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o Let (E, &) be a measurable space and M; (E) be the set of
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o Let (E, &) be a measurable space and M; (E) be the set of
probability measures on (E, &) .

@ A Markov transition kernel on E is a family of probability measures
{K(x,:) e My (E);x € E}

indexed by the elements of E and such that K (x, A) is measurable
forany Ae &.

e Starting from p € M; (E) and a sequence of kernels {K,; n > 1} then

n
Py (Xo € Ag, oy Xn € Ay) = / /  (dxo) [T K (xi1. dxi)
0EAQ Xn€A, :

X i=1
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o Let K (xi1, dx2) be a Markov kernel from (E1,&1) to (Ep, £2).
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o Let K (xi1, dx2) be a Markov kernel from (E1,&1) to (Ep, £2).

e For any (measurable) function f on E;, we define
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o Let K (xi1, dx2) be a Markov kernel from (E1,&1) to (Ep, £2).

e For any (measurable) function f on E;, we define

K (f) (xl):/ K (x1, dx2) f (x2)

E>

e For any u € My (Ep), we define

WK () = [ p(da) K (,4)

@ We have
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Given Ki (x1, dx2) a Markov kernel from (Ei, £1) to (Ez, &) and
K (x2, dx3) a Markov kernel from (Ez, &) to (Es, £3) then we can
define a new Markov kernel from (E;, £1) to (Es, £3)
KiKo (x, A) = /E Ki (x, dy) Ko (v, A)
2

for any (x, A) € £ x &s.
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e Given Kj (x1,dxp) a Markov kernel from (Ei, £1) to (Ez, &) and
K (x2, dx3) a Markov kernel from (Ez, &) to (Es, £3) then we can
define a new Markov kernel from (E;, £1) to (Es, £3)

KiKo (x, A) = /E Ki (x, dy) Ko (v, A)

for any (x, A) € £ x &s.
e Given K (x, dx") a Markov kernel from (E,€) to (E, &), we can
define the iterated kernel

K,,(x,A):/ K (x, ) K (1, d2) < K (xn1, A)
En-

which is the probability to move from x to A in n iterations of the
Markov kernels.

AD () April 2007

4 /29



e Given Kj (x1,dxp) a Markov kernel from (Ei, £1) to (Ez, &) and
K (x2, dx3) a Markov kernel from (Ez, &) to (Es, £3) then we can
define a new Markov kernel from (E;, £1) to (Es, £3)

KiKo (x, A) = /E Ki (x, dy) Ko (v, A)
2
for any (x, A) € £ x &s.

e Given K (x, dx") a Markov kernel from (E,€) to (E, &), we can
define the iterated kernel

K, (x, A) :/

1 K (x,dxi) K (x1,dx2) -+ K (xp—1, A)
En-

which is the probability to move from x to A in n iterations of the
Markov kernels.

@ In the MCMC context, we have typically Xop ~ p € M; (E) and K an
MCMC kernel of invariant distribution 77 and we want the measure

pK"
to converge as fast as possible to 7.
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Total Variation Norm

e We denote M (E) the space of bounded measures on (E, £) equipped
with the norm

1 .
Il = 5 |supr (A) = ot (4)|
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Total Variation Norm

e We denote M (E) the space of bounded measures on (E, £) equipped
with the norm

1 .
Il = 5 |supr (A) = ot (4)|

@ We can think of M; (E) as

M (E)={peM(E):u(E)=1and u(A) >0forany Ac E}.
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Total Variation Norm

e We denote M (E) the space of bounded measures on (E, £) equipped
with the norm

1 .
Il = 5 |supr (A) = ot (4)|

@ We can think of M; (E) as
M (E)={peM(E):u(E)=1and u(A) >0forany Ac E}.

@ We can easily show that for any y € M (E)

1
Il =5

and
ﬂEMl(E)iﬂKEMl(E)
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@ We also introduce

Mo (E) = {n € M(E):pu(E) =0}
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@ We also introduce

Mo (E) = {n € M(E):pu(E) =0}

e Forany x,y € E (x # y) then
y:(SX—(SyGMO(E)

and

[l = 1.
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@ We also introduce

Mo (E)={p€e M(E):u(E)=0}.

e Forany x,y € E (x # y) then
y:(SX—(SyGMO(E)

and
[u]l = 1.

@ Moreover we have

e M (E)=uKe M (E).
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Dobrushin Coefficient

e We denote by b (K) the norm of the operator K on the normed space
(Mo (E) . [I-1)

b(K)= rsup M
ueMy(E) [l
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Dobrushin Coefficient

e We denote by b (K) the norm of the operator K on the normed space
(Mo (E) . [I-1)

b(K)= rsup LIJKH
ueMy(E) [l

(
o Clearly we have for any y,, i, € My (E) that u; —pu, € Mo (E) and

1K —u K| < b(K) ||y — 1ol

so b(K) is a measure of the contraction induced by K.
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@ The number a (K) € [0, 1] defined as follows

a(K)= inf{imin (K(X,A,-),K(y.A,'))}

where the infimum is taken over all points x, y € E, the integers
m > 1 and the finite partitions {A;;1 < i < m} of E. It is called the
Dobrushin coefficient.
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@ The number a (K) € [0, 1] defined as follows

a(K)=inf {imin (K (x,A), K(y,A,-))}

where the infimum is taken over all points x, y € E, the integers
m > 1 and the finite partitions {A;;1 < i < m} of E. It is called the
Dobrushin coefficient.

@ We will show later on that
a(K)+b(K)=1,

i.e. we want b (K) close to zero and a (K) close to one for fast
mixing.
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o If u € My (E) then
7] = supp (A) .
Ac&
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o If u € My (E) then
7] = supp (A) .
Ac&

@ Moreover for any iy, i, € My (E) then

11 = mall = sup [py (A) — p, (A)].
Ae&
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o If u € My (E) then
7] = supp (A) .
Ac&

@ Moreover for any iy, i, € My (E) then
[y = #all = sup [py (A) = py (A)]-
A€

@ When the space is finite, then we have

iy = pall = 5 X2 ly () = 11y ()

xeE

and when i, i1, have densities f, f, with respect to say A then

i = mall = 5 1A () = ()] A ().
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o If y € My (E) then for any A € £ then
J(E) =0=pu(A)+ p (A°) where A = E — A,
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o If y € My (E) then for any A € £ then
1 (E) =0=p(A)+ p (A°) where A° = E — A,
@ Thus we have

su A) = —su A°) = —infu (A
supp (A) = —supp (A%) = — Inf p (A)

and
[1]| = supp (A).
Ae&
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o If y € My (E) then for any A € £ then
1 (E) =0=p(A)+ p (A°) where A° = E — A,
@ Thus we have

su A) = —su A°) = —infu (A
supp (A) = —supp (A%) = — Inf p (A)

and
[1]| = supp (A).
Ae&

@ Assume now that yy, u, € My (E) then clearly (u; — p,) € Mo (E)
so it follows that

[y = ol = Z‘ég (11 (A) — 1y (A))

= sup (# (A) = 1 (A)) (by symmetry)

= sup sup ((#y (A) = 1z (A)) s 1y (A) — 11 (A))
= sup 1y (A) — 1t (4)
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@ Now consider that E is a finite set and we denote

0(x) = py (x) =t (x) -
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@ Now consider that E is a finite set and we denote
0 (x) =y (x) = py (x)
@ As for each A € £ one has
0(A) =

it follows that

Iy = moll = Supl9( |<sup (Zlf) ZIG(XH)

XEA xEAC

7Z|9 Z|P‘1 ()|

XGE XEE

IN
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@ Moreover using once more that 6 (A) = 1 (6 (A) — 6 (A°)), then if we

select
A={xeE:0(x)>0}
then
1
0(4) = 3 Y 00— ) 6(x)
_X:P’1(X)ZP’2(X) Xy (x) <py(x)
1
-1 B VS R SR )]
_X:I/‘1(X)2P‘2(X) x:py (x)<py(x)
1
= S X I (0= i ().
x€E
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@ Moreover using once more that 6 (A) = 1 (6 (A) — 6 (A°)), then if we

select
then

0 (A)

N =

N = N+~

A={xeE:0(x)>0}

Y, 0x)- X 9(X)]
1 (%)

Xy (X) <

)BEERCACIIE DY

10 (x)]
_X:I/‘1(X)2P‘2(X) Xty (x) Spp (%)
Y iy (%) =y (X))

x€E

@ Hence it follows that

=1l =5 Dl ) -l = ¥

AD ()

x€E

x€Ezpy (x)>y(x)
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Theorem (Dobrushin)

@ For any Markov kernel K on E, the number

b(K)= sup w € [0, 1] can be written as
HEMo(E)
b(K) = sup [ K = o K/ My — 1ol

H:pp €M1 (E)

= sup |K(x,-)—K(y.")|
x,y€E

= 1—-a(K).
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Theorem (Dobrushin)

@ For any Markov kernel K on E, the number

b(K)= sup w € [0, 1] can be written as
HEMo(E)
b(K) = sup [ K = o K/ My — 1ol

H:pp €M1 (E)

= sup |K(x,-)—K(y.")|
x,y€E

= 1—-a(K).

e Remark. Showing that sup [|[K(x,:) =K (y,")||=1—a(K)is
x,yeE

equivalent to show that for any y, 4, € My (E) then

]

Iy = poll = 1= inf{ - min (1, (4). 1 <A,->>} .
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Corollary. Assume there exists an integer p > 1, v € M; (E) and
e > 0 such that for any (x, A) € (E, &)

KP (x,A) > ey (A).

Thus KP is a contracting operator on (Mg (E), ||-]|) and for any
Py Hy € My (E)

[ KP = o KP < (1 =€) [y = 1ol -

Moreover if K possesses an invariant measure y = p K then this
one is unique and for any initial measure y € M; (E) then

lim [[uK" = |l = 0.
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Proof of Corollary

@ Clearly from Dobrushin’s theorem we have

a(KP)>eand b(KP)=1—-a(KP)<1l-—e¢
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Proof of Corollary

@ Clearly from Dobrushin’s theorem we have
a(KP)>eand b(KP)=1—-a(KP)<1l-—e¢

@ For any n > kp we have

< (1=8)f fln— peooll-

InK" =i KOl < (L= e)? [k — k|
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Proof of Corollary

@ Clearly from Dobrushin’s theorem we have
a(KP)>eand b(KP)=1—-a(KP)<1l-—e¢

@ For any n > kp we have

< (1=8)f fln— peooll-

@ The invariant measure is obviously unique as if we had two then

InK" = iK™ < (1= €)” [k — p K"

|l KP —veoKP|| < (1 —¢) ||y, — Veo|| (contraction)

but
1Moo KP — Voo KP|| = || — Vool (invariance).
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Proof of Dobrushin’s Theorem

@ We will only prove the theorem a finite space E.
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Proof of Dobrushin’s Theorem

@ We will only prove the theorem a finite space E.

@ We have

K
by = sup WKL S G K= K = il
HeMo(E) ] 1y oy €My (E)
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Proof of Dobrushin’s Theorem

@ We will only prove the theorem a finite space E.
o We have

K
by = sup WKL S G K= K = il
ueMo(E) HV” Uy My EML(E)

@ To prove that there is equality, consider a measure p € My (E) and
denote

Al ={x€E:pu(x) >0}, Ay ={xcE:p(x) <0}

then

y(E):o:»y(A;) :—y(Ay).
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@ Hence we can rewrite i as a difference of probability measures up to
a normalizing constant

w(B) = u(A;) (”<A?“B)+V(Ayms))

"I\ (A i (Ar)
N (rn(AinB) u(AnB)
- ’*(Aﬂ)( R A )
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@ Hence we can rewrite i as a difference of probability measures up to
a normalizing constant

w(B) = u(A;) (”<A?“B)+V(Ayms))

' w(A)) w(Ar)
N (rn(AinB) u(AnB)
B S2A W
i HA\Au
o |t follows that
H(A;m‘)K B n(AN) KH
P I I G
(K)= sup ——— = sup - -
HEMo(E) [l ueMo(E) ||#(Ain:)  p(Ain) ’
w(A)  wn(An)

and the result is proved.
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@ To show that b (K) = sup ||K (x,:) — K (y,-)||, we can first show
x,yeE
that

b(K) = sup [ K = o K/ My — 1ol
1y €EML(E)

Z sup |0 =3y K]| /[|ox =y

x,ye€E

= sup |0«K — 6, K]|

x,y€E
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@ To show that b (K) = sup ||K (x,:) — K (y,-)||, we can first show
x,yeE
that

b(K) = sup [ K = o K/ My — 1ol
1y €EML(E)

Z sup |0 =3y K]| /[|ox =y

x,ye€E

= sup |0«K — 6, K]|

x,y€E

@ To show the equality, remember that if u = y; — u, where
Hy. fy € My (E) then

Il = > ZW Y ou)=— Y, .

XEE xEE:y(x)>0 x€E:u(x)<0
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e Forany C € £ and yu = p; — p,, we also have

pK(C) = ZOV K (x,C) +ZOV K (x,C)

p> n<

= Y HOOK(xC) =) (—u(x)K(x C)
u>0 <0

< Y rK(xO) = [infK (x,O)] ¥ (=p (x))
u=0 u<0

= LKl y) [K(y.€) —infK (x,C)]
‘u>

< Y uly [supKyC) iQfK(x,C)]
u>0

= HVHSleyP!K(yv €)=K (x C)
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@ Forany C € £ and pu =y

K (C) =

Yo om(x

— J,, we also have

K(xC)+ Y n(x)K(xC)

#=20 n<0

Y ) K (6 €)= ¥ (—p(x)) K (x,©)

u=0 u<o0

Z u(x)K(x, C)— {iQfK (x, C)} Z (—u (%))
=0 u<0

Ykl y) [K (v, C) = infK (x, C)]

‘u>

Y uly [supK y, C) —infK (x, c>]

#=0

Il 1K (3. €)= K (x,C)

@ Now by taking the supremum on the C € &, the result follows.

AD ()
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@ The final result that b (K) =1 — a(K) follows from the following
proposition.
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@ The final result that b (K) =1 — a(K) follows from the following
proposition.

e Proposition. For any iy, i, € My (E), we have

[y —mll = 1— sup v(E)
VS y. o
= 1—=) min(p; (x), 4, (x)).
x€E
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@ The final result that b (K) =1 — a(K) follows from the following
proposition.

e Proposition. For any iy, i, € My (E), we have

[y —mll = 1— sup v(E)
VS y. o
= 1—=) min(p; (x), 4, (x)).
x€E

@ Proof. We have
2011ty = ol = Ly (a () = 11y (3)) = Sy o, (1t (3) = 1y (%))
=2- Zylzllz Ho (x) = Zy1<yz 31 (x)
=2 (1= Xy, min (113 () 4y (X)) = Ty min (1 (x) 115 (x))

thus
[y —moll =1 — Z min (p; (x), py (x))

x€E
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@ So it follows from this result that the measure v is defined by

v (x) = min (p; (x), 4y (x))
and

1-v(E) = [lgy —ppll 21— sup v (E).
Y<Hq:Hy
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@ So it follows from this result that the measure v is defined by

v (x) = min (p; (x), 4y (x))
and

1—v(E) =l —pp 21— sup 7 (E).
YSHiky
e But if v < g, p, then we also have 7 (x) < v (x) so it follows that
v (x) is maximal and

1—v(E) = 1— sup y(E)=|p — sl
Y<H1.Hy

> 1— sup v(E).
Y<HyiHy
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@ So it follows from this result that the measure v is defined by

v (x) = min (py (x), 3 (x))

and

1-v(E) = [lgy —ppll 21— sup v (E).
Y<Hq:Hy

e But if v < g, p, then we also have 7 (x) < v (x) so it follows that
v (x) is maximal and

1—v(E) = 1— sup y(E)=|p — sl
Y<H1.Hy

> 1— sup v(E).
Y<HyiHy

@ To prove the results in general measurable spaces then we need to use
the Hahn-Jordan decomposition of the measure

p=pt—pu.
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Application to Convergence of Simulated Annealing

@ Assume we are interested in maximizing a function U : E — IR where
E is a finite state-space.

AD () April 2007 22 / 29



Application to Convergence of Simulated Annealing

@ Assume we are interested in maximizing a function U : E — IR where
E is a finite state-space.

@ We use a random walk Metropolis

Kp(x.y) =ap(x.y)q(xy)+ (1 - wp(x,2)q(x, Z)) dx (¥)

zeE

targetting (U ()
exp (— X
Zp

g (x) =
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Application to Convergence of Simulated Annealing

@ Assume we are interested in maximizing a function U : E — IR where
E is a finite state-space.

@ We use a random walk Metropolis

zeE

Kp(x.y) =ap(x.y)q(xy)+ (1 - wp(x,2)q(x, Z)) dx (¥)

targetting exp (—BU (x))

g (x) = Z

@ We want to increase 8 to oo as time increases as then g (x)
concentrates itself on the set of global maxima of U (x).

AD () April 2007 22 / 29



@ Denoting 7, the initial distribution of Xp, then we have
Xn+1|Xn ~ Kﬁn (Xny )

Nor1 = MoKp, -+ Kp,.
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@ Denoting 7, the initial distribution of Xp, then we have
Xn+1|Xn ~ Klgn (Xn, )
M1 = MoKp, -+ Kp,.

@ We know that
n:Bn = nlgnKan

and we want to study

Hnn — 7tg,
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@ Denoting 7, the initial distribution of Xp, then we have
Xn+1| Xp N~ Klgn (Xn, )
M1 = MoKp, -+ Kp,.

@ We know that
n:Bn = nanKﬂﬂ

and we want to study

Hnn — 7tg,

@ The idea consists of using

111, Ks, — 705, K,

mixing properties

17”“’1 - T[ﬁn+l UnKan - nﬁn Kan + T(ﬁn - 7Tﬁn+1

IN

+ Hnﬁn B 7Tﬁn+1
N————
discrepancy successive targets
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@ We have

11,Kp, — 705, Kp, || < B (Kg,) ||, — 7,
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@ We have

< B(Kg,) |n, — s,

e Lemma. For any B> 0and (x,y) € E x E then

HﬂnKﬁn - 7T:Bn Kﬁn

Ks (x,y) > exp (—poscU) q (x,y)

where

oscU = maxU (x) — minU (x) .

x€E x€E

April 2007
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@ We have

< B(Kg,) |n, — s,

e Lemma. For any B> 0and (x,y) € E x E then

HﬂnKﬁn - 7T:Bn Kﬁn

Ks (x,y) > exp (—poscU) q (x,y)

where

oscU = TSE(U (x) — )r(nelgU (x).

@ Proof. Clearly we have

Kp(x.y) = ap(x.y) q(x,y)

where

g (x,y) = min (Lexp (= (U (y) = U (x)))) = exp (—BoscU) .

AD () April 2007
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o It follows that
B(Kp,) <1—exp(—p,oscl).
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o It follows that
B(Kg) <1—exp(—p,oscl).

o Lemma. We have

Hnﬁn — T, = (Byi1 — B,) -oscU
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o It follows that
B(Kp,) <1—exp(—p,oscl).

@ Lemma. We have

< (;Bn+1 - :Bn) -oscU

@ Proposition. We have for any n > 0

HT[:Bn B 7-[:Bn+1

IN

111,Kp, — 705, K,
(1 —exp (—pB,oscV)) |0, — g,

+ H”ﬁn = Ty
+ (IBnH - an)

;7”+1 - nﬁnJrl

IN
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e Lemma. Let /,, a,, b, be three sequences positive numbers such that

forn>1
I < (1 - an) In—1+ bn.
If b
lim — =0
n—eoo g,
and .
lim [J(1—a,) =0
n~>o<::p:1
then
lim [, =0.

April 2007 26 /



@ Proof. For any € >0, 3 n(e) > 1 such that for n > n(e)

n

b, < €a,, H (1—ap) <e.
p=1

Thus for n > n(e)
lh—e < (1—ay)lh-1—€(1—ap)
= (1—ap) (lh-1—€)
< (h—e)J](—a).

p=1

It follows that
0<lh<e+e(lh+e)<e(l+e+|h]).

The result follows.
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o Theorem. Let {X,} -, be the simulated annealing scheme, then for
any initial distribution 7, and B, = log(%e), C > oscU then

im_ [, — 75, = 0.

n—oo
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o Theorem. Let {X,} -, be the simulated annealing scheme, then for

any initial distribution 7, and B, = w, C > oscU then

im_ [, — 75, = 0.

n—oo

@ Proof. We have

|

so by writing /41 = ‘

< (1—exp(=B,oscV)) ||n, — mp,
+ (:Bn+1 - ﬁn) .oscU

then

;7”+1 B TCanJrl

7]n+1 - ﬂlgn+1

1 < (1 —ant1) In+ bosa

where
1
a1 = exp(—p,oscl) = ——,
(n+e)¢
b _ oscU 1
ntl C n+e
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@ We have

. by :
n—oo g, n~>oo<n+e)17 c

and

A

ﬁ(l—ap) < exp(Zn:Iog(l—ap))

p=1

n
< exp (— Z ap> — 0
p—1 n—oo
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