based on the delta
method.
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Asymptotic Bias and Variance

@ Assume you have Z = g (A, B) with E (A) = i, and E (B) = g
then a two-dimensional Taylor expansion gives around p = (pi4, tg)

Z % g (1) + (A= pa) 2 (1) + (B~ pig) 2 (1)

It follows that

8g2 8g2
Var (Z) ~ Uig (1) 2
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Asymptotic Bias and Variance

@ Assume you have Z = g (A, B) with E (A) = i, and E (B) = g
then a two-dimensional Taylor expansion gives around p = (pi4, tg)

Z % g (1) + (A= pa) 2 (1) + (B~ pig) 2 (1)

It follows that

8g2 8g2
Var (Z) ~ Uig (1) 2

@ In our case
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@ We have

dg , . og n, og? 1 og? Ty
g( )ab( ) = ‘u32 92 ( )—@: 3b (V)—ﬁv
ma = Eqw' (X) (X)), pg=Eq(w" (X)),
g = 0990 g v (v (X)
Eq (W* (X)? (P(X)> ~Halg
OAB = N .
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o It follows that

AD ()

Q

var (Bz, (¢ (X)))

dg’ dg’ dg , | 0g
208 2 98 98
aAaa (y)+038b (]’l)+2aa (l’l) ob (‘M) A.B
G, G atas
2 Z 3
B Hp HB
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o It follows that

var (Ez, (¢ (X)))
2ag2( ) 2ag2

~ Jdg , | 0g
~ Cas (H)+0B5, (V)+2$(V)%(V) AB
_ ﬁ ‘723?‘3\_ Ha0AB
= 3 7y 27"
B Hp HB

@ Asymptotically, we have a central limit theorem
VN (Ez, (¢ (X)) = Ex (¢ (X)) = N (0.0% (¢))

where

2 X
7 (9) = [ = (g () ~ B (9))?
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@ In practice, it is now necessary but highly recommended to select the
proposal g such that

sup w (x) < oo or equivalently sup w* (x) < oo.
xeX xeX
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@ In practice, it is now necessary but highly recommended to select the
proposal g such that

sup w (x) < oo or equivalently sup w* (x) < oo.
xekX xekX

@ There is some empirical evidence that Normalized IS performs better
than standard IS in numerous cases.
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@ Using a second order Taylor expansion

Z~g()+ (A= pa) % (1) + (B - @;) g
+%(A—74A)237§(H)+2%(B— 3)2 3132 ()
+(A—1y) (B—pg) 25 (n)

—~
=
~—

gives

E (Ez, (¢ (X)) ~ g (1) . L2 28 () + 102 2% ()
0, Baaab (1)
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@ Using a second order Taylor expansion

Z~g()+ (A= pa) % (1) + (B - @;) g
+%(A_VA)2?)T§(.”)+2%(B_ 3)2 3132 ()
+(A—1y) (B—pg) 25 (n)

—~
=
~—

gives

E (B, (9 (X)) ~ 8 (1) 4 3745% (1) + 3033 (1)
+0a8 305 (1)

@ It follows that asymptotically we have

N (Ex, (¢ (X)) = Ex (9 (X)) = - [
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@ Using a second order Taylor expansion

Z~g()+ (A= pa) % (1) + (B - @;) g
+%(A_VA)2?)T§(.”)+2%(B_ 3)2 3132 ()
+(A—1y) (B—pg) 25 (n)

—~
=
~—

gives
E (Ez, (¢ (X)) ~ g (1) . L2 28 () + 102 2% ()
04, Baaab (1) -

@ It follows that asymptotically we have

2 (x)

q (x)

N (Es, (9 (X)) ~ Ex (9(X)) = = [ T2 (p () ~ Ex () dx.

@ We have Bias? of order 1/N? and Variance of order 1/ N.

AD () 8th February 2007 25 / 42



@ The asymptotic variance (and also the asymptotic bias) can be
consistently estimated from the data using

> D D D ~ A~
vis(¢) _Ta n UM _ ,HaTAB
- 0 4 -3 :

Hp Hp ]
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@ The asymptotic variance (and also the asymptotic bias) can be
consistently estimated from the data using

—

2 A2
‘7%5(4’)_0/\ OgHa

TN
N ~2 + ~4 2;{AA3A’B :
Hp Hp Mg

@ You can also compute the variance of the variance estimate; see
Geweke (1989).
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Application to Bayesian Statistics

o Consider a Bayesian model: prior 77 (6) and likelihood f (x| ).
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Application to Bayesian Statistics

o Consider a Bayesian model: prior 77 (6) and likelihood f (x| ).

@ The posterior distribution is given by

OIS o 7 (8] x)
where T (0| x) = 7 (0) f (x| 0).

(0] x) = fgﬂ@
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Application to Bayesian Statistics

o Consider a Bayesian model: prior 77 (6) and likelihood f (x| ).
@ The posterior distribution is given by

7 (8] %) = R s o (6] x)

0
where T (0| x) = 7 (0) f (x| 0).

@ We can use the prior distribution as a candidate distribution
q(6) = q" (6) = 7 (6).
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Application to Bayesian Statistics

o Consider a Bayesian model: prior 77 (6) and likelihood f (x| ).

@ The posterior distribution is given by

(6] x) = % o 7T (6] x)
where T (0| x) = 7 (0) f (x| 0).

@ We can use the prior distribution as a candidate distribution
q(0) =q"(0) =7 (6).

@ We also get an estimate of the marginal likelihood

/(an(ﬂ)f(x](?) de.
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o Example: Application to Bayesian analysis of Markov chain. Consider
a two state Markov chain with transition matrix F

( p1 1-p1 >
1—p p2
that is Pr(Xe41 =1| Xy =1) =1 —Pr(Xep1 = 2| X, =1) = p; and

Pr(Xez1 =2| Xy =2) =1—Pr(Xi11 = 1| X; = 2) = pp. Physical
constraints tell us that p; + pp < 1.
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o Example: Application to Bayesian analysis of Markov chain. Consider
a two state Markov chain with transition matrix F

(Pl 1—P1>
l—p p2

that is Pr(Xe41 =1| Xy =1) =1 —Pr(Xep1 = 2| X, =1) = p; and
Pr(Xez1 =2| Xy =2) =1—Pr(Xi11 = 1| X; = 2) = pp. Physical
constraints tell us that p; + pp < 1.

@ Assume we observe xi, ..., Xy, and the prior is

7t (p1, p2) = 2Mp 4 py<1

then the posterior is

mp1 M22

7 (p1, p2| Xm) & py (1= p1) ™2 (1= p2) ™" py Wy, 4 py<a

where
m—1

mij =Y Ty=ill, =i

t=1
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o Example: Application to Bayesian analysis of Markov chain. Consider
a two state Markov chain with transition matrix F

( p1 1-p1 >
1—p p2
that is Pr(Xe41 =1| Xy =1) =1 —Pr(Xep1 = 2| X, =1) = p; and
Pr(Xez1 =2| Xy =2) =1—Pr(Xi11 = 1| X; = 2) = pp. Physical
constraints tell us that p; + pp < 1.
@ Assume we observe xi, ..., Xy, and the prior is
7t (p1, p2) = 2Mp 4 py<1

then the posterior is

7 (p1o p2| xuim) o< py (1= p1) ™2 (1= p2)™ " py **Lpy 4pp <t
where
m—1
mij =Y D=l =
t=1

@ The posterior does not admit a standard expression and its
normalizing constant is unnknown. We can sample from it using

rejection sampling.
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o We are interested in estimating [E [¢; (p1, p2)| x1:m] for

@1 (P1.p2) = p1, @y (p1, p2) = P2, @3 (p1.p2) = p1/ (1 —p1),

94 (P1.p2) = P2/ (1= p2) and @ (p1, po) = log 221 using

Importance Sampling.
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o We are interested in estimating [E [¢; (p1, p2)| x1:m] for

@1 (P1.p2) = p1, @y (p1, p2) = P2, @3 (p1.p2) = p1/ (1 —p1),

94 (P1.p2) = P2/ (1= p2) and @ (p1, po) = log 221 using

Importance Sampling.

o If there was no on p; + p» < 1 and 7t (p1, p2) was uniform on
[0,1] x [0,1], then the posterior would be

o (p1, p2| x1:m) = Be(pi;ymii+1,mo+1)
Be (p2;map+1,mag +1)

but this is inefficient as for the given data (my,1, mi2, Mmoo, ma1)
have g (pl +p < 1| Xl;m) =0.21.
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o We are interested in estimating [E [¢; (p1, p2)| x1:m] for

@1 (P1.p2) = p1, @y (p1, p2) = P2, @3 (p1.p2) = p1/ (1 —p1),

@, (P1,p2) = p2/ (1 — p2) and @5 (p1, p2) = log p251 223 using

Importance Sampling.

o If there was no on p; + p» < 1 and 7t (p1, p2) was uniform on
[0,1] x [0,1], then the posterior would be

o (p1, p2| x1:m) = Be(piymii+1,m»+1)
Be (p2;map+1,mag +1)

but this is inefficient as for the given data (my,1, m12, Mmoo, ma1) we
have g (pl +p < 1| Xl;m) =0.21.

@ The form of the posterior suggests using a Dirichlet distribution with
density

)m1,2+m2,1

71 (p1, 2| Xm) o< py oy 22 (1= p1— p2

but 7T (p1, p2| x1:m) /701 (p1, P2| X1:m) is unbounded.
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o (Geweke, 1989) proposed using the normal approximation to the
binomial distribution

o (p1, p2| X1:m) < exp <— (m114+mio) (p1 _/,51)2 / (2py (1 _/151)))
xexp (= (o1 +m2) (2~ B2) / (22 (1= P2))

where py = my,1/ (m11+mi2), P = mop/ (Mmoo + mp1). Then to
simulate from this distribution, we simulate first 772 (p1| x1:m) and
then 775 ( p2| X1:m, p1) which are univariate truncated Gaussian
distribution which can be sampled using the inverse cdf method. The

ratio 77 ( p1, p2| x1:m) /702 (p1, p2| X1:m) is upper bounded.
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o (Geweke, 1989) proposed using the normal approximation to the
binomial distribution

o (p1, p2| X1:m) < exp <— (m114+mio) (p1 _/,51)2 / (2py (1 _/151)))
xexp (= (o1 +m2) (2~ B2) / (22 (1= P2))

where py = my,1/ (m11+mi2), P = mop/ (Mmoo + mp1). Then to
simulate from this distribution, we simulate first 772 (p1| x1:m) and
then 775 ( p2| X1:m, p1) which are univariate truncated Gaussian
distribution which can be sampled using the inverse cdf method. The
ratio 77 ( p1, p2| x1:m) /702 (p1, p2| X1:m) is upper bounded.

A final one consists of using

73 (PLPz\ X1:m) = Be (Pl; m1+1,mo+ 1) 73 (P2| X1:m.P1)

where 70 ( po| x1:m, p1) & (1 — p2)™* py?1p,<1—p, is badly
approximated through 713 (p2| x1:m, p1) = QEWP2HP2S1—P1' It is
straightforward to check that 77 (p1, p2| X1:m) /703 (1, P2| X1:m )
(1=p2)™" py 22/ P2 < 0.
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@ Performance for N = 10, 000

Distribution | ¢, ¢y ¢3 o Ps
T 0.748 | 0.139 | 3.184 | 0.163 | 2.957
TTo 0.689 | 0.210 | 2.319 | 0.283 | 2.211
73 0.697 | 0.189 | 2.379 | 0.241 | 2.358
T 0.697 | 0.189 | 2.373 | 0.240 | 2.358

AD ()
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@ Performance for N = 10, 000

Distribution | ¢, ¢y ¢3 o Ps
T 0.748 | 0.139 | 3.184 | 0.163 | 2.957
TTo 0.689 | 0.210 | 2.319 | 0.283 | 2.211
73 0.697 | 0.189 | 2.379 | 0.241 | 2.358
T 0.697 | 0.189 | 2.373 | 0.240 | 2.358

@ Sampling from 7T using rejection sampling works well but is

computationally expensive. 713 is computationally much cheaper
whereas 711 does extremely poorly as expected.

AD ()

8th February 2007
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Optimal Normalized Importance Sampling

@ For a given test function, one can minimize the normalized IS
asymptotic variance using

qopt (X) — |§0<X)_1E7T (q))|7‘L’(X)
Jalo (x) = Ex ()] 7t (x) dx

8th February 2007 32 /42



Optimal Normalized Importance Sampling

@ For a given test function, one can minimize the normalized IS
asymptotic variance using

qopt (X) — |§0<X)_1E7T (§D>|7I(X)
Jalo (x) = Ex ()] 7t (x) dx

@ Proof:

Ja () 5 (@ (x) - ((P))de
+ (Jor0 sy
= ([ 7 (x) |9 (x) — Ex (@)] dx)

and this lower bound is attained for g°P* (x).
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Optimal Normalized Importance Sampling

@ For a given test function, one can minimize the normalized IS
asymptotic variance using

qopt (X) — |§0<X)_1E7T <§D>|7I(X)
Jalo (x) = Ex ()] 7t (x) dx
@ Proof:
Jal 2(X (P( ) —Ex (9))° dx
> ( ())uzmndx)z

(f = —Ex (9)| dx)?

and this lower bound is attained for qOpt (x).

o This result is practically useless because it requires knowing E (¢)
but it suggests approximations.

AD () 8th February 2007 32 / 42



Effective Sample Size

@ In statistics, we are usually not interested in a specific ¢ but in several
functions and we prefer having g (x) as close as possible to 77 (x) .
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@ For flat functions, one can approximate the variance by
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Effective Sample Size

@ In statistics, we are usually not interested in a specific ¢ but in several
functions and we prefer having g (x) as close as possible to 77 (x) .

@ For flat functions, one can approximate the variance by

var (Ez, (¢ (X)) & (1+ varg (w (X)) “ (]Eﬂlslﬁ’) (X))

o Simple interpretation: The N weighted samples are approximately
equivalent to M unweighted samples from 7t where

N < N.

M= v, w (X)) =
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Computing Ratio of Normalizing Constant

@ However, we are often interested in estimating the ratio of
normalizing constants

W = [ w () g (x) e = B [w* (X)].

using

gy (v ()] = 3 1w (X©)

1
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Computing Ratio of Normalizing Constant

@ However, we are often interested in estimating the ratio of
normalizing constants

§§€&f=/wwwn@wzmmww»

using

o, [ (0] = 5 L w (x0)

@ It is unbiased and has variance
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o Clearly if you have g (x) = 77 (x) then

var [Eg, [w* (X)]] = 0
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o Clearly if you have g (x) = 77 (x) then
var [Eq, [w* (X)] = 0

e However if g (x) = 71 (x) then the estimate is simply

f7rx
W 0] = o

]Ea/v
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o Clearly if you have g (x) = 77 (x) then
var [Eq, [w* (X)] = 0

e However if g (x) = 71 (x) then the estimate is simply

Eq [ (X)] = 4.7 ) &

qu

° Open Question: How could you come up with a good estimate of
f 7T (x) dx based on samples of 7.
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@ IS is more powerful than you think.
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@ IS is more powerful than you think.

@ Assume you have say to compute the importance weight

W(Q)cx/f(x,z|9)dz

i.e. the likelihood is very complex and might not admit a closed-form
expression.
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@ IS is more powerful than you think.

@ Assume you have say to compute the importance weight

W(Q)cx/f(x,z|9)dz

i.e. the likelihood is very complex and might not admit a closed-form
expression.

@ You do NOT need to compute w <9(i)> exactly, an unbiased estimate

of it is sufficient.
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Limitations of Importance Sampling

@ Consider the case where X=R"

1 n g2
T(0) = exp | - ==L

__ 1 L0
% (0) = (2m02)"/? &P ( 202

and
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Limitations of Importance Sampling

@ Consider the case where X=R"

1 n g2
T(0) = exp | - ==L

(0) = .t ex _LiLa 6 i
o (2me2)"? P 202

@ We have for any o > 1

n p2
wy (0) = ;[7((00)) = 0" exp (—202’ (1—;)) < ¢" for any 0

i=1

and

and
2
1

7 (0) _ o
varyg, ( > :U”(T/”—1W|th 0/2:m>
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Limitations of Importance Sampling

@ Consider the case where X=R"

1 Y 6F
O Gy <_21>

_ 1 Y 67
0= e (5
@ We have for any o > 1

n p2
wy (0) = ;[7((00)) = 0" exp (—202’ (1—;)) < ¢" for any 0

i=1

and

and
7 (6) / - 2 o
= n n —_ 1 th = ]_
varg, (q0(6)> oo with 02_1/2>

@ Despites having a very good proposal then the variance of the weights

increases exponentially fast with the dimension of the problem.
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Normalized Importance Sampling versus Rejection

Sampling

e Given N samples from g, we estimate E (¢ (X)) through IS
- (10) ()
£, (X0)

or we “filter” the samples through rejection and propose instead

E2, (9(X)) =

1 & i
ER, (p(0) = ¢ Lo (™)

where K < N is a random variable corresponding to the number of
samples accepted.
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Normalized Importance Sampling versus Rejection

Sampling

e Given N samples from g, we estimate E (¢ (X)) through IS
- (10) ()
£, (X0)

or we “filter” the samples through rejection and propose instead

E2, (9(X)) =

1 & .
ER, (p(0) = ¢ Lo (™)
where K < N is a random variable corresponding to the number of
samples accepted.

@ We want to know which strategy performs the best.

AD () 8th February 2007 38 / 42



o Define the artificial target 7T (x,y) on & X [0, 1] as

Cq*(x) . 7 (x)
T(xy) =4 Tra for {(X,y).XEXandyE [0, Cq*(x)}}
0 otherwise

then

* (x)

/n(x,y)dy:/owmdy:n(x).
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o Define the artificial target 7T (x,y) on & X [0, 1] as

Cq*(x) . 7 (x)
T(xy) =4 Tra for {(x,y).xEXandyE [0, Cq*(x)}}
0 otherwise

then

Q(Xx) *(x
/n(x,y)dy:/ocq()m(dy:n(x).

@ Now let us consider the proposal distribution

q(x,y) =q(x)Upq (y) for (x,y) € X x[0,1].
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@ Then rejection sampling is nothing but IS on X' x [0, 1] where

— C [ q*(x)dx T (x)
w(x,y) = T(x,y) _ { Ty for y 6' [0, Cq*(x)}
0, otherwise.
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@ Then rejection sampling is nothing but IS on X' x [0, 1] where

_wy) | SRR fery e |0.50]
wixy) = q(x )u[01 (¥) { 0, otherwise.
@ We have
N X)) y@) x ()
EES (9 X)) = 5 2o 9 (X)) = Ew (X0, 70) 0 (x0)
w K= 2;"\1:1 w (X(i)v Y(i))
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@ Then rejection sampling is nothing but IS on X' x [0, 1] where

7T (x,y) ijnz X fory € [0, g;*(();))}
)

w (X, =
boy) = q(x u[01 (¥) 0, otherwise.

@ We have

L1 g ) L B () o ()
ET (9 00) =5 Lo (XW) = .

Vo (X0, y (@)

o Compared to standard IS, RS performs IS on an enlarged space.
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@ The variance of the importance weights from RS is higher than for
standard IS:
varg [w (X, Y)] > varg [w (X)].

More precisely, we have

var [w (X, Y)] = var[E[w(X,Y)|X]]+E|[var[w (X, Y)|X]]
= wvar|w (X)]+E[var [w (X, Y)| X]].
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@ The variance of the importance weights from RS is higher than for
standard IS:
varg [w (X, Y)] > varg [w (X)].

More precisely, we have

var [w (X, Y)] = var[E[w(X,Y)|X]]+E|[var[w (X, Y)|X]]
= wvar|w (X)]+E[var [w (X, Y)| X]].

@ To compute integrals, Rejection sampling is inefficient and you should
simply use IS.
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o Like Rejection, IS is useful for small non-standard distributions but
collapses for most “interesting” problems.
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o Like Rejection, IS is useful for small non-standard distributions but
collapses for most “interesting” problems.

@ In both cases, the problem is to be able to design “clever” proposal
distributions.
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o Like Rejection, IS is useful for small non-standard distributions but
collapses for most “interesting” problems.

@ In both cases, the problem is to be able to design “clever” proposal
distributions.

@ Towards the end of this course, we will present advanced dynamic
methods to address this problem.
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