CPSC 535
 Standard Sampling Methods

AD

6th February 2007

- Classical "exact" simulation methods.
- Classical "exact" simulation methods.
- Accept/Reject.
- Classical "exact" simulation methods.
- Accept/Reject.
- Variations over the Accept/Reject algorithm

The Monte Carlo principle

- Let $\pi(x)$ be a probability density on \mathcal{X}

The Monte Carlo principle

- Let $\pi(x)$ be a probability density on \mathcal{X}
- Monte Carlo approximation is given by

$$
\widehat{\pi}_{N}(x)=\frac{1}{N} \sum_{i=1}^{N} \delta_{X^{(i)}}(x) \text { where } X^{(i)} \stackrel{\text { i.i.d. }}{\sim} \pi \text {. }
$$

The Monte Carlo principle

- Let $\pi(x)$ be a probability density on \mathcal{X}
- Monte Carlo approximation is given by

$$
\widehat{\pi}_{N}(x)=\frac{1}{N} \sum_{i=1}^{N} \delta_{X^{(i)}}(x) \text { where } X(i) \stackrel{\text { i.i.d. }}{\sim} \pi
$$

- For any $\varphi: \mathcal{X} \rightarrow \mathbb{R}$

$$
\mathbb{E}_{\widehat{\pi}_{N}}(\varphi)=\frac{1}{N} \sum_{i=1}^{N} \varphi\left(X^{(i)}\right) \approx \mathbb{E}_{\pi}(\varphi)
$$

and more precisely

$$
\mathbb{E}_{\left\{X^{(i)}\right\}}\left[\mathbb{E}_{\widehat{\pi}_{N}}(\varphi)\right]=\mathbb{E}_{\pi}(\varphi) \text { and } \operatorname{var}_{\left\{x^{(i)}\right\}}\left(\mathbb{E}_{\widehat{\pi}_{N}}(\varphi)\right)=\frac{\operatorname{var}_{\pi}(\varphi)}{N}
$$

- If we could sample from any distribution π easily, then everything would be easy.
- If we could sample from any distribution π easily, then everything would be easy.
- Unfortunately, there is no generic algorithm to sample exactly from any π.
- If we could sample from any distribution π easily, then everything would be easy.
- Unfortunately, there is no generic algorithm to sample exactly from any π.
- Today, we discuss simple methods which are the building blocks of more complex algorithms; i.e. MCMC and SMC.

Pseudo Random Number Generators

- All algorithms discussed here rely on the availability of a generator of independent uniform random variables in $[0,1]$.

Pseudo Random Number Generators

- All algorithms discussed here rely on the availability of a generator of independent uniform random variables in $[0,1]$.
- It is impossible to get such numbers and we only get pseudo-random numbers which look like they are i.i.d. $\mathcal{U}[0,1]$.

Pseudo Random Number Generators

- All algorithms discussed here rely on the availability of a generator of independent uniform random variables in $[0,1]$.
- It is impossible to get such numbers and we only get pseudo-random numbers which look like they are i.i.d. $\mathcal{U}[0,1]$.
- There are a few standard very good generators available. We will not give any detail as their constructions are based on techniques very different from the ones we address here.

Inverse CDF Method

- Consider $\mathcal{X}=\{1,2,3\}$ and

$$
\pi(X=1)=\frac{1}{6}, \pi(X=2)=\frac{2}{6}, \pi(X=3)=\frac{1}{2}
$$

Inverse CDF Method

- Consider $\mathcal{X}=\{1,2,3\}$ and

$$
\pi(X=1)=\frac{1}{6}, \pi(X=2)=\frac{2}{6}, \pi(X=3)=\frac{1}{2}
$$

- Define the cdf of X for $x \in[0,3]$ as

$$
F_{X}(x)=\sum_{i=1}^{3} \pi(X=i) \mathbb{I}(i \leq x)
$$

and its inverse for $u \in[0,1]$

$$
F_{X}^{-1}(u)=\inf \left\{x \in \mathcal{X}: F_{X}(x) \geq u\right\}
$$

- To sample from this discrete distribution, sample $U \sim \mathcal{U}[0,1]$.
- To sample from this discrete distribution, sample $U \sim \mathcal{U}[0,1]$.
- Find $X=F_{X}^{-1}(U)$.
- To sample from this discrete distribution, sample $U \sim \mathcal{U}[0,1]$.
- Find $X=F_{X}^{-1}(U)$.
- The probability of U falling in the vertical interval i is precisely equal to the probability $\pi(X=i)$.

Figure: The distribution and cdf of a discrete random variable

- Assume the distribution has a density, then the cdf takes the form

$$
F_{X}(x)=\mathbb{P}(X \leq x)=\int_{-\infty}^{+\infty} \pi(u) I(u \leq x) d u=\int_{-\infty}^{x} \pi(u) d u .
$$

- Assume the distribution has a density, then the cdf takes the form

$$
F_{X}(x)=\mathbb{P}(X \leq x)=\int_{-\infty}^{+\infty} \pi(u) I(u \leq x) d u=\int_{-\infty}^{x} \pi(u) d u
$$

- We would like to use the same algorithm; i.e. $U \sim \mathcal{U}[0,1]$ and set $X=F_{X}^{-1}(U)$.
- Assume the distribution has a density, then the cdf takes the form

$$
F_{X}(x)=\mathbb{P}(X \leq x)=\int_{-\infty}^{+\infty} \pi(u) I(u \leq x) d u=\int_{-\infty}^{x} \pi(u) d u
$$

- We would like to use the same algorithm; i.e. $U \sim \mathcal{U}[0,1]$ and set $X=F_{X}^{-1}(U)$.
- Question: Do we have $X \sim \pi$?
- Proof of validity:

$$
\begin{aligned}
\operatorname{Pr}(X \leq x) & =\operatorname{Pr}\left(F_{X}^{-1}(U) \leq x\right) \\
& =\operatorname{Pr}\left(U \leq F_{X}(x)\right) \text { since } F_{X} \text { is non decreasing } \\
& =\int_{0}^{1} \mathbb{I}\left(u \leq F_{X}(x)\right) d u \text { since } U \sim \mathcal{U}[0,1] \\
& =F_{X}(x)
\end{aligned}
$$

- Proof of validity:

$$
\begin{aligned}
\operatorname{Pr}(X \leq x) & =\operatorname{Pr}\left(F_{X}^{-1}(U) \leq x\right) \\
& =\operatorname{Pr}\left(U \leq F_{X}(x)\right) \text { since } F_{X} \text { is non decreasing } \\
& =\int_{0}^{1} \mathbb{I}\left(u \leq F_{X}(x)\right) d u \text { since } U \sim \mathcal{U}[0,1] \\
& =F_{X}(x)
\end{aligned}
$$

- The cdf of X produced by the algorithm above is precisely the cdf of π !

Figure: The density and cdf of a normal distribution

- Consider the exponential of parameter 1 then

$$
\pi(x)=\exp (-x) \mathbb{I}_{[0, \infty)}
$$

thus the cdf of X is

$$
F_{X}(x)=\int_{-\infty}^{x} \pi(u) d u= \begin{cases}0 & \text { if } x \leq 0 \\ 1-\exp (-x) & \text { if } x>0\end{cases}
$$

- Consider the exponential of parameter 1 then

$$
\pi(x)=\exp (-x) \mathbb{I}_{[0, \infty)}
$$

thus the cdf of X is

$$
F_{X}(x)=\int_{-\infty}^{x} \pi(u) d u= \begin{cases}0 & \text { if } x \leq 0 \\ 1-\exp (-x) & \text { if } x>0\end{cases}
$$

- Thus the inverse cdf is

$$
1-\exp (-x)=u \Leftrightarrow x=-\log (1-u)=F_{X}^{-1}(u)
$$

- Consider the exponential of parameter 1 then

$$
\pi(x)=\exp (-x) \mathbb{I}_{[0, \infty)}
$$

thus the cdf of X is

$$
F_{X}(x)=\int_{-\infty}^{x} \pi(u) d u= \begin{cases}0 & \text { if } x \leq 0 \\ 1-\exp (-x) & \text { if } x>0\end{cases}
$$

- Thus the inverse cdf is

$$
1-\exp (-x)=u \Leftrightarrow x=-\log (1-u)=F_{X}^{-1}(u)
$$

- Inverse method: $U \sim \mathcal{U}[0,1]$ then $X=-\log (1-U) \sim \pi$ and $X=-\log (U) \sim \pi$.
- Assume you have $P \gg 1$ i.i.d. real-valued $r v X_{i} \sim f_{X}\left(c d f F_{X}\right)$ and you are interested in sampling realizations from the distribution of

$$
Z=\max \left(X_{1}, \ldots, X_{P}\right)
$$

- Assume you have $P \gg 1$ i.i.d. real-valued $r v X_{i} \sim f_{X}\left(c d f F_{X}\right)$ and you are interested in sampling realizations from the distribution of

$$
Z=\max \left(X_{1}, \ldots, X_{P}\right)
$$

- Brute force direct method. Sample $X_{1}, \ldots, X_{P} \sim f$ then compute $Z=\max \left(X_{1}, \ldots, X_{P}\right)$.
- Assume you have $P \gg 1$ i.i.d. real-valued $r v X_{i} \sim f_{X}\left(c d f F_{X}\right)$ and you are interested in sampling realizations from the distribution of

$$
Z=\max \left(X_{1}, \ldots, X_{P}\right)
$$

- Brute force direct method. Sample $X_{1}, \ldots, X_{P} \sim f$ then compute $Z=\max \left(X_{1}, \ldots, X_{P}\right)$.
- Indirect method. We have

$$
\begin{aligned}
F_{Z}(z) & =\operatorname{Pr}\left(X_{1} \leq z, \ldots, X_{P} \leq z\right) \\
& =\prod_{k=1}^{P} \operatorname{Pr}\left(X_{i} \leq z\right)=\left[F_{X}(z)\right]^{P}
\end{aligned}
$$

so it follows that for any $U \sim \mathcal{U}[0,1]$

$$
Z=F_{Z}^{-1}(U)=F_{X}^{-1}\left(U^{1 / P}\right)
$$

is distributed according to f_{Z}

- Simple method to sample univariate distributions.
- Simple method to sample univariate distributions.
- This method is only limited to simple cases where the inverse cdf admits a closed form or can be tabulated.
- Simple method to sample univariate distributions.
- This method is only limited to simple cases where the inverse cdf admits a closed form or can be tabulated.
- In practice, it is really very limited.

Change of Variables

- 'Idea': Using the fact that π is related to other distributions easier to sample.

Change of Variables

- 'Idea': Using the fact that π is related to other distributions easier to sample.
- This is very specific!

Change of Variables

- 'Idea': Using the fact that π is related to other distributions easier to sample.
- This is very specific!
- If $X_{i} \sim \mathcal{E} \times p$ (1) then

$$
\begin{aligned}
& Y=2 \sum_{j=1}^{v} X_{j} \sim \chi_{2 v}^{2} \\
& Y=\beta \sum_{j=1}^{\alpha} X_{j} \sim \mathcal{G}(\alpha, \beta), \\
& Y=\frac{\sum_{j=1}^{\alpha} X_{j}}{\sum_{j=1}^{\alpha+\beta} X_{j}} \sim \mathcal{B} e(\alpha, \beta) .
\end{aligned}
$$

- Consider $X_{1} \sim \mathcal{N}(0,1)$ and $X_{2} \sim \mathcal{N}(0,1)$ then its polar coordinates (R, θ) are independent and distributed according to

$$
\begin{aligned}
R^{2} & =X_{1}^{2}+X_{2}^{2} \sim \mathcal{E} \times p(1 / 2) \\
\theta & \sim \mathcal{U}[0,2 \pi]
\end{aligned}
$$

- Consider $X_{1} \sim \mathcal{N}(0,1)$ and $X_{2} \sim \mathcal{N}(0,1)$ then its polar coordinates (R, θ) are independent and distributed according to

$$
\begin{aligned}
R^{2} & =X_{1}^{2}+X_{2}^{2} \sim \mathcal{E} \times p(1 / 2) \\
\theta & \sim \mathcal{U}[0,2 \pi]
\end{aligned}
$$

- It is simple to simulate $R=\sqrt{-2 \log \left(U_{1}\right)}$ and $\theta=2 \pi U_{2}$ where $U_{1}, U_{2} \sim \mathcal{U}[0,1]$ then

$$
\begin{aligned}
& X_{1}=R \cos \theta=\sqrt{-2 \log \left(U_{1}\right)} \cos \left(2 \pi U_{2}\right) \\
& X_{2}=R \sin \theta=\sqrt{-2 \log \left(U_{1}\right)} \sin \left(2 \pi U_{2}\right)
\end{aligned}
$$

- Consider $X_{1} \sim \mathcal{N}(0,1)$ and $X_{2} \sim \mathcal{N}(0,1)$ then its polar coordinates (R, θ) are independent and distributed according to

$$
\begin{aligned}
R^{2} & =X_{1}^{2}+X_{2}^{2} \sim \mathcal{E} \times p(1 / 2) \\
\theta & \sim \mathcal{U}[0,2 \pi]
\end{aligned}
$$

- It is simple to simulate $R=\sqrt{-2 \log \left(U_{1}\right)}$ and $\theta=2 \pi U_{2}$ where $U_{1}, U_{2} \sim \mathcal{U}[0,1]$ then

$$
\begin{aligned}
& X_{1}=R \cos \theta=\sqrt{-2 \log \left(U_{1}\right)} \cos \left(2 \pi U_{2}\right) \\
& X_{2}=R \sin \theta=\sqrt{-2 \log \left(U_{1}\right)} \sin \left(2 \pi U_{2}\right)
\end{aligned}
$$

- By construction X_{1} and X_{2} are two independent $\mathcal{N}(0,1)$ rvs.

Sampling via Composition

- Assume we have

$$
\pi(x)=\int \bar{\pi}(x, y) d y
$$

where it is easy to sample from $\bar{\pi}(x, y)$ but difficult/impossible to compute $\pi(x)$.

Sampling via Composition

- Assume we have

$$
\pi(x)=\int \bar{\pi}(x, y) d y
$$

where it is easy to sample from $\bar{\pi}(x, y)$ but difficult/impossible to compute $\pi(x)$.

- In this case, it is sufficient to sample $(X, Y) \sim \bar{\pi} \Rightarrow X \sim \pi$.

Sampling via Composition

- Assume we have

$$
\pi(x)=\int \bar{\pi}(x, y) d y
$$

where it is easy to sample from $\bar{\pi}(x, y)$ but difficult/impossible to compute $\pi(x)$.

- In this case, it is sufficient to sample $(X, Y) \sim \bar{\pi} \Rightarrow X \sim \pi$.
- One can sample from $\bar{\pi}(x, y)=\bar{\pi}(y) \bar{\pi}(x \mid y)$ by

$$
Y \sim \bar{\pi} \text { then } X \mid Y \sim \bar{\pi}(\cdot \mid Y)
$$

Applications to Scale Mixture of Gaussians

- A very useful application of the composition method is for scale mixture of Gaussians; i.e.

$$
\pi(x)=\int \mathcal{N}(x ; 0,1 / y) \bar{\pi}(y) d y
$$

Applications to Scale Mixture of Gaussians

- A very useful application of the composition method is for scale mixture of Gaussians; i.e.

$$
\pi(x)=\int \mathcal{N}(x ; 0,1 / y) \bar{\pi}(y) d y
$$

- For various choices of the mixing distributions $\bar{\pi}(y)$, we obtain distributions $\pi(x)$ which are t-student, α-stable, Laplace, logistic.

Applications to Scale Mixture of Gaussians

- A very useful application of the composition method is for scale mixture of Gaussians; i.e.

$$
\pi(x)=\int \mathcal{N}(x ; 0,1 / y) \bar{\pi}(y) d y
$$

- For various choices of the mixing distributions $\bar{\pi}(y)$, we obtain distributions $\pi(x)$ which are t-student, α-stable, Laplace, logistic.
- Example: If

$$
Y \sim \chi_{v}^{2} \text { and } X \mid Y \sim \mathcal{N}(0, v / y)
$$

then X is marginally distributed according to a t -Student with v degrees of freedom.

Applications to Scale Mixture of Gaussians

- A very useful application of the composition method is for scale mixture of Gaussians; i.e.

$$
\pi(x)=\int \mathcal{N}(x ; 0,1 / y) \bar{\pi}(y) d y
$$

- For various choices of the mixing distributions $\bar{\pi}(y)$, we obtain distributions $\pi(x)$ which are t-student, α-stable, Laplace, logistic.
- Example: If

$$
Y \sim \chi_{v}^{2} \text { and } X \mid Y \sim \mathcal{N}(0, v / y)
$$

then X is marginally distributed according to a t -Student with v degrees of freedom.

- Conditional upon Y, X is Gaussian: This structure will be used to develop later efficient MCMC algorithms.

Sampling finite mixture of distributions

- Assume one wants to sample from

$$
\pi(x)=\sum_{i=1}^{p} \pi_{i} \cdot \pi_{i}(x)
$$

where $\pi_{i}>0, \sum_{i=1}^{p} \pi_{i}=1$ and $\pi_{i}(x) \geq 0, \int \pi_{i}(x) d x=1$.

Sampling finite mixture of distributions

- Assume one wants to sample from

$$
\pi(x)=\sum_{i=1}^{p} \pi_{i} \cdot \pi_{i}(x)
$$

where $\pi_{i}>0, \sum_{i=1}^{p} \pi_{i}=1$ and $\pi_{i}(x) \geq 0, \int \pi_{i}(x) d x=1$.

- We can introduce $Y \in\{1, \ldots, p\}$ and introduce

$$
\bar{\pi}(x, y)=\pi_{y} \times \pi_{y}(x) \Rightarrow\left\{\begin{array}{c}
\int \pi(x, y) d y=\pi(x) \\
\int \frac{\pi}{\pi}(x, y) d x=\bar{\pi}(y)=\pi_{y}
\end{array}\right.
$$

Sampling finite mixture of distributions

- Assume one wants to sample from

$$
\pi(x)=\sum_{i=1}^{p} \pi_{i} \cdot \pi_{i}(x)
$$

where $\pi_{i}>0, \sum_{i=1}^{p} \pi_{i}=1$ and $\pi_{i}(x) \geq 0, \int \pi_{i}(x) d x=1$.

- We can introduce $Y \in\{1, \ldots, p\}$ and introduce

$$
\bar{\pi}(x, y)=\pi_{y} \times \pi_{y}(x) \Rightarrow\left\{\begin{array}{c}
\int \pi(x, y) d y=\pi(x) \\
\int \frac{\pi}{\pi}(x, y) d x=\bar{\pi}(y)=\pi_{y}
\end{array}\right.
$$

- To sample from $\pi(x)$, then sample $Y \sim \bar{\pi}$ (discrete distribution such that $\left.\operatorname{Pr}(Y=k)=\pi_{k}\right)$ then

$$
X \mid Y \sim \bar{\pi}(\cdot \mid Y)=\pi_{Y}
$$

Sampling infinite mixture of distributions

- Assume you are interested in sampling from the discrete distribution

$$
\pi(x)=\sum_{i=1}^{\infty} \pi_{i} \cdot \pi_{i}(x)
$$

where $\pi_{i}>0, \sum_{i=1}^{\infty} \pi_{i}=1$ and $\pi_{i}(x) \geq 0, \int \pi_{i}(x) d x=1$.

Sampling infinite mixture of distributions

- Assume you are interested in sampling from the discrete distribution

$$
\pi(x)=\sum_{i=1}^{\infty} \pi_{i} \cdot \pi_{i}(x)
$$

where $\pi_{i}>0, \sum_{i=1}^{\infty} \pi_{i}=1$ and $\pi_{i}(x) \geq 0, \int \pi_{i}(x) d x=1$.

- If you try to sample from this distribution by composition, you need to sample from a discrete distribution with infinite support.

Sampling infinite mixture of distributions

- Assume you are interested in sampling from the discrete distribution

$$
\pi(x)=\sum_{i=1}^{\infty} \pi_{i} \cdot \pi_{i}(x)
$$

where $\pi_{i}>0, \sum_{i=1}^{\infty} \pi_{i}=1$ and $\pi_{i}(x) \geq 0, \int \pi_{i}(x) d x=1$.

- If you try to sample from this distribution by composition, you need to sample from a discrete distribution with infinite support.
- Remember that you will set $Y=j$ if

$$
\sum_{l=1}^{j-1} \pi_{l}<U \leq \sum_{l=1}^{j} \pi_{l}
$$

Sampling infinite mixture of distributions

- Assume you are interested in sampling from the discrete distribution

$$
\pi(x)=\sum_{i=1}^{\infty} \pi_{i} \cdot \pi_{i}(x)
$$

where $\pi_{i}>0, \sum_{i=1}^{\infty} \pi_{i}=1$ and $\pi_{i}(x) \geq 0, \int \pi_{i}(x) d x=1$.

- If you try to sample from this distribution by composition, you need to sample from a discrete distribution with infinite support.
- Remember that you will set $Y=j$ if

$$
\sum_{l=1}^{j-1} \pi_{l}<U \leq \sum_{l=1}^{j} \pi_{l}
$$

- No need to truncate: sample U and then find j such that the above condition is satisfied.

Accept-Reject Method

- The rejection method allows one to sample according to a distribution π defined on \mathcal{X} only known up to a proportionality constant, say $\pi \propto \pi^{*}$.

Accept-Reject Method

- The rejection method allows one to sample according to a distribution π defined on \mathcal{X} only known up to a proportionality constant, say $\pi \propto \pi^{*}$.
- It relies on samples generated from a proposal distribution q on \mathcal{X}. q might as well be known only up to a normalising constant, say $q \propto q^{*}$.

Accept-Reject Method

- The rejection method allows one to sample according to a distribution π defined on \mathcal{X} only known up to a proportionality constant, say $\pi \propto \pi^{*}$.
- It relies on samples generated from a proposal distribution q on \mathcal{X}. q might as well be known only up to a normalising constant, say $q \propto q^{*}$.
- We need q^{*} to 'dominate' π^{*}; i.e.

$$
C=\sup _{x \in \mathcal{X}} \frac{\pi^{*}(x)}{q^{*}(x)}<+\infty
$$

Accept-Reject Method

- The rejection method allows one to sample according to a distribution π defined on \mathcal{X} only known up to a proportionality constant, say $\pi \propto \pi^{*}$.
- It relies on samples generated from a proposal distribution q on $\mathcal{X} . q$ might as well be known only up to a normalising constant, say $q \propto q^{*}$.
- We need q^{*} to 'dominate' π^{*}; i.e.

$$
C=\sup _{x \in \mathcal{X}} \frac{\pi^{*}(x)}{q^{*}(x)}<+\infty
$$

- This implies $\pi^{*}(x)>0 \Rightarrow q^{*}(x)>0$ but also that the tails of $q^{*}(x)$ must be thicker than the tails of $\pi^{*}(x)$.

Consider $C^{\prime} \geq C$. Then the accept/reject procedure proceeds as follows.
(1) Sample $Y \sim q$ and $U \sim \mathcal{U}[0,1]$.

Consider $C^{\prime} \geq C$. Then the accept/reject procedure proceeds as follows.
(1) Sample $Y \sim q$ and $U \sim \mathcal{U}[0,1]$.
(2) If $U<\frac{\pi^{*}(Y)}{C^{\prime} q^{*}(Y)}$ then return Y; otherwise return to step 1 .

Figure: The idea behind the rejection method for $\pi(x)=\pi^{*}(x)=\mathcal{B} e(x ; 1.5,5), q(x)=q^{*}(x)=\mathcal{U}_{[0,1]}(x), C^{\prime}=C$.

Figure: Sampling from
$\pi(x) \propto \exp \left(-x^{2} / 2\right)\left(\sin (6 x)^{2}+3 \cos (x)^{2} \sin (4 x)^{2}+1\right)$

- We now prove that $\operatorname{Pr}(Y \leq x \mid Y$ accepted $)=\operatorname{Pr}(X \leq x)$.
- We now prove that $\operatorname{Pr}(Y \leq x \mid Y$ accepted $)=\operatorname{Pr}(X \leq x)$.
- We have for any $x \in \mathcal{X}$

$$
\operatorname{Pr}(Y \leq x \text { and } Y \text { accepted })
$$

$$
\begin{aligned}
& =\int_{0}^{1} \int_{-\infty}^{x} \mathbb{I}\left(u \leq \frac{\pi^{*}(y)}{C^{\prime} q^{*}(y)}\right) q(y) \times 1 d y d u \\
& =\int_{-\infty}^{x} \frac{\pi^{*}(y)}{C^{\prime} q^{*}(y)} q(y) d y \\
& =\frac{\int_{-\infty}^{x} \pi^{*}(y) d y}{C^{\prime} \int_{\mathcal{X}} q^{*}(y) d y} .
\end{aligned}
$$

- We now prove that $\operatorname{Pr}(Y \leq x \mid Y$ accepted $)=\operatorname{Pr}(X \leq x)$.
- We have for any $x \in \mathcal{X}$

$$
\hat{\operatorname{Pr}}(Y \leq x \text { and } Y \text { accepted })
$$

$$
\begin{aligned}
& =\int_{0}^{1} \int_{-\infty}^{x} \mathbb{I}\left(u \leq \frac{\pi^{*}(y)}{C^{\prime} q^{*}(y)}\right) q(y) \times 1 d y d u \\
& =\int_{-\infty}^{x} \frac{\pi^{*}(y)}{C^{\prime} q^{*}(y)} q(y) d y \\
& =\frac{\int_{-\infty}^{x} \pi^{*}(y) d y}{C^{\prime} \int_{\mathcal{X}} q^{*}(y) d y}
\end{aligned}
$$

- The probability of being accepted is the marginal of $\operatorname{Pr}(Y \leq x$ and Y accepted $)$

$$
\operatorname{Pr}(Y \text { accepted })=\frac{\int_{\mathcal{X}} \pi^{*}(y) d y}{C^{\prime} \int_{\mathcal{X}} q^{*}(y) d y}
$$

- Thus

$$
\begin{aligned}
\operatorname{Pr}(Y \leq x \mid Y \text { accepted }) & =\frac{\operatorname{Pr}(Y \leq x \text { and } Y \text { accepted })}{\operatorname{Pr}(Y \text { accepted })} \\
& =\frac{\int_{-\infty}^{x} \pi^{*}(y) d y}{\int_{\mathcal{X}} \pi^{*}(y) d y}=\int_{-\infty}^{x} \pi(y) d y
\end{aligned}
$$

- Thus

$$
\begin{aligned}
\operatorname{Pr}(Y \leq x \mid Y \text { accepted }) & =\frac{\operatorname{Pr}(Y \leq x \text { and } Y \text { accepted })}{\operatorname{Pr}(Y \text { accepted })} \\
& =\frac{\int_{-\infty}^{x} \pi^{*}(y) d y}{\int_{\mathcal{X}} \pi^{*}(y) d y}=\int_{-\infty}^{x} \pi(y) d y .
\end{aligned}
$$

- Example: We want to sample from $\mathcal{B e}(x ; \alpha, \beta) \propto x^{\alpha-1}(1-x)^{\beta-1}$ using $\mathcal{U}[0,1]$. One can find

$$
\sup _{x \in[0,1]} \frac{x^{\alpha-1}(1-x)^{\beta-1}}{1}
$$

analytically for $\alpha, \beta>1$! We do not need the normalizing constant of $\mathcal{B e}$.

- You do not lose anything by not knowing the normalizing constant of q^{*}.
- You do not lose anything by not knowing the normalizing constant of q^{*}.
- Example: The target π is given by

$$
\pi(x) \propto \pi^{*}(x)=\exp \left(-\frac{x^{2}}{2}\right) m(x)
$$

where $m(x) \leq M$ for any $x \in X$.

- You do not lose anything by not knowing the normalizing constant of q^{*}.
- Example: The target π is given by

$$
\pi(x) \propto \pi^{*}(x)=\exp \left(-\frac{x^{2}}{2}\right) m(x)
$$

where $m(x) \leq M$ for any $x \in X$.

- If we use $q(x)=q^{*}(x)=(2 \pi)^{-1 / 2} \exp \left(-\frac{x^{2}}{2}\right)$, then we have

$$
\frac{\pi^{*}(x)}{q^{*}(x)} \leq C_{1}=(2 \pi)^{1 / 2} M \text { and } \operatorname{Pr}(Y \text { accepted })=\frac{\int_{X} \pi^{*}(y) d y}{C_{1}}
$$

- You do not lose anything by not knowing the normalizing constant of q^{*}.
- Example: The target π is given by

$$
\pi(x) \propto \pi^{*}(x)=\exp \left(-\frac{x^{2}}{2}\right) m(x)
$$

where $m(x) \leq M$ for any $x \in X$.

- If we use $q(x)=q^{*}(x)=(2 \pi)^{-1 / 2} \exp \left(-\frac{x^{2}}{2}\right)$, then we have

$$
\frac{\pi^{*}(x)}{q^{*}(x)} \leq C_{1}=(2 \pi)^{1 / 2} M \text { and } \operatorname{Pr}(Y \text { accepted })=\frac{\int_{X} \pi^{*}(y) d y}{C_{1}}
$$

- If we use $q^{*}(x)=\exp \left(-\frac{x^{2}}{2}\right)$, then we have $\frac{\pi^{*}(x)}{q^{*}(x)} \leq C_{2}=M$ and

$$
\operatorname{Pr}(Y \text { accepted })=\frac{\int_{\mathrm{X}} \pi^{*}(y) d y}{C_{2}(2 \pi)^{1 / 2}}=\frac{\int_{\mathrm{X}} \pi^{*}(y) d y}{C_{1}}
$$

- The acceptance probability $\operatorname{Pr}(Y$ accepted $)$ is a measure of efficiency.
- The acceptance probability $\operatorname{Pr}(Y$ accepted $)$ is a measure of efficiency.
- The number of trials before accepting a candidate follows a geometric distribution

$$
\begin{aligned}
\operatorname{Pr}\left(k^{\text {th }} \text { proposal accepted }\right) & =(1-\rho)^{k-1} \rho \\
\text { where } \rho & =\left(\frac{\int_{\mathcal{X}} \pi^{*}(y) d y}{C^{\prime} \int_{\mathcal{X}} q^{*}(y) d y}\right)
\end{aligned}
$$

thus its expected value is

$$
\sum_{k=0}^{\infty} k(1-\rho)^{k-1} \rho=\frac{1}{\varrho}=\frac{1}{\operatorname{Pr}(Y \text { accepted })}
$$

- The acceptance probability $\operatorname{Pr}(Y$ accepted $)$ is a measure of efficiency.
- The number of trials before accepting a candidate follows a geometric distribution

$$
\begin{aligned}
\operatorname{Pr}\left(k^{\text {th }} \text { proposal accepted }\right) & =(1-\rho)^{k-1} \rho \\
\text { where } \rho & =\left(\frac{\int_{\mathcal{X}} \pi^{*}(y) d y}{C^{\prime} \int_{\mathcal{X}} q^{*}(y) d y}\right)
\end{aligned}
$$

thus its expected value is

$$
\sum_{k=0}^{\infty} k(1-\rho)^{k-1} \rho=\frac{1}{\varrho}=\frac{1}{\operatorname{Pr}(Y \text { accepted })}
$$

- This is important to better understand the Metropolis-Hastings algorithm.
- Consider a Bayesian model: prior $\pi(\theta)$ and likelihood $f(x \mid \theta)$.
- Consider a Bayesian model: prior $\pi(\theta)$ and likelihood $f(x \mid \theta)$.
- The posterior distribution is given by

$$
\begin{aligned}
& \pi(\theta \mid x)=\frac{\pi(\theta) f(x \mid \theta)}{\int_{\Theta} \pi(\theta) f(x \mid \theta) d \theta} \propto \pi^{*}(\theta \mid x) \\
& \text { where } \pi^{*}(\theta \mid x)=\pi(\theta) f(x \mid \theta)
\end{aligned}
$$

- Consider a Bayesian model: prior $\pi(\theta)$ and likelihood $f(x \mid \theta)$.
- The posterior distribution is given by

$$
\begin{aligned}
& \pi(\theta \mid x)=\frac{\pi(\theta) f(x \mid \theta)}{\int_{\Theta} \pi(\theta) f(x \mid \theta) d \theta} \propto \pi^{*}(\theta \mid x) \\
& \text { where } \pi^{*}(\theta \mid x)=\pi(\theta) f(x \mid \theta)
\end{aligned}
$$

- We can use the prior distribution as a candidate distribution $q(\theta)=q^{*}(\theta)=\pi(\theta)$ as long as

$$
\sup _{\theta \in \Theta} \frac{\pi^{*}(\theta \mid x)}{q^{*}(\theta)}=\sup _{\theta \in \Theta} f(x \mid \theta) \leq C
$$

- Consider a Bayesian model: prior $\pi(\theta)$ and likelihood $f(x \mid \theta)$.
- The posterior distribution is given by

$$
\begin{aligned}
& \pi(\theta \mid x)=\frac{\pi(\theta) f(x \mid \theta)}{\int_{\Theta} \pi(\theta) f(x \mid \theta) d \theta} \propto \pi^{*}(\theta \mid x) \\
& \text { where } \pi^{*}(\theta \mid x)=\pi(\theta) f(x \mid \theta)
\end{aligned}
$$

- We can use the prior distribution as a candidate distribution $q(\theta)=q^{*}(\theta)=\pi(\theta)$ as long as

$$
\sup _{\theta \in \Theta} \frac{\pi^{*}(\theta \mid x)}{q^{*}(\theta)}=\sup _{\theta \in \Theta} f(x \mid \theta) \leq C
$$

- In many applications, the likelihood is bounded so one can use the rejection procedure and it is accepted with proba
$\int_{\Theta} \pi(\theta) f(x \mid \theta) d \theta / C$.
- Consider a Bayesian model: prior $\pi(\theta)$ and likelihood $f(x \mid \theta)$.
- The posterior distribution is given by

$$
\begin{aligned}
& \pi(\theta \mid x)=\frac{\pi(\theta) f(x \mid \theta)}{\int_{\Theta} \pi(\theta) f(x \mid \theta) d \theta} \propto \pi^{*}(\theta \mid x) \\
& \text { where } \pi^{*}(\theta \mid x)=\pi(\theta) f(x \mid \theta)
\end{aligned}
$$

- We can use the prior distribution as a candidate distribution $q(\theta)=q^{*}(\theta)=\pi(\theta)$ as long as

$$
\sup _{\theta \in \Theta} \frac{\pi^{*}(\theta \mid x)}{q^{*}(\theta)}=\sup _{\theta \in \Theta} f(x \mid \theta) \leq C
$$

- In many applications, the likelihood is bounded so one can use the rejection procedure and it is accepted with proba
$\int_{\Theta} \pi(\theta) f(x \mid \theta) d \theta / C$.
- Moreover, if we have $q^{*}(\theta)=\pi(\theta)$ then expected value before acceptance

$$
\frac{c}{\int_{\Theta} \pi(\theta) f(x \mid \theta) d \theta}
$$

Limitations of Accept-Reject

- Consider the case where $\mathcal{X}=\mathbb{R}^{n}$

$$
\pi(\theta)=\frac{1}{(2 \pi)^{n / 2}} \exp \left(-\frac{\sum_{i=1}^{n} \theta_{i}^{2}}{2}\right)
$$

and

$$
q_{\sigma}(\theta)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \exp \left(-\frac{\sum_{i=1}^{n} \theta_{i}^{2}}{2 \sigma^{2}}\right)
$$

Limitations of Accept-Reject

- Consider the case where $\mathcal{X}=\mathbb{R}^{n}$

$$
\pi(\theta)=\frac{1}{(2 \pi)^{n / 2}} \exp \left(-\frac{\sum_{i=1}^{n} \theta_{i}^{2}}{2}\right)
$$

and

$$
q_{\sigma}(\theta)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \exp \left(-\frac{\sum_{i=1}^{n} \theta_{i}^{2}}{2 \sigma^{2}}\right)
$$

- We have for any $\sigma>1$

$$
\frac{\pi(\theta)}{q_{\sigma}(\theta)}=\sigma^{n} \exp \left(-\sum_{i=1}^{n} \theta_{i}^{2}\left(1-\frac{1}{2 \sigma^{2}}\right)\right) \leq \sigma^{n} \text { for any } \theta
$$

and

$$
\operatorname{Pr}(Y \text { accepted })=\frac{1}{\sigma^{n}}
$$

Limitations of Accept-Reject

- Consider the case where $\mathcal{X}=\mathbb{R}^{n}$

$$
\pi(\theta)=\frac{1}{(2 \pi)^{n / 2}} \exp \left(-\frac{\sum_{i=1}^{n} \theta_{i}^{2}}{2}\right)
$$

and

$$
q_{\sigma}(\theta)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \exp \left(-\frac{\sum_{i=1}^{n} \theta_{i}^{2}}{2 \sigma^{2}}\right)
$$

- We have for any $\sigma>1$

$$
\frac{\pi(\theta)}{q_{\sigma}(\theta)}=\sigma^{n} \exp \left(-\sum_{i=1}^{n} \theta_{i}^{2}\left(1-\frac{1}{2 \sigma^{2}}\right)\right) \leq \sigma^{n} \text { for any } \theta
$$

and

$$
\operatorname{Pr}(Y \text { accepted })=\frac{1}{\sigma^{n}}
$$

- Despite having a very good proposal then the acceptance probability decreases exponentially fast with the dimension of the problem.

Advantages.

- Rather universal, and compared to the inverse cdf method requires less algebraic properties.

Drawbacks.

Advantages.

- Rather universal, and compared to the inverse cdf method requires less algebraic properties.
- Neither normalisation constant of π nor that of q are needed.

Drawbacks.

Advantages.

- Rather universal, and compared to the inverse cdf method requires less algebraic properties.
- Neither normalisation constant of π nor that of q are needed.

Drawbacks.

- How to construct the proposal $q(x)$ automatically?

Advantages.

- Rather universal, and compared to the inverse cdf method requires less algebraic properties.
- Neither normalisation constant of π nor that of q are needed.

Drawbacks.

- How to construct the proposal $q(x)$ automatically?
- Typically the performance of the method decrease exponentially with the dimension of the problem.

Beyond Standard Accept Reject

- In the standard Rejection algorithm, the candidate is sampled before U. This is not necessary.

Beyond Standard Accept Reject

- In the standard Rejection algorithm, the candidate is sampled before U. This is not necessary.
- Proposition: Let $\left(Y_{n}, I_{n}\right)_{n \geq 1}$ be a sequence of i.i.d. rvs taking values in $\mathcal{X} \times\{0,1\}$ such that $Y_{1} \sim q$ and

$$
\operatorname{Pr}\left(\iota_{1}=1 \mid Y_{1}=y\right)=\frac{\pi^{*}(y)}{C q^{*}(y)}
$$

Define $\tau=\min \left\{i \geq 1: I_{i}=1\right\}$, then $Y_{\tau} \sim \pi$.

Beyond Standard Accept Reject

- In the standard Rejection algorithm, the candidate is sampled before U. This is not necessary.
- Proposition: Let $\left(Y_{n}, I_{n}\right)_{n \geq 1}$ be a sequence of i.i.d. rvs taking values in $\mathcal{X} \times\{0,1\}$ such that $Y_{1} \sim q$ and

$$
\operatorname{Pr}\left(I_{1}=1 \mid Y_{1}=y\right)=\frac{\pi^{*}(y)}{C q^{*}(y)}
$$

Define $\tau=\min \left\{i \geq 1: I_{i}=1\right\}$, then $Y_{\tau} \sim \pi$.

- This result is useful if there are ways of constructing condition for the acceptance or rejection of the current proposed element Y from minimal information about it.

Envelop Accept Reject

- Squeeze principle: Assume we have

$$
q_{L}^{*}(x) \leq \pi^{*}(x) \leq C q^{*}(x)
$$

then we can modify the algorithm as follows.

Envelop Accept Reject

- Squeeze principle: Assume we have

$$
q_{L}^{*}(x) \leq \pi^{*}(x) \leq C q^{*}(x)
$$

then we can modify the algorithm as follows.
(1) Sample $Y \sim q$ and $U \sim \mathcal{U}(0,1)$.

Envelop Accept Reject

- Squeeze principle: Assume we have

$$
q_{L}^{*}(x) \leq \pi^{*}(x) \leq C q^{*}(x)
$$

then we can modify the algorithm as follows.
(1) Sample $Y \sim q$ and $U \sim \mathcal{U}(0,1)$.
(2) If $U \leq \frac{q_{L}^{*}(Y)}{C^{\prime} q^{*}(Y)}$ then return Y;

Envelop Accept Reject

- Squeeze principle: Assume we have

$$
q_{L}^{*}(x) \leq \pi^{*}(x) \leq C q^{*}(x)
$$

then we can modify the algorithm as follows.
(1) Sample $Y \sim q$ and $U \sim \mathcal{U}(0,1)$.
(2) If $U \leq \frac{q_{L}^{*}(Y)}{C^{\prime} q^{*}(Y)}$ then return Y;
(3) Otherwise, accept X if $U<\frac{\pi^{*}(Y)}{C^{\prime} q^{*}(Y)}$, otherwise return to step 1 .

Adaptive Rejection Sampling

- Consider the class of univariate log-concave densities; i.e. we have

$$
\frac{\partial^{2} \log \pi(x)}{\partial x^{2}}<0
$$

where $\pi(x)=f(x) / \int f(x) d x$.

Adaptive Rejection Sampling

- Consider the class of univariate log-concave densities; i.e. we have

$$
\frac{\partial^{2} \log \pi(x)}{\partial x^{2}}<0
$$

where $\pi(x)=f(x) / \int f(x) d x$.

- The idea is to construct automatically an piecewise linear upper (and lower) bound for the target.

Adaptive Rejection Sampling

- Consider the class of univariate log-concave densities; i.e. we have

$$
\frac{\partial^{2} \log \pi(x)}{\partial x^{2}}<0
$$

where $\pi(x)=f(x) / \int f(x) d x$.

- The idea is to construct automatically an piecewise linear upper (and lower) bound for the target.
- Let \mathcal{S}_{n} be a set of points $\left\{x_{i}\right\}_{i=0}^{n+1}$ in the support of $\pi(x)$ such that $h\left(x_{i}\right)=\log f\left(x_{i}\right)$.
- Because of concavity, the line $L_{i, i+1}$ going through $\left(x_{i}, h\left(x_{i}\right)\right)$ and $\left(x_{i+1}, h\left(x_{i+1}\right)\right)$ is below the graph of h in $\left[x_{i}, x_{i+1}\right]$ and is above this graph outside this interval.

- We define $\bar{h}_{n}(x)=\min \left\{L_{i-1, i}(x), L_{i+1, i+2}(x)\right\}, \underline{h}_{n}(x)=L_{i, i+1}(x)$ $\left[\right.$ where $\bar{h}_{n}(x)=-\infty$ and $\bar{h}_{n}(x)=\min \left\{L_{0,1}(x), L_{n, n+1}(x)\right\}$ on $\left[x_{0}, x_{n+1}\right]^{c}$ so that

$$
\underline{h}_{n}(x) \leq h(x) \leq \bar{h}_{n}(x)
$$

- We define $\bar{h}_{n}(x)=\min \left\{\underline{L}_{i-1, i}(x), L_{i+1, i+2}(x)\right\}, \underline{h}_{n}(x)=L_{i, i+1}(x)$ $\left[\right.$ where $\bar{h}_{n}(x)=-\infty$ and $\bar{h}_{n}(x)=\min \left\{L_{0,1}(x), L_{n, n+1}(x)\right\}$ on $\left[x_{0}, x_{n+1}\right]^{c}$ so that

$$
\underline{h}_{n}(x) \leq h(x) \leq \bar{h}_{n}(x)
$$

- Therefore we have for $\underline{f}_{n}(x)=\exp \underline{h}_{n}(x), \bar{f}_{n}(x)=\exp \bar{h}_{n}(x)$

$$
\underline{f}_{n}(x)=\exp \underline{h}_{n}(x) \leq \pi(x) \leq \bar{f}_{n}(x)=\bar{w}_{n} g_{n}(x)
$$

where it is easy to compute \bar{w}_{n} and easy to sample from $g_{n}(x)$.

- Initialize $n=0$ and \mathcal{S}_{0}

At iteration $n \geq 1$

- Initialize $n=0$ and \mathcal{S}_{0}

At iteration $n \geq 1$
(1) Generate $Y \sim g_{n}$.

- Initialize $n=0$ and \mathcal{S}_{0}

At iteration $n \geq 1$
(1) Generate $Y \sim g_{n}$.
(2) If $U \leq \frac{f_{n}(Y)}{\bar{w}_{n} f_{n}(Y)}$ then return Y; otherwise set $\mathcal{S}_{n+1}=\mathcal{S}_{n} \cup\{Y\}$.

- Consider n data $\left(x_{i}, Y_{i}\right)$

$$
Y_{i} \mid x_{i} \sim \mathcal{P}\left(a+b x_{i}\right)
$$

and we set the prior

$$
\pi(a, b)=\mathcal{N}\left(a ; 0, \sigma^{2}\right) \mathcal{N}\left(b ; 0, \tau^{2}\right)
$$

- Consider n data $\left(x_{i}, Y_{i}\right)$

$$
Y_{i} \mid x_{i} \sim \mathcal{P}\left(a+b x_{i}\right)
$$

and we set the prior

$$
\pi(a, b)=\mathcal{N}\left(a ; 0, \sigma^{2}\right) \mathcal{N}\left(b ; 0, \tau^{2}\right)
$$

- We have

$$
\begin{aligned}
& \log \pi\left(a \mid x_{1: n}, y_{1: n}, b\right)=\operatorname{cst}+a \sum y_{i}-e^{a} \sum e^{x_{i} b}-a^{2} / 2 \sigma^{2} \\
& \Rightarrow \frac{\partial^{2} \log \pi\left(a x_{1: n}, y_{1: n}, b\right)}{\partial a^{2}}=-e^{a} \sum e^{x_{i} b}-\sigma^{-2}<0 .
\end{aligned}
$$

- Consider n data $\left(x_{i}, Y_{i}\right)$

$$
Y_{i} \mid x_{i} \sim \mathcal{P}\left(a+b x_{i}\right)
$$

and we set the prior

$$
\pi(a, b)=\mathcal{N}\left(a ; 0, \sigma^{2}\right) \mathcal{N}\left(b ; 0, \tau^{2}\right)
$$

- We have

$$
\begin{aligned}
& \log \pi\left(a \mid x_{1: n}, y_{1: n}, b\right)=\operatorname{cst}+a \sum y_{i}-e^{a} \sum e^{x_{i} b}-a^{2} / 2 \sigma^{2} \\
& \Rightarrow \frac{\partial^{2} \log \pi\left(a \mid x_{1: n}, y_{1: n}, b\right)}{\partial a^{2}}=-e^{a} \sum e^{x_{i} b}-\sigma^{-2}<0 .
\end{aligned}
$$

- Thus $\pi\left(a \mid x_{1: n}, y_{1: n}, b\right)$ is log-concave, similarly $\pi\left(b \mid x_{1: n}, y_{1: n}, a\right)$ is log-concave.

Monahan's Accept Reject Algorithm

- We want to sample from the cdf

$$
F(x)=\frac{H(-G(x))}{H(-1)}
$$

where $G(x)$ is a given cdf and

$$
H(x)=\sum_{n=1}^{\infty} a_{n} x^{n}
$$

with $1=a_{1} \geq a_{2} \geq \cdots \geq 0$. We only want to use samples from G and $\mathcal{U}[0,1]$

Monahan's Accept Reject Algorithm

- We want to sample from the cdf

$$
F(x)=\frac{H(-G(x))}{H(-1)}
$$

where $G(x)$ is a given cdf and

$$
H(x)=\sum_{n=1}^{\infty} a_{n} x^{n}
$$

with $1=a_{1} \geq a_{2} \geq \cdots \geq 0$. We only want to use samples from G and $\mathcal{U}[0,1]$

- Example: Assume you are interested in sampling from
$F(x)=1-\cos \left(\frac{\pi x}{2}\right)$ where $0<x<1$. You could do it through inversion with $\frac{2}{\pi} \arccos (U)$ but this requires evaluating a complex (transcendental) function. Alternatively we have $G(x)=x^{2}$ and

$$
H(x)=x+\frac{\pi^{2}}{48} x^{2}+\frac{\pi^{4}}{5760} x^{3}+\cdots+\frac{\pi^{2 i-2}}{2^{2 i-3}(2 i)!} x^{i}+\cdots
$$

- Repeat
- Generate $X \sim G$ and set $K \leftarrow 1$.
- Repeat
- Generate $U \sim G$ and $V \sim \mathcal{U}[0,1]$.
- If $U \leq X$ and $V \leq \frac{a_{K+1}}{a_{K}}$ then $K \leftarrow K+1$, otherwise stop.

Until K odd, return X.

- We define the event A_{n} by $X=\max \left(X, U_{1}, \ldots, U_{n}\right)$ and $Z_{1}=\cdots=Z_{n}=1$ where the $U_{i} \mathrm{~s}$ are the rvs generated in the inner loop and the $Z_{i} \mathrm{~s}$ are Bernoulli rvs equal to consecutives values $\mathbb{I}_{V \leq \frac{a_{K+1}}{a_{K}}}$.
- We define the event A_{n} by $X=\max \left(X, U_{1}, \ldots, U_{n}\right)$ and $Z_{1}=\cdots=Z_{n}=1$ where the $U_{i} \mathrm{~s}$ are the rvs generated in the inner loop and the Z_{i} s are Bernoulli rvs equal to consecutives values $\mathbb{I}_{V \leq \frac{a_{K+1}}{a_{K}}}$.
- We have

$$
\begin{aligned}
P\left(X \leq x, A_{n}\right) & =a_{n} G(x)^{n} \\
P\left(X \leq x, A_{n}, A_{n+1}^{c}\right) & =P\left(X \leq x, A_{n}\right)-P\left(X \leq x, A_{n}, A_{n+1}\right) \\
& =a_{n} G(x)^{n}-a_{n+1} G(x)^{n+1}
\end{aligned}
$$

- We define the event A_{n} by $X=\max \left(X, U_{1}, \ldots, U_{n}\right)$ and $Z_{1}=\cdots=Z_{n}=1$ where the U_{i} s are the rvs generated in the inner loop and the Z_{i} s are Bernoulli rvs equal to consecutives values $\mathbb{I}_{V \leq \frac{a_{K+1}}{a_{K}}}$.
- We have

$$
\begin{aligned}
P\left(X \leq x, A_{n}\right) & =a_{n} G(x)^{n} \\
P\left(X \leq x, A_{n}, A_{n+1}^{c}\right) & =P\left(X \leq x, A_{n}\right)-P\left(X \leq x, A_{n}, A_{n+1}\right) \\
& =a_{n} G(x)^{n}-a_{n+1} G(x)^{n+1}
\end{aligned}
$$

- The proba that X is accepted is

$$
P(K \text { odd })=\sum_{n=1}^{\infty} a_{n}(-1)^{n+1}=H(-1)
$$

and the returned X has distribution function

$$
F(x)=P(X \leq x)=\frac{\sum_{n=1}^{\infty} a_{n} G(x)^{n}(-1)^{n+1}}{H(-1)}=\frac{H(G(-x))}{H(-1)}
$$

- There exists standard techniques to sample from classical distributions.
- There exists standard techniques to sample from classical distributions.
- Rejection is useful for small non-standard distributions but collapses for most "interesting" problems.
- There exists standard techniques to sample from classical distributions.
- Rejection is useful for small non-standard distributions but collapses for most "interesting" problems.
- These algorithms will be building blocks of more complex Monte Carlo algorithms.

