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Classical �exact� simulation methods.

Accept/Reject.

Variations over the Accept/Reject algorithm
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The Monte Carlo principle

Let π (x) be a probability density on X

Monte Carlo approximation is given by

bπN (x) = 1
N

N

∑
i=1

δX (i ) (x) where X
(i ) i.i.d.� π.

For any ϕ : X !R

EbπN (ϕ) = 1
N

N

∑
i=1

ϕ
�
X (i )

�
� Eπ (ϕ)

and more precisely

EfX (i )g
�
EbπN (ϕ)� = Eπ (ϕ) and varfX (i )g

�
EbπN (ϕ)� = varπ (ϕ)

N
.
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If we could sample from any distribution π easily, then everything
would be easy.

Unfortunately, there is no generic algorithm to sample exactly from
any π.

Today, we discuss simple methods which are the building blocks of
more complex algorithms; i.e. MCMC and SMC.
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Pseudo Random Number Generators

All algorithms discussed here rely on the availability of a generator of
independent uniform random variables in [0, 1].

It is impossible to get such numbers and we only get pseudo-random
numbers which look like they are i.i.d. U [0, 1].
There are a few standard very good generators available. We will not
give any detail as their constructions are based on techniques very
di¤erent from the ones we address here.
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Inverse CDF Method

Consider X = f1, 2, 3g and

π (X = 1) =
1
6
, π (X = 2) =

2
6
, π (X = 3) =

1
2
.

De�ne the cdf of X for x 2 [0, 3] as

FX (x) =
3

∑
i=1

π (X = i) I (i � x)

and its inverse for u 2 [0, 1]

F�1X (u) = inf fx 2 X : FX (x) � ug
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To sample from this discrete distribution, sample U � U [0, 1].

Find X = F�1X (U) .

The probability of U falling in the vertical interval i is precisely equal
to the probability π (X = i).
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Figure: The distribution and cdf of a discrete random variable
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Assume the distribution has a density, then the cdf takes the form

FX (x) = P (X�x) =
Z +∞

�∞
π (u) I (u � x)du =

Z x

�∞
π (u) du.

We would like to use the same algorithm; i.e. U � U [0, 1] and set
X = F�1X (U) .

Question: Do we have X � π?
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Proof of validity:

Pr (X � x) = Pr
�
F�1X (U) � x

�
= Pr (U � FX (x)) since FX is non decreasing

=
Z 1

0
I (u � FX (x)) du since U � U [0, 1]

= FX (x)

The cdf of X produced by the algorithm above is precisely the cdf of
π!
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Consider the exponential of parameter 1 then

π (x) = exp (�x) I[0,∞)

thus the cdf of X is

FX (x) =
Z x

�∞
π (u) du =

�
0 if x � 0
1� exp (�x) if x > 0

Thus the inverse cdf is

1� exp (�x) = u , x = � log (1� u) = F�1X (u) .

Inverse method: U � U [0, 1] then X = � log (1� U) � π and
X = � log (U) � π.
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Assume you have P >> 1 i.i.d. real-valued rv Xi � fX (cdf FX ) and
you are interested in sampling realizations from the distribution of

Z = max (X1, ...,XP ) .

Brute force direct method. Sample X1, ...,XP � f then compute
Z = max (X1, ...,XP ) .

Indirect method. We have

FZ (z) = Pr (X1 � z , ...,XP � z)

=
P

∏
k=1

Pr (Xi � z) = [FX (z)]P

so it follows that for any U � U [0, 1]

Z = F�1Z (U) = F�1X
�
U1/P

�
is distributed according to fZ
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Simple method to sample univariate distributions.

This method is only limited to simple cases where the inverse cdf
admits a closed form or can be tabulated.

In practice, it is really very limited.
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Change of Variables

�Idea�: Using the fact that π is related to other distributions easier to
sample.

This is very speci�c!

If Xi � Exp (1) then

Y = 2
ν

∑
j=1
Xj � χ22ν,

Y = β
α

∑
j=1
Xj � G (α, β) ,

Y =
∑α
j=1 Xj

∑
α+β
j=1 Xj

� Be (α, β) .
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Consider X1 � N (0, 1) and X2 � N (0, 1) then its polar coordinates
(R, θ) are independent and distributed according to

R2 = X 21 + X
2
2 � Exp (1/2) ,

θ � U [0, 2π] .

It is simple to simulate R =
p
�2 log (U1) and θ = 2πU2 where

U1,U2 � U [0, 1] then

X1 = R cos θ =
q
�2 log (U1) cos (2πU2) ,

X2 = R sin θ =
q
�2 log (U1) sin (2πU2) .

By construction X1 and X2 are two independent N (0, 1) rvs.
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Sampling via Composition

Assume we have
π (x) =

Z
π (x , y) dy

where it is easy to sample from π (x , y) but di¢ cult/impossible to
compute π (x) .

In this case, it is su¢ cient to sample (X ,Y ) � π ) X � π.

One can sample from π (x , y) = π (y)π (x j y) by

Y � π then X jY � π ( �jY ) .
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Applications to Scale Mixture of Gaussians

A very useful application of the composition method is for scale
mixture of Gaussians; i.e.

π (x) =
Z
N (x ; 0, 1/y)π (y) dy .

For various choices of the mixing distributions π (y), we obtain
distributions π (x) which are t-student, α�stable, Laplace, logistic.
Example: If

Y � χ2ν and X jY � N (0, ν/y)

then X is marginally distributed according to a t-Student with ν
degrees of freedom.

Conditional upon Y , X is Gaussian: This structure will be used to
develop later e¢ cient MCMC algorithms.
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Sampling �nite mixture of distributions

Assume one wants to sample from

π (x) =
p

∑
i=1

πi .πi (x)

where πi > 0, ∑p
i=1 πi = 1 and πi (x) � 0,

R
πi (x) dx = 1.

We can introduce Y 2 f1, ..., pg and introduce
π (x , y) = πy � πy (x))

� R
π (x , y) dy = π (x)R

π (x , y) dx = π (y) = πy

To sample from π (x), then sample Y � π (discrete distribution such
that Pr (Y = k) = πk ) then

X jY � π ( �jY ) = πY .
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Sampling in�nite mixture of distributions

Assume you are interested in sampling from the discrete distribution

π (x) =
∞

∑
i=1

πi .πi (x)

where πi > 0, ∑∞
i=1 πi = 1 and πi (x) � 0,

R
πi (x) dx = 1.

If you try to sample from this distribution by composition, you need
to sample from a discrete distribution with in�nite support.

Remember that you will set Y = j if
j�1
∑
l=1

πl < U �
j

∑
l=1

πl

No need to truncate: sample U and then �nd j such that the above
condition is satis�ed.
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Accept-Reject Method

The rejection method allows one to sample according to a distribution
π de�ned on X only known up to a proportionality constant, say
π ∝ π�.

It relies on samples generated from a proposal distribution q on X . q
might as well be known only up to a normalising constant, say q ∝ q�.
We need q� to �dominate�π�; i.e.

C = sup
x2X

π� (x)
q� (x)

< +∞

This implies π�(x) > 0 ) q�(x) > 0 but also that the tails of q�(x)
must be thicker than the tails of π�(x).
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Consider C 0 � C . Then the accept/reject procedure proceeds as follows.
1 Sample Y�q and U � U [0, 1].

2 If U < π�(Y )
C 0q�(Y ) then return Y ; otherwise return to step 1.

AD () 6th February 2007 22 / 42



Consider C 0 � C . Then the accept/reject procedure proceeds as follows.
1 Sample Y�q and U � U [0, 1].
2 If U < π�(Y )

C 0q�(Y ) then return Y ; otherwise return to step 1.

AD () 6th February 2007 22 / 42



0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

Beta(1.5,5)

\tilde{x}~q=U(0,1)

Rejec t

Accept
cq(x)u where u~U(0,1)

c  U(0,1)

Figure: The idea behind the rejection method for
π (x) = π� (x) = Be (x ; 1.5, 5), q (x) = q� (x) = U[0,1] (x), C 0 = C .
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Figure: Sampling from

π (x) ∝ exp
�
�x2/2

� �
sin (6x)2 + 3 cos (x)2 sin (4x)2 + 1

�
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We now prove that Pr (Y � x jY accepted) = Pr (X � x) .

We have for any x 2 X
Pr (Y � x and Y accepted)

=
Z 1

0

Z x

�∞
I

�
u � π� (y)

C 0q� (y)

�
q (y)� 1dydu

=
Z x

�∞

π� (y)
C 0q� (y)

q (y) dy

=

R x
�∞ π� (y) dy

C 0
R
X q
� (y) dy

.

The probability of being accepted is the marginal of
Pr (Y � x and Y accepted)

Pr (Y accepted) =

R
X π� (y) dy

C 0
R
X q
� (y) dy

.
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Thus

Pr (Y � x jY accepted) =
Pr (Y � x and Y accepted)

Pr (Y accepted)

=

R x
�∞ π� (y) dyR
X π� (y) dy

=
Z x

�∞
π (y) dy .

Example: We want to sample from Be (x ; α, β) ∝ xα�1 (1� x)β�1

using U [0, 1]. One can �nd

sup
x2[0,1]

xα�1 (1� x)β�1

1

analytically for α, β > 1! We do not need the normalizing constant of
Be.
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You do not lose anything by not knowing the normalizing constant of
q�.

Example: The target π is given by

π (x) ∝ π� (x) = exp
�
�x

2

2

�
m (x)

where m (x) � M for any x 2 X.
If we use q (x) = q� (x) = (2π)�1/2 exp

�
� x 22

�
, then we have

π� (x)
q� (x)

� C1 = (2π)1/2M and Pr (Y accepted) =

R
X π� (y) dy

C1
.

If we use q� (x) = exp
�
� x 22

�
, then we have π�(x )

q�(x ) � C2 = M and

Pr (Y accepted) =

R
X π� (y) dy

C2 (2π)1/2 =

R
X π� (y) dy

C1
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The acceptance probability Pr (Y accepted) is a measure of e¢ ciency.

The number of trials before accepting a candidate follows a geometric
distribution

Pr
�
k th proposal accepted

�
= (1� ρ)k�1 ρ

where ρ =

 R
X π� (y) dy

C 0
R
X q
� (y) dy

!

thus its expected value is

∞

∑
k=0

k (1� ρ)k�1 ρ =
1
$
=

1
Pr (Y accepted)

.

This is important to better understand the Metropolis-Hastings
algorithm.
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Consider a Bayesian model: prior π (θ) and likelihood f (x j θ) .

The posterior distribution is given by

π (θj x) = π(θ)f ( x jθ)R
Θ π(θ)f ( x jθ)d θ

∝ π� ( θj x)
where π� (θj x) = π (θ) f (x j θ) .

We can use the prior distribution as a candidate distribution
q (θ) = q� (θ) = π (θ) as long as

sup
θ2Θ

π� ( θj x)
q� (θ)

= sup
θ2Θ
f (x j θ) � C .

In many applications, the likelihood is bounded so one can use the
rejection procedure and it is accepted with probaR

Θ π (θ) f (x j θ) dθ/C .
Moreover, if we have q� (θ) = π (θ) then expected value before
acceptance

cR
Θ π (θ) f (x j θ) dθ

.
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Limitations of Accept-Reject

Consider the case where X= Rn

π (θ) =
1

(2π)n/2 exp

 
�∑n

i=1 θ2i
2

!
and

qσ (θ) =
1

(2πσ2)n/2 exp

 
�∑n

i=1 θ2i
2σ2

!

We have for any σ > 1

π (θ)

qσ (θ)
= σn exp

 
�

n

∑
i=1

θ2i

�
1� 1

2σ2

�!
� σn for any θ

and
Pr (Y accepted) =

1
σn

Despite having a very good proposal then the acceptance probability
decreases exponentially fast with the dimension of the problem.
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Advantages.

Rather universal, and compared to the inverse cdf method requires
less algebraic properties.

Neither normalisation constant of π nor that of q are needed.

Drawbacks.

How to construct the proposal q (x) automatically?

Typically the performance of the method decrease exponentially with
the dimension of the problem.
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Beyond Standard Accept Reject

In the standard Rejection algorithm, the candidate is sampled before
U. This is not necessary.

Proposition: Let (Yn, In)n�1 be a sequence of i.i.d. rvs taking values
in X�f0, 1g such that Y1 � q and

Pr ( I1 = 1jY1 = y) =
π� (y)
Cq� (y)

De�ne τ = min fi � 1 : Ii = 1g, then Yτ � π.

This result is useful if there are ways of constructing condition for
the acceptance or rejection of the current proposed element Y from
minimal information about it.
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Envelop Accept Reject

Squeeze principle: Assume we have

q�L (x) � π� (x) � Cq� (x)

then we can modify the algorithm as follows.

1 Sample Y�q and U � U (0, 1).
2 If U � q�L(Y )

C 0q�(Y ) then return Y ;

3 Otherwise, accept X if U < π�(Y )
C 0q�(Y ) , otherwise return to step 1.
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Adaptive Rejection Sampling

Consider the class of univariate log-concave densities; i.e. we have

∂2 logπ (x)
∂x2

< 0

where π (x) = f (x) /
R
f (x) dx .

The idea is to construct automatically an piecewise linear upper (and
lower) bound for the target.

Let Sn be a set of points fxign+1i=0 in the support of π (x) such that
h (xi ) = log f (xi ).

AD () 6th February 2007 34 / 42



Adaptive Rejection Sampling

Consider the class of univariate log-concave densities; i.e. we have

∂2 logπ (x)
∂x2

< 0

where π (x) = f (x) /
R
f (x) dx .

The idea is to construct automatically an piecewise linear upper (and
lower) bound for the target.

Let Sn be a set of points fxign+1i=0 in the support of π (x) such that
h (xi ) = log f (xi ).

AD () 6th February 2007 34 / 42



Adaptive Rejection Sampling

Consider the class of univariate log-concave densities; i.e. we have

∂2 logπ (x)
∂x2

< 0

where π (x) = f (x) /
R
f (x) dx .

The idea is to construct automatically an piecewise linear upper (and
lower) bound for the target.

Let Sn be a set of points fxign+1i=0 in the support of π (x) such that
h (xi ) = log f (xi ).

AD () 6th February 2007 34 / 42



Because of concavity, the line Li ,i+1 going through (xi , h (xi )) and
(xi+1, h (xi+1)) is below the graph of h in [xi , xi+1] and is above this
graph outside this interval.
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We de�ne hn (x) = min fLi�1,i (x) , Li+1,i+2 (x)g, hn (x) = Li ,i+1 (x)
[where hn (x) = �∞ and hn (x) = min fL0,1 (x) , Ln,n+1 (x)g on
[x0, xn+1]

c so that
hn (x) � h (x) � hn (x)

Therefore we have for f n (x) = exp hn (x) , f n (x) = exp hn (x)

f n (x) = exp hn (x) � π (x) � f n (x) = wngn (x)

where it is easy to compute wn and easy to sample from gn (x) .
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Initialize n = 0 and S0
At iteration n � 1

1 Generate Y � gn.
2 If U � f n(Y )

w n f n(Y )
then return Y ; otherwise set Sn+1 = Sn [ fY g.
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Consider n data (xi ,Yi )

Yi j xi � P (a+ bxi ) .

and we set the prior

π (a, b) = N
�
a; 0, σ2

�
N
�
b; 0, τ2

�

We have

logπ (aj x1:n, y1:n, b) =cst+a∑ yi � ea ∑ exib � a2/2σ2

) ∂2 log π( ajx1:n ,y1:n ,b)
∂a2 = �ea ∑ exib � σ�2 < 0.

Thus π (aj x1:n, y1:n, b) is log-concave, similarly π (bj x1:n, y1:n, a) is
log-concave.
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Monahan�s Accept Reject Algorithm

We want to sample from the cdf

F (x) =
H (�G (x))
H (�1)

where G (x) is a given cdf and

H (x) =
∞

∑
n=1

anxn

with 1 = a1 � a2 � � � � � 0. We only want to use samples from G
and U [0, 1]

Example: Assume you are interested in sampling from
F (x) = 1� cos

�
πx
2

�
where 0 < x < 1. You could do it through

inversion with 2
πarccos(U) but this requires evaluating a complex

(transcendental) function. Alternatively we have G (x) = x2 and

H (x) = x +
π2

48
x2 +

π4

5760
x3 + � � �+ π2i�2

22i�3 (2i)!
x i + � � �
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� Repeat
� Generate X � G and set K  1.
� Repeat
� Generate U � G and V � U [0, 1].
� If U � X and V � aK+1

aK
then K  K + 1, otherwise stop.

Until K odd, return X .
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We de�ne the event An by X = max (X ,U1, ...,Un) and
Z1 = � � � = Zn = 1 where the Ui s are the rvs generated in the inner
loop and the Zi s are Bernoulli rvs equal to consecutives values
IV� aK+1

aK
.

We have

P (X � x ,An) = anG (x)
n ,

P (X � x ,An,Acn+1) = P (X � x ,An)� P (X � x ,An,An+1)
= anG (x)

n � an+1G (x)n+1 .

The proba that X is accepted is

P (K odd) =
∞

∑
n=1

an (�1)n+1 = H (�1)

and the returned X has distribution function

F (x) = P (X � x) = ∑∞
n=1 anG (x)

n (�1)n+1

H (�1) =
H (G (�x))
H (�1) .
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There exists standard techniques to sample from classical
distributions.

Rejection is useful for small non-standard distributions but collapses
for most �interesting�problems.

These algorithms will be building blocks of more complex Monte
Carlo algorithms.
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