# CPSC 535 Standard Sampling Methods

AD

6th February 2007

6th February 2007

1 / 42

• Classical "exact" simulation methods.

Image: A image: A

- Classical "exact" simulation methods.
- Accept/Reject.

э

- Classical "exact" simulation methods.
- Accept/Reject.
- Variations over the Accept/Reject algorithm

### The Monte Carlo principle

• Let  $\pi(x)$  be a probability density on  $\mathcal X$ 

### The Monte Carlo principle

- Let  $\pi(x)$  be a probability density on  $\mathcal X$
- Monte Carlo approximation is given by

$$\widehat{\pi}_{N}\left(x
ight)=rac{1}{N}\sum_{i=1}^{N}\delta_{X^{\left(i
ight)}}\left(x
ight) ext{ where }X^{\left(i
ight)}\overset{ ext{i.i.d.}}{\sim}\pi.$$

#### The Monte Carlo principle

- Let  $\pi(x)$  be a probability density on  $\mathcal X$
- Monte Carlo approximation is given by

$$\widehat{\pi}_{N}(x) = \frac{1}{N} \sum_{i=1}^{N} \delta_{X^{(i)}}(x) \text{ where } X^{(i)} \stackrel{\text{i.i.d.}}{\sim} \pi.$$

• For any  $\varphi:\mathcal{X} 
ightarrow \mathbb{R}$ 

$$\mathbb{E}_{\widehat{\pi}_{N}}\left(\varphi\right) = \frac{1}{N} \sum_{i=1}^{N} \varphi\left(X^{(i)}\right) \approx \mathbb{E}_{\pi}\left(\varphi\right)$$

and more precisely

$$\mathbb{E}_{\left\{X^{(i)}\right\}}\left[\mathbb{E}_{\widehat{\pi}_{\mathsf{N}}}\left(\varphi\right)\right] = \mathbb{E}_{\pi}\left(\varphi\right) \text{ and } \mathsf{var}_{\left\{X^{(i)}\right\}}\left(\mathbb{E}_{\widehat{\pi}_{\mathsf{N}}}\left(\varphi\right)\right) = \frac{\mathsf{var}_{\pi}\left(\varphi\right)}{\mathsf{N}}.$$

• If we could sample from any distribution  $\pi$  easily, then everything would be easy.

- If we could sample from any distribution  $\pi$  easily, then everything would be easy.
- Unfortunately, there is no generic algorithm to sample exactly from any  $\pi.$

- If we could sample from any distribution  $\pi$  easily, then everything would be easy.
- Unfortunately, there is no generic algorithm to sample exactly from any  $\pi$ .
- Today, we discuss simple methods which are the building blocks of more complex algorithms; i.e. MCMC and SMC.

• All algorithms discussed here rely on the availability of a generator of independent uniform random variables in [0, 1].

- All algorithms discussed here rely on the availability of a generator of independent uniform random variables in [0, 1].
- It is impossible to get such numbers and we only get pseudo-random numbers which look like they are i.i.d. U [0, 1].

- All algorithms discussed here rely on the availability of a generator of independent uniform random variables in [0, 1].
- It is impossible to get such numbers and we only get pseudo-random numbers which look like they are i.i.d. U [0, 1].
- There are a few standard very good generators available. We will not give any detail as their constructions are based on techniques very different from the ones we address here.

## Inverse CDF Method

• Consider  $\mathcal{X} = \{1, 2, 3\}$  and

$$\pi (X = 1) = \frac{1}{6}, \ \pi (X = 2) = \frac{2}{6}, \ \pi (X = 3) = \frac{1}{2}.$$

3

#### Inverse CDF Method

• Consider  $\mathcal{X} = \{1, 2, 3\}$  and

$$\pi(X=1) = \frac{1}{6}, \ \pi(X=2) = \frac{2}{6}, \ \pi(X=3) = \frac{1}{2}.$$

• Define the cdf of X for  $x \in [0, 3]$  as

$$F_{X}(x) = \sum_{i=1}^{3} \pi (X = i) \mathbb{I} (i \le x)$$

and its inverse for  $u \in [0, 1]$ 

$$F_{X}^{-1}(u) = \inf \left\{ x \in \mathcal{X} : F_{X}(x) \ge u \right\}$$

• To sample from this discrete distribution, sample  $U \sim \mathcal{U}[0, 1]$ .

Image: Image:

• To sample from this discrete distribution, sample  $U \sim \mathcal{U}[0, 1]$ . • Find  $X = F_X^{-1}(U)$ .

< 🗇 🕨

- To sample from this discrete distribution, sample  $U \sim \mathcal{U}[0, 1]$ .
- Find  $X = F_X^{-1}(U)$ .
- The probability of U falling in the vertical interval i is precisely equal to the probability  $\pi (X = i)$ .



Figure: The distribution and cdf of a discrete random variable

• Assume the distribution has a density, then the cdf takes the form

$$F_{X}(x) = \mathbb{P}(X \leq x) = \int_{-\infty}^{+\infty} \pi(u) I(u \leq x) du = \int_{-\infty}^{x} \pi(u) du.$$

э

• Assume the distribution has a density, then the cdf takes the form

$$F_X(x) = \mathbb{P}(X \le x) = \int_{-\infty}^{+\infty} \pi(u) I(u \le x) du = \int_{-\infty}^{x} \pi(u) du.$$

• We would like to use the same algorithm; i.e.  $U \sim \mathcal{U}[0,1]$  and set  $X = F_X^{-1}(U)$ .

Assume the distribution has a density, then the cdf takes the form

$$F_X(x) = \mathbb{P}(X \le x) = \int_{-\infty}^{+\infty} \pi(u) I(u \le x) du = \int_{-\infty}^{x} \pi(u) du.$$

- We would like to use the same algorithm; i.e.  $U \sim \mathcal{U}[0,1]$  and set  $X = F_X^{-1}(U)$ .
- Question: Do we have  $X \sim \pi$ ?

• Proof of validity:

$$Pr(X \le x) = Pr(F_X^{-1}(U) \le x)$$
  
=  $Pr(U \le F_X(x))$  since  $F_X$  is non decreasing  
=  $\int_0^1 \mathbb{I}(u \le F_X(x)) du$  since  $U \sim \mathcal{U}[0, 1]$   
=  $F_X(x)$ 

æ

A B > 4
 B > 4
 B

• Proof of validity:

$$\begin{aligned} \Pr(X \le x) &= \Pr(F_X^{-1}(U) \le x) \\ &= \Pr(U \le F_X(x)) \text{ since } F_X \text{ is non decreasing} \\ &= \int_0^1 \mathbb{I}(u \le F_X(x)) \, du \text{ since } U \sim \mathcal{U}[0, 1] \\ &= F_X(x) \end{aligned}$$

 The cdf of X produced by the algorithm above is precisely the cdf of π!



Figure: The density and cdf of a normal distribution

э

• Consider the exponential of parameter 1 then

$$\pi\left(x\right) = \exp\left(-x\right) \mathbb{I}_{\left[0,\infty\right)}$$

thus the cdf of X is

$$F_{X}(x) = \int_{-\infty}^{x} \pi(u) \, du = \begin{cases} 0 & \text{if } x \le 0\\ 1 - \exp(-x) & \text{if } x > 0 \end{cases}$$

• Consider the exponential of parameter 1 then

$$\pi(x) = \exp(-x) \mathbb{I}_{[0,\infty)}$$

thus the cdf of X is

$$F_X(x) = \int_{-\infty}^{x} \pi(u) \, du = \begin{cases} 0 & \text{if } x \le 0\\ 1 - \exp(-x) & \text{if } x > 0 \end{cases}$$

• Thus the inverse cdf is

$$1 - \exp\left(-x
ight) = u \Leftrightarrow x = -\log\left(1 - u
ight) = F_{\chi}^{-1}\left(u
ight).$$

• Consider the exponential of parameter 1 then

$$\pi\left(x\right) = \exp\left(-x\right) \mathbb{I}_{\left[0,\infty\right)}$$

thus the cdf of X is

$$F_X(x) = \int_{-\infty}^{x} \pi(u) \, du = \begin{cases} 0 & \text{if } x \le 0\\ 1 - \exp(-x) & \text{if } x > 0 \end{cases}$$

• Thus the inverse cdf is

$$1 - \exp(-x) = u \Leftrightarrow x = -\log(1 - u) = F_X^{-1}(u).$$

• Inverse method:  $U \sim \mathcal{U}[0, 1]$  then  $X = -\log(1 - U) \sim \pi$  and  $X = -\log(U) \sim \pi$ .

• Assume you have P >> 1 i.i.d. real-valued rv  $X_i \sim f_X$  (cdf  $F_X$ ) and you are interested in sampling realizations from the distribution of

$$Z = \max\left(X_1, ..., X_P\right).$$

• Assume you have P >> 1 i.i.d. real-valued rv  $X_i \sim f_X$  (cdf  $F_X$ ) and you are interested in sampling realizations from the distribution of

$$Z = \max\left(X_1, ..., X_P\right).$$

• Brute force direct method. Sample  $X_1, ..., X_P \sim f$  then compute  $Z = \max(X_1, ..., X_P)$ .

• Assume you have P >> 1 i.i.d. real-valued rv  $X_i \sim f_X$  (cdf  $F_X$ ) and you are interested in sampling realizations from the distribution of

$$Z = \max\left(X_1, ..., X_P
ight)$$
 .

- Brute force direct method. Sample  $X_1, ..., X_P \sim f$  then compute  $Z = \max(X_1, ..., X_P)$ .
- Indirect method. We have

$$F_{Z}(z) = \Pr(X_{1} \leq z, ..., X_{P} \leq z)$$
$$= \prod_{k=1}^{P} \Pr(X_{i} \leq z) = [F_{X}(z)]^{P}$$

so it follows that for any  $U\sim\mathcal{U}\left[0,1
ight]$ 

$$Z = F_{Z}^{-1}(U) = F_{X}^{-1}(U^{1/P})$$

is distributed according to  $f_Z$ 

• Simple method to sample univariate distributions.

- Simple method to sample univariate distributions.
- This method is only limited to simple cases where the inverse cdf admits a closed form or can be tabulated.

- Simple method to sample univariate distributions.
- This method is only limited to simple cases where the inverse cdf admits a closed form or can be tabulated.
- In practice, it is really very limited.

• 'Idea': Using the fact that  $\pi$  is related to other distributions easier to sample.

- < A

# Change of Variables

- 'Idea': Using the fact that  $\pi$  is related to other distributions easier to sample.
- This is very specific!

## Change of Variables

- 'Idea': Using the fact that  $\pi$  is related to other distributions easier to sample.
- This is very specific!
- If  $X_i \sim \mathcal{E}xp(1)$  then

$$Y = 2\sum_{j=1}^{\nu} X_j \sim \chi^2_{2\nu},$$
  

$$Y = \beta \sum_{j=1}^{\alpha} X_j \sim \mathcal{G}(\alpha, \beta),$$
  

$$Y = \frac{\sum_{j=1}^{\alpha} X_j}{\sum_{j=1}^{\alpha+\beta} X_j} \sim \mathcal{B}e(\alpha, \beta)$$

• Consider  $X_1 \sim \mathcal{N}(0, 1)$  and  $X_2 \sim \mathcal{N}(0, 1)$  then its polar coordinates  $(R, \theta)$  are independent and distributed according to

$$egin{array}{rcl} R^2 &=& X_1^2 + X_2^2 \sim \mathcal{E} {
m xp} \left( {1/2} 
ight), \ heta &\sim& \mathcal{U} \left[ {0,2\pi} 
ight]. \end{array}$$

• Consider  $X_1 \sim \mathcal{N}(0, 1)$  and  $X_2 \sim \mathcal{N}(0, 1)$  then its polar coordinates  $(R, \theta)$  are independent and distributed according to

$$\begin{aligned} R^2 &= X_1^2 + X_2^2 \sim \mathcal{E} \mathsf{xp}\left(1/2\right), \\ \theta &\sim \mathcal{U}\left[0, 2\pi\right]. \end{aligned}$$

• It is simple to simulate  $R = \sqrt{-2\log(U_1)}$  and  $\theta = 2\pi U_2$  where  $U_1, U_2 \sim \mathcal{U}[0, 1]$  then

$$X_1 = R \cos \theta = \sqrt{-2 \log (U_1)} \cos (2\pi U_2),$$
  

$$X_2 = R \sin \theta = \sqrt{-2 \log (U_1)} \sin (2\pi U_2).$$

• Consider  $X_1 \sim \mathcal{N}(0, 1)$  and  $X_2 \sim \mathcal{N}(0, 1)$  then its polar coordinates  $(R, \theta)$  are independent and distributed according to

$$\begin{aligned} R^2 &= X_1^2 + X_2^2 \sim \mathcal{E} \mathsf{xp}\left(1/2\right), \\ \theta &\sim \mathcal{U}\left[0, 2\pi\right]. \end{aligned}$$

• It is simple to simulate  $R = \sqrt{-2\log(U_1)}$  and  $\theta = 2\pi U_2$  where  $U_1, U_2 \sim \mathcal{U}[0, 1]$  then

$$X_1 = R \cos \theta = \sqrt{-2 \log (U_1)} \cos (2\pi U_2),$$
  

$$X_2 = R \sin \theta = \sqrt{-2 \log (U_1)} \sin (2\pi U_2).$$

• By construction  $X_1$  and  $X_2$  are two independent  $\mathcal{N}\left(0,1
ight)$  rvs.

Assume we have

$$\pi\left(x
ight)=\int\overline{\pi}\left(x,y
ight)\,dy$$

where it is easy to sample from  $\overline{\pi}(x, y)$  but difficult/impossible to compute  $\pi(x)$ .

Assume we have

$$\pi\left(x
ight)=\int\overline{\pi}\left(x,y
ight)\,dy$$

where it is easy to sample from  $\overline{\pi}(x, y)$  but difficult/impossible to compute  $\pi(x)$ .

• In this case, it is sufficient to sample  $(X, Y) \sim \overline{\pi} \Rightarrow X \sim \pi$ .

Assume we have

$$\pi\left(x
ight)=\int\overline{\pi}\left(x,y
ight)\,dy$$

where it is easy to sample from  $\overline{\pi}(x, y)$  but difficult/impossible to compute  $\pi(x)$ .

- In this case, it is sufficient to sample  $(X, Y) \sim \overline{\pi} \Rightarrow X \sim \pi$ .
- One can sample from  $\overline{\pi}(x, y) = \overline{\pi}(y) \overline{\pi}(x|y)$  by

$$Y \sim \overline{\pi}$$
 then  $X \mid Y \sim \overline{\pi} (\cdot \mid Y)$ .

• A very useful application of the composition method is for scale mixture of Gaussians; i.e.

$$\pi(x) = \int \mathcal{N}(x; 0, 1/y) \overline{\pi}(y) \, dy.$$

• A very useful application of the composition method is for scale mixture of Gaussians; i.e.

$$\pi(x) = \int \mathcal{N}(x; 0, 1/y) \overline{\pi}(y) \, dy.$$

For various choices of the mixing distributions π
 (y), we obtain distributions π (x) which are t-student, α-stable, Laplace, logistic.

• A very useful application of the composition method is for scale mixture of Gaussians; i.e.

$$\pi\left(x
ight)=\int\mathcal{N}\left(x;0,1/y
ight)\overline{\pi}\left(y
ight)dy.$$

- For various choices of the mixing distributions π
   (y), we obtain distributions π (x) which are t-student, α-stable, Laplace, logistic.
- Example: If

$$Y \sim \chi^2_
u$$
 and  $\left| X 
ight| Y \sim \mathcal{N}\left( 0, 
u/y 
ight)$ 

then X is marginally distributed according to a t-Student with  $\nu$  degrees of freedom.

• A very useful application of the composition method is for scale mixture of Gaussians; i.e.

$$\pi\left(x
ight)=\int\mathcal{N}\left(x;0,1/y
ight)\overline{\pi}\left(y
ight)dy.$$

- For various choices of the mixing distributions π(y), we obtain distributions π(x) which are t-student, α-stable, Laplace, logistic.
- Example: If

$$Y \sim \chi^2_
u$$
 and  $\left| X 
ight| Y \sim \mathcal{N}\left( 0, 
u/y 
ight)$ 

then X is marginally distributed according to a t-Student with  $\nu$  degrees of freedom.

• Conditional upon Y, X is Gaussian: This structure will be used to develop later efficient MCMC algorithms.

### Sampling finite mixture of distributions

• Assume one wants to sample from

$$\pi(\mathbf{x}) = \sum_{i=1}^{p} \pi_i . \pi_i(\mathbf{x})$$

where  $\pi_i > 0$ ,  $\sum_{i=1}^{p} \pi_i = 1$  and  $\pi_i(x) \ge 0$ ,  $\int \pi_i(x) dx = 1$ .

### Sampling finite mixture of distributions

• Assume one wants to sample from

$$\pi(x) = \sum_{i=1}^{p} \pi_i . \pi_i(x)$$

where  $\pi_i > 0$ ,  $\sum_{i=1}^p \pi_i = 1$  and  $\pi_i(x) \ge 0$ ,  $\int \pi_i(x) dx = 1$ .

• We can introduce  $Y \in \{1, ..., p\}$  and introduce  $\overline{\pi}(x, y) = \pi_y \times \pi_y(x) \Rightarrow \begin{cases} \int \overline{\pi}(x, y) \, dy = \pi(x) \\ \int \overline{\pi}(x, y) \, dx = \overline{\pi}(y) = \pi_y \end{cases}$ 

### Sampling finite mixture of distributions

• Assume one wants to sample from

$$\pi(x) = \sum_{i=1}^{p} \pi_i . \pi_i(x)$$

where  $\pi_i > 0$ ,  $\sum_{i=1}^{p} \pi_i = 1$  and  $\pi_i(x) \ge 0$ ,  $\int \pi_i(x) dx = 1$ .

- We can introduce  $Y \in \{1, ..., p\}$  and introduce  $\overline{\pi}(x, y) = \pi_y \times \pi_y(x) \Rightarrow \begin{cases} \int \overline{\pi}(x, y) \, dy = \pi(x) \\ \int \overline{\pi}(x, y) \, dx = \overline{\pi}(y) = \pi_y \end{cases}$
- To sample from π (x), then sample Y ~ π̄ (discrete distribution such that Pr (Y = k) = π<sub>k</sub>) then

$$X|Y \sim \overline{\pi}(\cdot|Y) = \pi_Y.$$

### Sampling infinite mixture of distributions

• Assume you are interested in sampling from the discrete distribution

$$\pi\left(x\right)=\sum_{i=1}^{\infty}\pi_{i}.\pi_{i}\left(x\right)$$

where  $\pi_i > 0$ ,  $\sum_{i=1}^{\infty} \pi_i = 1$  and  $\pi_i(x) \ge 0$ ,  $\int \pi_i(x) dx = 1$ .

• Assume you are interested in sampling from the discrete distribution

$$\pi(x) = \sum_{i=1}^{\infty} \pi_i . \pi_i(x)$$

where  $\pi_i > 0$ ,  $\sum_{i=1}^{\infty} \pi_i = 1$  and  $\pi_i(x) \ge 0$ ,  $\int \pi_i(x) dx = 1$ .

• If you try to sample from this distribution by composition, you need to sample from a discrete distribution with infinite support.

• Assume you are interested in sampling from the discrete distribution

$$\pi\left(x\right)=\sum_{i=1}^{\infty}\pi_{i}.\pi_{i}\left(x\right)$$

where  $\pi_i > 0$ ,  $\sum_{i=1}^{\infty} \pi_i = 1$  and  $\pi_i(x) \ge 0$ ,  $\int \pi_i(x) dx = 1$ .

- If you try to sample from this distribution by composition, you need to sample from a discrete distribution with infinite support.
- Remember that you will set Y=j if  $\sum_{l=1}^{j-1}\pi_l < U \leq \sum_{l=1}^{j}\pi_l$

• Assume you are interested in sampling from the discrete distribution

$$\pi\left(x\right)=\sum_{i=1}^{\infty}\pi_{i}.\pi_{i}\left(x\right)$$

where  $\pi_i > 0$ ,  $\sum_{i=1}^{\infty} \pi_i = 1$  and  $\pi_i(x) \ge 0$ ,  $\int \pi_i(x) dx = 1$ .

- If you try to sample from this distribution by composition, you need to sample from a discrete distribution with infinite support.
- Remember that you will set Y=j if  $\sum_{l=1}^{j-1}\pi_l < U \leq \sum_{l=1}^{j}\pi_l$
- No need to truncate: sample *U* and then find *j* such that the above condition is satisfied.

• The rejection method allows one to sample according to a distribution  $\pi$  defined on  $\mathcal{X}$  only known up to a proportionality constant, say  $\pi \propto \pi^*$ .

- The rejection method allows one to sample according to a distribution  $\pi$  defined on  $\mathcal{X}$  only known up to a proportionality constant, say  $\pi \propto \pi^*$ .
- It relies on samples generated from a *proposal* distribution q on X. q might as well be known only up to a normalising constant, say q ∝ q<sup>\*</sup>.

- The rejection method allows one to sample according to a distribution  $\pi$  defined on  $\mathcal{X}$  only known up to a proportionality constant, say  $\pi \propto \pi^*$ .
- It relies on samples generated from a *proposal* distribution q on X. q might as well be known only up to a normalising constant, say q ∝ q<sup>\*</sup>.
- We need  $q^*$  to 'dominate'  $\pi^*$ ; i.e.

$$C = \sup_{x \in \mathcal{X}} \frac{\pi^*(x)}{q^*(x)} < +\infty$$

- The rejection method allows one to sample according to a distribution  $\pi$  defined on  $\mathcal{X}$  only known up to a proportionality constant, say  $\pi \propto \pi^*$ .
- It relies on samples generated from a *proposal* distribution q on X. q might as well be known only up to a normalising constant, say q ∝ q<sup>\*</sup>.
- We need  $q^*$  to 'dominate'  $\pi^*$ ; i.e.

$$C = \sup_{x \in \mathcal{X}} \frac{\pi^*(x)}{q^*(x)} < +\infty$$

• This implies  $\pi^*(x) > 0 \Rightarrow q^*(x) > 0$  but also that the tails of  $q^*(x)$  must be thicker than the tails of  $\pi^*(x)$ .

Consider  $C' \ge C$ . Then the accept/reject procedure proceeds as follows. Sample  $Y \sim q$  and  $U \sim \mathcal{U}[0, 1]$ .

3

Consider C' ≥ C. Then the accept/reject procedure proceeds as follows.
Sample Y~q and U ~ U [0, 1].
If U < π<sup>\*</sup>(Y)/C'q<sup>\*</sup>(Y) then return Y; otherwise return to step 1.

3



Figure: The idea behind the rejection method for  $\pi(x) = \pi^*(x) = \mathcal{B}e(x; 1.5, 5), \ q(x) = q^*(x) = \mathcal{U}_{[0,1]}(x), \ C' = C.$ 



Figure: Sampling from  $\pi(x) \propto \exp\left(-x^2/2\right) \left(\sin(6x)^2 + 3\cos(x)^2\sin(4x)^2 + 1\right)$  • We now prove that  $\Pr(Y \leq x | Y \text{ accepted}) = \Pr(X \leq x)$ .

æ

- We now prove that  $\Pr(Y \leq x | Y \text{ accepted}) = \Pr(X \leq x)$ .
- We have for any  $x \in \mathcal{X}$   $\Pr(Y \le x \text{ and } Y \text{ accepted})$   $= \int_0^1 \int_{-\infty}^x \mathbb{I}\left(u \le \frac{\pi^*(y)}{C'q^*(y)}\right) q(y) \times 1 dy du$   $= \int_{-\infty}^x \frac{\pi^*(y)}{C'q^*(y)} q(y) dy$  $= \frac{\int_{-\infty}^x \pi^*(y) dy}{C'\int_{\mathcal{X}} q^*(y) dy}.$

- We now prove that  $\Pr(|Y \leq x||Y \text{ accepted}) = \Pr(X \leq x)$ .
- We have for any  $x \in \mathcal{X}$   $\Pr(Y \leq x \text{ and } Y \text{ accepted})$  $= \int_0^1 \int_{-\infty}^x \mathbb{I}\left(u \leq \frac{\pi^*(y)}{C'q^*(y)}\right) q(y) \times 1 dy du$   $= \int_{-\infty}^x \frac{\pi^*(y)}{C'q^*(y)} q(y) dy$   $= \frac{\int_{-\infty}^x \pi^*(y) dy}{C'\int_{\mathcal{X}} q^*(y) dy}.$
- The probability of being accepted is the marginal of Pr (Y ≤ x and Y accepted)

$$\mathsf{Pr}\left( \mathsf{Y} \; \mathsf{accepted} 
ight) = rac{\int_{\mathcal{X}} \pi^{st}\left( \mathsf{y} 
ight) \mathsf{d} \mathsf{y}}{\mathsf{C}' \int_{\mathcal{X}} q^{st}\left( \mathsf{y} 
ight) \mathsf{d} \mathsf{y}}.$$

Thus

$$\begin{aligned} \Pr(Y \le x | Y \text{ accepted}) &= \frac{\Pr(Y \le x \text{ and } Y \text{ accepted})}{\Pr(Y \text{ accepted})} \\ &= \frac{\int_{-\infty}^{x} \pi^*(y) \, dy}{\int_{\mathcal{X}} \pi^*(y) \, dy} = \int_{-\infty}^{x} \pi(y) \, dy. \end{aligned}$$

æ

▲口> ▲圖> ▲屋> ▲屋>

Thus

$$\begin{array}{ll} \Pr\left(\left.Y \leq x\right| \, Y \text{ accepted}\right) &=& \displaystyle \frac{\Pr\left(\left.Y \leq x \text{ and } Y \text{ accepted}\right)\right)}{\Pr\left(\left.Y \text{ accepted}\right)\right)} \\ &=& \displaystyle \frac{\int_{-\infty}^{x} \pi^{*}\left(y\right) \, dy}{\int_{\mathcal{X}} \pi^{*}\left(y\right) \, dy} = \int_{-\infty}^{x} \pi\left(y\right) \, dy. \end{array}$$

• **Example**: We want to sample from  $\mathcal{B}e(x; \alpha, \beta) \propto x^{\alpha-1} (1-x)^{\beta-1}$  using  $\mathcal{U}[0, 1]$ . One can find

$$\sup_{x \in [0,1]} \frac{x^{\alpha - 1} \left(1 - x\right)^{\beta - 1}}{1}$$

analytically for  $\alpha, \beta > 1!$  We do not need the normalizing constant of  $\mathcal{B}e$ .

• You do not lose anything by not knowing the normalizing constant of  $q^*$ .

- You do not lose anything by not knowing the normalizing constant of  $q^*$ .
- **Example**: The target  $\pi$  is given by

$$\pi(x) \propto \pi^{*}(x) = \exp\left(-\frac{x^{2}}{2}\right) m(x)$$

where  $m(x) \leq M$  for any  $x \in X$ .

- You do not lose anything by not knowing the normalizing constant of q<sup>\*</sup>.
- **Example**: The target  $\pi$  is given by

$$\pi(x) \propto \pi^*(x) = \exp\left(-\frac{x^2}{2}\right) m(x)$$

where  $m(x) \leq M$  for any  $x \in X$ .

• If we use  $q(x) = q^*(x) = (2\pi)^{-1/2} \exp\left(-\frac{x^2}{2}\right)$ , then we have

$$\frac{\pi^{*}\left(x\right)}{q^{*}\left(x\right)} \leq C_{1} = \left(2\pi\right)^{1/2} M \text{ and } \Pr\left(Y \text{ accepted}\right) = \frac{\int_{\mathsf{X}} \pi^{*}\left(y\right) dy}{C_{1}}$$

- You do not lose anything by not knowing the normalizing constant of q<sup>\*</sup>.
- **Example**: The target  $\pi$  is given by

$$\pi(x) \propto \pi^*(x) = \exp\left(-\frac{x^2}{2}\right) m(x)$$

where  $m(x) \leq M$  for any  $x \in X$ .

• If we use  $q(x) = q^*(x) = (2\pi)^{-1/2} \exp\left(-\frac{x^2}{2}\right)$ , then we have

$$\frac{\pi^{*}\left(x\right)}{q^{*}\left(x\right)} \leq \mathcal{C}_{1} = \left(2\pi\right)^{1/2} \mathcal{M} \text{ and } \Pr\left(Y \text{ accepted}\right) = \frac{\int_{\mathsf{X}} \pi^{*}\left(y\right) dy}{\mathcal{C}_{1}}$$

• If we use  $q^*(x) = \exp\left(-rac{x^2}{2}
ight)$ , then we have  $rac{\pi^*(x)}{q^*(x)} \leq C_2 = M$  and

$$\Pr\left(Y \text{ accepted}\right) = \frac{\int_{\mathsf{X}} \pi^*\left(y\right) dy}{C_2 \left(2\pi\right)^{1/2}} = \frac{\int_{\mathsf{X}} \pi^*\left(y\right) dy}{C_1}$$

• The acceptance probability Pr(Y accepted) is a measure of efficiency.

- The acceptance probability Pr(Y accepted) is a measure of efficiency.
- The number of trials before accepting a candidate follows a geometric distribution

$$\begin{array}{lll} \Pr\left(k^{\mathrm{th}} \ \mathrm{proposal} \ \mathrm{accepted}\right) & = & (1-\rho)^{k-1} \, \rho \\ \\ & \text{where } \rho & = & \left(\frac{\int_{\mathcal{X}} \pi^*\left(y\right) \, dy}{C' \int_{\mathcal{X}} q^*\left(y\right) \, dy}\right) \end{array}$$

thus its expected value is

$$\sum_{k=0}^{\infty} k \left(1-\rho\right)^{k-1} \rho = \frac{1}{\varrho} = \frac{1}{\Pr\left(Y \text{ accepted}\right)}.$$

- The acceptance probability Pr(Y accepted) is a measure of efficiency.
- The number of trials before accepting a candidate follows a geometric distribution

$$\begin{array}{lll} \Pr\left(k^{\mathrm{th}} \ \mathrm{proposal} \ \mathrm{accepted}\right) & = & (1-\rho)^{k-1} \, \rho \\ \\ & \text{where } \rho & = & \left(\frac{\int_{\mathcal{X}} \pi^*\left(y\right) \, dy}{C' \int_{\mathcal{X}} q^*\left(y\right) \, dy}\right) \end{array}$$

thus its expected value is

$$\sum_{k=0}^{\infty} k \left(1-\rho\right)^{k-1} \rho = \frac{1}{\varrho} = \frac{1}{\Pr\left(Y \text{ accepted}\right)}.$$

• This is important to better understand the Metropolis-Hastings algorithm.

• Consider a Bayesian model: prior  $\pi(\theta)$  and likelihood  $f(x|\theta)$ .

Image: Image:

æ

- Consider a Bayesian model: prior  $\pi(\theta)$  and likelihood  $f(x|\theta)$ .
- The posterior distribution is given by

$$\begin{split} \pi\left(\left.\theta\right|x\right) &= \frac{\pi(\theta)f(x|\theta)}{\int_{\Theta}\pi(\theta)f(x|\theta)d\theta} \propto \pi^{*}\left(\left.\theta\right|x\right) \\ \text{where } \pi^{*}\left(\left.\theta\right|x\right) &= \pi\left(\theta\right)f\left(\left.x\right|\theta\right). \end{split}$$

Image: Image:

- Consider a Bayesian model: prior  $\pi(\theta)$  and likelihood  $f(x|\theta)$ .
- The posterior distribution is given by

$$\begin{split} \pi\left(\left.\theta\right|x\right) &= \frac{\pi(\theta)f(x|\theta)}{\int_{\Theta}\pi(\theta)f(x|\theta)d\theta} \propto \pi^{*}\left(\left.\theta\right|x\right) \\ \text{where } \pi^{*}\left(\left.\theta\right|x\right) &= \pi\left(\theta\right)f\left(\left.x\right|\theta\right). \end{split}$$

• We can use the prior distribution as a candidate distribution  $q\left(\theta\right)=q^{*}\left(\theta\right)=\pi\left(\theta
ight)$  as long as

$$\sup_{\theta \in \Theta} \frac{\pi^{*}\left(\theta \mid x\right)}{q^{*}\left(\theta\right)} = \sup_{\theta \in \Theta} f\left(x \mid \theta\right) \leq C$$

- Consider a Bayesian model: prior  $\pi(\theta)$  and likelihood  $f(x|\theta)$ .
- The posterior distribution is given by

$$\begin{split} \pi\left(\left.\theta\right|x\right) &= \frac{\pi(\theta)f(x|\theta)}{\int_{\Theta}\pi(\theta)f(x|\theta)d\theta} \propto \pi^{*}\left(\left.\theta\right|x\right) \\ \text{where } \pi^{*}\left(\left.\theta\right|x\right) &= \pi\left(\theta\right)f\left(\left.x\right|\theta\right). \end{split}$$

• We can use the prior distribution as a candidate distribution  $q\left(\theta\right)=q^{*}\left(\theta\right)=\pi\left(\theta\right)$  as long as

$$\sup_{\theta \in \Theta} \frac{\pi^{*}\left(\theta\right|x)}{q^{*}\left(\theta\right)} = \sup_{\theta \in \Theta} f\left(x|\theta\right) \leq C.$$

• In many applications, the likelihood is bounded so one can use the rejection procedure and it is accepted with proba  $\int_{\Theta} \pi(\theta) f(x|\theta) d\theta / C.$ 

- Consider a Bayesian model: prior  $\pi(\theta)$  and likelihood  $f(x|\theta)$ .
- The posterior distribution is given by

$$\begin{split} \pi\left(\left.\theta\right|x\right) &= \frac{\pi(\theta)f(x|\theta)}{\int_{\Theta}\pi(\theta)f(x|\theta)d\theta} \propto \pi^{*}\left(\left.\theta\right|x\right) \\ \text{where } \pi^{*}\left(\left.\theta\right|x\right) &= \pi\left(\theta\right)f\left(\left.x\right|\theta\right). \end{split}$$

• We can use the prior distribution as a candidate distribution  $q\left(\theta\right)=q^{*}\left(\theta\right)=\pi\left(\theta\right)$  as long as

$$\sup_{\theta \in \Theta} \frac{\pi^{*}\left(\left.\theta\right|x\right)}{q^{*}\left(\theta\right)} = \sup_{\theta \in \Theta} f\left(\left.x\right|\theta\right) \leq C.$$

- In many applications, the likelihood is bounded so one can use the rejection procedure and it is accepted with proba  $\int_{\Theta} \pi(\theta) f(x|\theta) d\theta / C.$
- Moreover, if we have  $q^{*}\left(\theta\right)=\pi\left(\theta\right)$  then expected value before acceptance

$$\frac{c}{\int_{\Theta}\pi\left(\theta\right)f\left(\left.x\right|\theta\right)d\theta}.$$

# Limitations of Accept-Reject

• Consider the case where  $\mathcal{X} = \mathbb{R}^n$ 

$$\pi\left( heta
ight)=rac{1}{\left(2\pi
ight)^{n/2}}\exp\left(-rac{\sum_{i=1}^{n} heta_{i}^{2}}{2}
ight)$$

and

$$q_{\sigma}\left( heta
ight)=rac{1}{\left(2\pi\sigma^{2}
ight)^{n/2}}\exp\left(-rac{\sum_{i=1}^{n} heta_{i}^{2}}{2\sigma^{2}}
ight)$$

3

< □ > < ---->

# Limitations of Accept-Reject

• Consider the case where  $\mathcal{X} = \mathbb{R}^n$ 

$$\pi\left( heta
ight)=rac{1}{\left(2\pi
ight)^{n/2}}\exp\left(-rac{\sum_{i=1}^{n} heta_{i}^{2}}{2}
ight)$$

and

$$q_{\sigma}\left( heta
ight)=rac{1}{\left(2\pi\sigma^{2}
ight)^{n/2}}\exp\left(-rac{\sum_{i=1}^{n} heta_{i}^{2}}{2\sigma^{2}}
ight)$$

 ${\, \bullet \, }$  We have for any  $\sigma > 1$ 

$$\frac{\pi\left(\theta\right)}{q_{\sigma}\left(\theta\right)} = \sigma^{n} \exp\left(-\sum_{i=1}^{n} \theta_{i}^{2} \left(1 - \frac{1}{2\sigma^{2}}\right)\right) \leq \sigma^{n} \text{ for any } \theta$$

and

$$\Pr\left(Y \text{ accepted}\right) = \frac{1}{\sigma^n}$$

# Limitations of Accept-Reject

• Consider the case where  $\mathcal{X} = \mathbb{R}^n$ 

$$\pi\left( heta
ight)=rac{1}{\left(2\pi
ight)^{n/2}}\exp\left(-rac{\sum_{i=1}^{n} heta_{i}^{2}}{2}
ight)$$

and

$$q_{\sigma}\left( heta
ight)=rac{1}{\left(2\pi\sigma^{2}
ight)^{n/2}}\exp\left(-rac{\sum_{i=1}^{n} heta_{i}^{2}}{2\sigma^{2}}
ight)$$

• We have for any  $\sigma>1$ 

$$\frac{\pi\left(\theta\right)}{q_{\sigma}\left(\theta\right)}=\sigma^{n}\exp\left(-\sum_{i=1}^{n}\theta_{i}^{2}\left(1-\frac{1}{2\sigma^{2}}\right)\right)\leq\sigma^{n}\text{ for any }\theta$$

and

$$\Pr\left(Y \text{ accepted}\right) = \frac{1}{\sigma^n}$$

• Despite having a very good proposal then the acceptance probability decreases exponentially fast with the dimension of the problem.

• Rather universal, and compared to the inverse cdf method requires less algebraic properties.

#### Drawbacks.

- Rather universal, and compared to the inverse cdf method requires less algebraic properties.
- Neither normalisation constant of  $\pi$  nor that of q are needed.

## Drawbacks.

- Rather universal, and compared to the inverse cdf method requires less algebraic properties.
- Neither normalisation constant of  $\pi$  nor that of q are needed.

#### Drawbacks.

• How to construct the proposal q(x) automatically?

- Rather universal, and compared to the inverse cdf method requires less algebraic properties.
- Neither normalisation constant of  $\pi$  nor that of q are needed.

#### Drawbacks.

- How to construct the proposal q(x) automatically?
- Typically the performance of the method decrease exponentially with the dimension of the problem.

• In the standard Rejection algorithm, the candidate is sampled before *U*. This is not necessary.

32 / 42

- In the standard Rejection algorithm, the candidate is sampled before *U*. This is not necessary.
- Proposition: Let (Y<sub>n</sub>, I<sub>n</sub>)<sub>n≥1</sub> be a sequence of i.i.d. rvs taking values in X × {0,1} such that Y<sub>1</sub> ∼ q and

$$\Pr(I_{1} = 1 | Y_{1} = y) = \frac{\pi^{*}(y)}{Cq^{*}(y)}$$

Define  $\tau = \min \{i \ge 1 : I_i = 1\}$ , then  $Y_{\tau} \sim \pi$ .

- In the standard Rejection algorithm, the candidate is sampled before *U*. This is not necessary.
- Proposition: Let (Y<sub>n</sub>, I<sub>n</sub>)<sub>n≥1</sub> be a sequence of i.i.d. rvs taking values in X × {0,1} such that Y<sub>1</sub> ∼ q and

$$\Pr(I_{1} = 1 | Y_{1} = y) = \frac{\pi^{*}(y)}{Cq^{*}(y)}$$

Define  $au = \min \{i \ge 1 : I_i = 1\}$ , then  $Y_{ au} \sim \pi$ .

• This result is useful if there are ways of constructing condition for the acceptance or rejection of the current proposed element Y from minimal information about it.

$$q_{L}^{*}\left(x\right) \leq \pi^{*}\left(x\right) \leq Cq^{*}\left(x\right)$$

then we can modify the algorithm as follows.

$$q_{L}^{*}\left(x\right) \leq \pi^{*}\left(x\right) \leq Cq^{*}\left(x\right)$$

then we can modify the algorithm as follows.

• Sample  $Y \sim q$  and  $U \sim \mathcal{U}(0, 1)$ .

$$q_{L}^{*}\left(x\right) \leq \pi^{*}\left(x\right) \leq Cq^{*}\left(x\right)$$

then we can modify the algorithm as follows.

Sample Y~q and U ~ U(0,1).
If U ≤ 
$$\frac{q_L^*(Y)}{C'q^*(Y)}$$
 then return Y;

$$q_{L}^{*}\left(x\right) \leq \pi^{*}\left(x\right) \leq Cq^{*}\left(x\right)$$

then we can modify the algorithm as follows.

Sample Y~q and U ~ U (0, 1).
If U ≤ q<sub>L</sub><sup>\*</sup>(Y)/C'q<sup>\*</sup>(Y) then return Y;
Otherwise, accept X if U < π<sup>\*</sup>(Y)/C'q<sup>\*</sup>(Y), otherwise return to step 1.

• Consider the class of univariate log-concave densities; i.e. we have

$$\frac{\partial^2 \log \pi \left( x \right)}{\partial x^2} < 0$$

where  $\pi(x) = f(x) / \int f(x) dx$ .

• Consider the class of univariate log-concave densities; i.e. we have

$$rac{\partial^2 \log \pi \left( x 
ight)}{\partial x^2} < 0$$

where  $\pi(x) = f(x) / \int f(x) dx$ .

• The idea is to construct automatically an piecewise linear upper (and lower) bound for the target.

• Consider the class of univariate log-concave densities; i.e. we have

$$\frac{\partial^{2}\log\pi\left(x\right)}{\partial x^{2}}<0$$

where  $\pi(x) = f(x) / \int f(x) dx$ .

- The idea is to construct automatically an piecewise linear upper (and lower) bound for the target.
- Let  $S_n$  be a set of points  $\{x_i\}_{i=0}^{n+1}$  in the support of  $\pi(x)$  such that  $h(x_i) = \log f(x_i)$ .

• Because of concavity, the line  $L_{i,i+1}$  going through  $(x_i, h(x_i))$  and  $(x_{i+1}, h(x_{i+1}))$  is below the graph of h in  $[x_i, x_{i+1}]$  and is above this graph outside this interval.



• We define  $\overline{h}_n(x) = \min \{L_{i-1,i}(x), L_{i+1,i+2}(x)\}, \underline{h}_n(x) = L_{i,i+1}(x)$ [where  $\overline{h}_n(x) = -\infty$  and  $\overline{h}_n(x) = \min \{L_{0,1}(x), L_{n,n+1}(x)\}$  on  $[x_0, x_{n+1}]^c$  so that  $\underline{h}_n(x) \le h(x) \le \overline{h}_n(x)$ 

- We define  $\overline{h}_n(x) = \min \{L_{i-1,i}(x), L_{i+1,i+2}(x)\}, \underline{h}_n(x) = L_{i,i+1}(x)$ [where  $\overline{h}_n(x) = -\infty$  and  $\overline{h}_n(x) = \min \{L_{0,1}(x), L_{n,n+1}(x)\}$  on  $[x_0, x_{n+1}]^c$  so that  $\underline{h}_n(x) \le h(x) \le \overline{h}_n(x)$
- Therefore we have for  $\underline{f}_{n}(x) = \exp \underline{h}_{n}(x)$ ,  $\overline{f}_{n}(x) = \exp \overline{h}_{n}(x)$

$$\underline{f}_{n}(x) = \exp \underline{h}_{n}(x) \leq \pi(x) \leq \overline{f}_{n}(x) = \overline{w}_{n}g_{n}(x)$$

where it is easy to compute  $\overline{w}_n$  and easy to sample from  $g_n(x)$ .

ullet Initialize n=0 and  $\mathcal{S}_0$ 

At iteration  $n \ge 1$ 

э

Image: Image:

æ

- Initialize n = 0 and  $\mathcal{S}_0$
- At iteration  $n \ge 1$ 
  - Generate  $Y \sim g_n$ .

æ

• Initialize n = 0 and  $\mathcal{S}_0$ 

At iteration  $n \ge 1$ 

э

Image: Image:

æ

• Consider *n* data  $(x_i, Y_i)$ 

$$Y_i | x_i \sim \mathcal{P} \left( a + b x_i 
ight)$$
 .

and we set the prior

$$\pi\left(\mathbf{a},\mathbf{b}
ight)=\mathcal{N}\left(\mathbf{a};\mathbf{0},\sigma^{2}
ight)\mathcal{N}\left(\mathbf{b};\mathbf{0},\tau^{2}
ight)$$

3

• Consider *n* data  $(x_i, Y_i)$ 

$$Y_i | x_i \sim \mathcal{P}(a + bx_i).$$

and we set the prior

$$\pi\left(\mathbf{a},\mathbf{b}
ight)=\mathcal{N}\left(\mathbf{a};\mathbf{0},\sigma^{2}
ight)\mathcal{N}\left(\mathbf{b};\mathbf{0},\tau^{2}
ight)$$

• We have

$$\log \pi \left( a \middle| x_{1:n}, y_{1:n}, b \right) = \operatorname{cst} + a \sum y_i - e^a \sum e^{x_i b} - a^2 / 2\sigma^2$$
  
$$\Rightarrow \frac{\partial^2 \log \pi \left( a \middle| x_{1:n}, y_{1:n}, b \right)}{\partial a^2} = -e^a \sum e^{x_i b} - \sigma^{-2} < 0.$$

- ( A 🖓

3

• Consider *n* data  $(x_i, Y_i)$ 

$$Y_i | x_i \sim \mathcal{P} \left( a + b x_i \right)$$
 .

and we set the prior

$$\pi\left(\mathbf{a},\mathbf{b}
ight)=\mathcal{N}\left(\mathbf{a};\mathbf{0},\sigma^{2}
ight)\mathcal{N}\left(\mathbf{b};\mathbf{0},\tau^{2}
ight)$$

• We have

$$\log \pi \left( a | x_{1:n}, y_{1:n}, b \right) = \operatorname{cst} + a \sum y_i - e^a \sum e^{x_i b} - a^2 / 2\sigma^2$$
  
$$\Rightarrow \frac{\partial^2 \log \pi \left( a | x_{1:n}, y_{1:n}, b \right)}{\partial a^2} = -e^a \sum e^{x_i b} - \sigma^{-2} < 0.$$

Thus π (a | x<sub>1:n</sub>, y<sub>1:n</sub>, b) is log-concave, similarly π (b | x<sub>1:n</sub>, y<sub>1:n</sub>, a) is log-concave.

# Monahan's Accept Reject Algorithm

• We want to sample from the cdf

$$F(x) = \frac{H(-G(x))}{H(-1)}$$

where G(x) is a given cdf and

$$H\left(x\right)=\sum_{n=1}^{\infty}a_{n}x^{n}$$

with  $1=a_1\geq a_2\geq \cdots \geq 0.$  We only want to use samples from  ${\it G}$  and  ${\it U}\left[0,1\right]$ 

# Monahan's Accept Reject Algorithm

• We want to sample from the cdf

$$F(x) = \frac{H(-G(x))}{H(-1)}$$

where G(x) is a given cdf and

$$H\left(x\right)=\sum_{n=1}^{\infty}a_{n}x^{n}$$

with  $1=a_1\geq a_2\geq \cdots \geq 0.$  We only want to use samples from  ${\it G}$  and  ${\it U}\left[0,1\right]$ 

• **Example**: Assume you are interested in sampling from  $F(x) = 1 - \cos(\frac{\pi x}{2})$  where 0 < x < 1. You could do it through inversion with  $\frac{2}{\pi} \arccos(U)$  but this requires evaluating a complex (transcendental) function. Alternatively we have  $G(x) = x^2$  and

$$H(x) = x + \frac{\pi^2}{48}x^2 + \frac{\pi^4}{5760}x^3 + \dots + \frac{\pi^{2i-2}}{2^{2i-3}(2i)!}x^i + \dots$$

- Repeat
  - Generate  $X \sim G$  and set  $K \leftarrow 1$ .
  - Repeat
    - Generate  $U \sim G$  and  $V \sim \mathcal{U}[0,1]$ .
    - If  $U \leq X$  and  $V \leq \frac{a_{K+1}}{a_K}$  then  $K \leftarrow K+1$ , otherwise stop.

Until K odd, return X.

 We define the event A<sub>n</sub> by X = max (X, U<sub>1</sub>, ..., U<sub>n</sub>) and Z<sub>1</sub> = ··· = Z<sub>n</sub> = 1 where the U<sub>i</sub>s are the rvs generated in the inner loop and the Z<sub>i</sub>s are Bernoulli rvs equal to consecutives values <sup>II</sup><sub>V≤<sup>a</sup>K+1</sub>.  We define the event A<sub>n</sub> by X = max (X, U<sub>1</sub>, ..., U<sub>n</sub>) and Z<sub>1</sub> = ··· = Z<sub>n</sub> = 1 where the U<sub>i</sub>s are the rvs generated in the inner loop and the Z<sub>i</sub>s are Bernoulli rvs equal to consecutives values <sup>I</sup>V≤<sup>a</sup>/<sub>aK</sub>.

We have

$$P(X \le x, A_n) = a_n G(x)^n,$$
  

$$P(X \le x, A_n, A_{n+1}^c) = P(X \le x, A_n) - P(X \le x, A_n, A_{n+1})$$
  

$$= a_n G(x)^n - a_{n+1} G(x)^{n+1}.$$

 We define the event A<sub>n</sub> by X = max (X, U<sub>1</sub>, ..., U<sub>n</sub>) and Z<sub>1</sub> = ··· = Z<sub>n</sub> = 1 where the U<sub>i</sub>s are the rvs generated in the inner loop and the Z<sub>i</sub>s are Bernoulli rvs equal to consecutives values <sup>I</sup>V≤<sup>a</sup>K+1/a<sub>K</sub>.

We have

$$P(X \le x, A_n) = a_n G(x)^n,$$
  

$$P(X \le x, A_n, A_{n+1}^c) = P(X \le x, A_n) - P(X \le x, A_n, A_{n+1})$$
  

$$= a_n G(x)^n - a_{n+1} G(x)^{n+1}.$$

The proba that X is accepted is

$$P(K \text{ odd}) = \sum_{n=1}^{\infty} a_n (-1)^{n+1} = H(-1)$$

and the returned X has distribution function

$$F(x) = P(X \le x) = \frac{\sum_{n=1}^{\infty} a_n G(x)^n (-1)^{n+1}}{H(-1)} = \frac{H(G(-x))}{H(-1)}$$

• There exists standard techniques to sample from classical distributions.

3

- There exists standard techniques to sample from classical distributions.
- Rejection is useful for small non-standard distributions but collapses for most "interesting" problems.

- There exists standard techniques to sample from classical distributions.
- Rejection is useful for small non-standard distributions but collapses for most "interesting" problems.
- These algorithms will be building blocks of more complex Monte Carlo algorithms.