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Markov chains

Let (E , E) be a measurable space and M1 (E ) be the set of
probability measures on (E , E) .

A Markov transition kernel on E is a family of probability measures

fK (x , �) 2 M1 (E ) ; x 2 Eg

indexed by the elements of E and such that K (x ,A) is measurable
for any A 2 E .
Starting from µ 2 M1 (E ) and a sequence of kernels fKn; n � 1g then

Pµ (X0 2 A0, ...,Xn 2 An) =
Z
x02A0

� � �
Z
xn2An

µ (dx0)
n

∏
i=1
Ki (xi�1, dxi ) .
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Notation

Let K (x1, dx2) be a Markov kernel from (E1, E1) to (E2, E2).

For any (measurable) function f on E2, we de�ne

K (f ) (x1) =
Z
E2
K (x1, dx2) f (x2)

For any µ 2 M1 (E1), we de�ne

µK (A) =
Z
E1

µ (dx1)K (x1,A)

We have
µ (K (f )) = (µK ) (f ) .
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Given K1 (x1, dx2) a Markov kernel from (E1, E1) to (E2, E2) and
K2 (x2, dx3) a Markov kernel from (E2, E2) to (E3, E3) then we can
de�ne a new Markov kernel from (E1, E1) to (E3, E3)

K1K2 (x ,A) =
Z
E2
K1 (x , dy)K2 (y ,A)

for any (x ,A) 2 E1 � E3.

Given K (x , dx 0) a Markov kernel from (E , E) to (E , E), we can
de�ne the iterated kernel

Kn (x ,A) =
Z
E n�1

K (x , dx1)K (x1, dx2) � � �K (xn�1,A)

which is the probability to move from x to A in n iterations of the
Markov kernels.
In the MCMC context, we have typically X0 � µ 2 M1 (E ) and K an
MCMC kernel of invariant distribution π and we want the measure

µK n

to converge as fast as possible to π.
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Total Variation Norm

We denote M (E ) the space of bounded measures on (E , E) equipped
with the norm

kµk = 1
2

�
sup
A2E

µ (A)� inf
A2E

µ (A)
�

We can think of M1 (E ) as

M1 (E ) = fµ 2 M (E ) : µ (E ) = 1 and µ (A) � 0 for any A 2 Eg .

We can easily show that for any µ 2 M1 (E )

kµk = 1
2

and
µ 2 M1 (E )) µK 2 M1 (E )
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We also introduce

M0 (E ) = fµ 2 M (E ) : µ (E ) = 0g .

For any x , y 2 E (x 6= y) then

µ = δx � δy 2 M0 (E )

and
kµk = 1.

Moreover we have

µ 2 M0 (E )) µK 2 M0 (E ) .
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Dobrushin Coe¢ cient

We denote by b (K ) the norm of the operator K on the normed space
(M0 (E ) , k�k)

b (K ) = sup
µ2M0(E )

kµKk
kµk .

Clearly we have for any µ1, µ2 2 M1 (E ) that µ1 � µ2 2 M0 (E ) and

kµ1K � µ2Kk � b (K ) kµ1 � µ2k

so b (K ) is a measure of the contraction induced by K .
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The number a (K ) 2 [0, 1] de�ned as follows

a (K ) = inf

(
m

∑
i=1
min (K (x ,Ai ) ,K (y ,Ai ))

)

where the in�mum is taken over all points x , y 2 E , the integers
m � 1 and the �nite partitions fAi ; 1 � i � mg of E . It is called the
Dobrushin coe¢ cient.

We will show later on that

a (K ) + b (K ) = 1,

i.e. we want b (K ) close to zero and a (K ) close to one for fast
mixing.
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Properties

If µ 2 M0 (E ) then
kµk = sup

A2E
µ (A) .

Moreover for any µ1, µ2 2 M1 (E ) then

kµ1 � µ2k = sup
A2E

jµ1 (A)� µ2 (A)j .

When the space is �nite, then we have

kµ1 � µ2k =
1
2 ∑
x2E

jµ1 (x)� µ2 (x)j

and when µ1, µ2 have densities f1, f2 with respect to say λ then

kµ1 � µ2k =
1
2

Z
E
jf1 (x)� f2 (x)j λ (dx) .
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Proofs

If µ 2 M0 (E ) then for any A 2 E then
µ (E ) = 0 = µ (A) + µ (Ac ) where Ac = E � A.

Thus we have

sup
A2E

µ (A) = �sup
A2E

µ (Ac ) = � inf
A2E

µ (A)

and
kµk = sup

A2E
µ (A) .

Assume now that µ1, µ2 2 M1 (E ) then clearly (µ1 � µ2) 2 M0 (E )
so it follows that

kµ1 � µ2k = sup
A2E

(µ1 (A)� µ2 (A))

= sup
A2E

(µ2 (A)� µ1 (A)) (by symmetry)

= sup
A2E

sup ((µ1 (A)� µ2 (A)) , µ2 (A)� µ1 (A))

= sup
A2E

jµ1 (A)� µ2 (A)j
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Now consider that E is a �nite set and we denote

θ (x) = µ1 (x)� µ2 (x) .

As for each A 2 E one has

θ (A) =
1
2
(θ (A)� θ (Ac ))

it follows that

kµ1 � µ2k = sup
A2E

jθ (A)j � sup
A2E

1
2

 
∑
x2A

jθ (x)j+ ∑
x2Ac

jθ (x)j
!

� 1
2 ∑
x2E

jθ (x)j = 1
2 ∑
x2E

jµ1 (x)� µ2 (x)j
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Moreover using once more that θ (A) = 1
2 (θ (A)� θ (Ac )), then if we

select
A = fx 2 E : θ (x) � 0g

then

θ (A) =
1
2

24 ∑
x :µ1(x )�µ2(x )

θ (x)� ∑
x :µ1(x )�µ2(x )

θ (x)

35
=

1
2

24 ∑
x :µ1(x )�µ2(x )

jθ (x)j+ ∑
x :µ1(x )�µ2(x )

jθ (x)j

35
=

1
2 ∑
x2E

jµ1 (x)� µ2 (x)j .

Hence it follows that

kµ1 � µ2k =
1
2 ∑
x2E

jµ1 (x)� µ2 (x)j = ∑
x2E :µ1(x )>µ2(x )

µ1 (x)�µ2 (x)
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Theorem (Dobrushin)

For any Markov kernel K on E , the number
b (K ) = sup

µ2M0(E )

kµK k
kµk 2 [0, 1] can be written as

b (K ) = sup
µ1,µ22M1(E )

kµ1K � µ2Kk / kµ1 � µ2k

= sup
x ,y2E

kK (x , �)�K (y , �)k

= 1� a (K ) .

Remark. Showing that sup
x ,y2E

kK (x , �)�K (y , �)k = 1� a (K ) is

equivalent to show that for any µ1, µ2 2 M1 (E ) then

kµ1 � µ2k = 1� inf
(

m

∑
i=1
min (µ1 (Ai ) , µ2 (Ai ))

)
.
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Corollary. Assume there exists an integer p � 1, γ 2 M1 (E ) and
ε > 0 such that for any (x ,A) 2 (E , E)

K p (x ,A) � εγ (A) .

Thus K p is a contracting operator on (M0 (E ) , k�k) and for any
µ1, µ2 2 M1 (E )

kµ1K
p � µ2K

pk � (1� ε) kµ1 � µ2k .

Moreover if K possesses an invariant measure µ∞ = µ∞K then this
one is unique and for any initial measure µ 2 M1 (E ) then

lim
n!∞

kµK n � µ∞k = 0.
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Proof of Corollary

Clearly from Dobrushin�s theorem we have

a (K p) � ε and b (K p) = 1� a (K p) � 1� ε.

For any n � kp we have

kµK n � µ∞K
nk � (1� ε)p

µK n�kp � µ∞K
n�kp


� (1� ε)p kµ� µ∞k .

The invariant measure is obviously unique as if we had two then

kµ∞K
p � ν∞K pk � (1� ε) kµ∞ � ν∞k (contraction)

but
kµ∞K

p � ν∞K pk = kµ∞ � ν∞k (invariance).
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Proof of Dobrushin�s Theorem

We will only prove the theorem a �nite space E .

We have

b (K ) = sup
µ2M0(E )

kµKk
kµk � sup

µ1,µ22M1(E )
kµ1K � µ2Kk / kµ1 � µ2k .

To prove that there is equality, consider a measure µ 2 M0 (E ) and
denote

A+µ = fx 2 E : µ (x) � 0g , A�µ = fx 2 E : µ (x) < 0g

then
µ (E ) = 0) µ

�
A+µ
�
= �µ

�
A�µ
�
.
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Hence we can rewrite µ as a di¤erence of probability measures up to
a normalizing constant

µ (B) = µ
�
A+µ
�0@µ

�
A+µ \ B

�
µ
�
A+µ
� +

µ
�
A�µ \ B

�
µ
�
A+µ
�

1A
= µ

�
A+µ
�0@µ

�
A+µ \ B

�
µ
�
A+µ
� �

µ
�
A�µ \ B

�
µ
�
A�µ
�

1A

It follows that

b (K ) = sup
µ2M0(E )

kµKk
kµk = sup

µ2M0(E )

 µ(A+µ \�)
µ(A+µ )

K � µ(A�µ \�)
µ(A�µ )

K

 µ(A+µ \�)
µ(A+µ )

� µ(A�µ \�)
µ(A�µ )


and the result is proved.
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To show that b (K ) = sup
x ,y2E

kK (x , �)�K (y , �)k, we can �rst show

that

b (K ) = sup
µ1,µ22M1(E )

kµ1K � µ2Kk / kµ1 � µ2k

� sup
x ,y2E

kδxK � δyKk / kδx � δy k

= sup
x ,y2E

kδxK � δyKk

To show the equality, remember that if µ = µ1 � µ2 where
µ1, µ2 2 M1 (E ) then

kµk = 1
2 ∑
x2E

jµ (x)j = ∑
x2E :µ(x )>0

µ (x) = � ∑
x2E :µ(x )<0

µ (x) .
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For any C 2 E and µ = µ1 � µ2, we also have

µK (C ) = ∑
µ�0

µ (x)K (x ,C ) + ∑
µ<0

µ (x)K (x ,C )

= ∑
µ�0

µ (x)K (x ,C )� ∑
µ<0

(�µ (x))K (x ,C )

� ∑
µ�0

µ (x)K (x ,C )�
h
inf
x
K (x ,C )

i
∑
µ<0

(�µ (x))

= ∑
µ�0

µ (y)
h
K (y ,C )� inf

x
K (x ,C )

i
� ∑

µ�0
µ (y)

�
sup
y
K (y ,C )� inf

x
K (x ,C )

�
= kµk sup

x ,y
jK (y ,C )�K (x ,C )j

Now by taking the supremum on the C 2 E , the result follows.
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The �nal result that b (K ) = 1� a (K ) follows from the following
proposition.

Proposition. For any µ1, µ2 2 M1 (E ), we have

kµ1 � µ2k = 1� sup
ν�µ1,µ2

ν (E )

= 1� ∑
x2E

min (µ1 (x) , µ2 (x)) .

Proof. We have

2 kµ1 � µ2k = ∑µ1<µ2
(µ2 (x)� µ1 (x))�∑µ1�µ2

(µ2 (x)� µ1 (x))
= 2�∑µ1�µ2

µ2 (x)�∑µ1<µ2
µ1 (x)

= 2
�
1�∑µ1�µ2

min (µ1 (x) , µ2 (x))�∑µ1<µ2
min (µ1 (x) , µ2 (x))

�
thus

kµ1 � µ2k = 1� ∑
x2E

min (µ1 (x) , µ2 (x))
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So it follows from this result that the measure ν is de�ned by

ν (x) = min (µ1 (x) , µ2 (x))

and
1� ν (E ) = kµ1 � µ2k � 1� sup

γ�µ1,µ2

γ (E ) .

But if γ � µ1, µ2 then we also have γ (x) � ν (x) so it follows that
ν (x) is maximal and

1� ν (E ) = 1� sup
γ�µ1,µ2

γ (E ) = kµ1 � µ2k

� 1� sup
γ�µ1,µ2

γ (E ) .

To prove the results in general measurable spaces then we need to use
the Hahn-Jordan decomposition of the measure

µ = µ+ � µ�.
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Application to Convergence of Simulated Annealing

Assume we are interested in maximizing a function U : E ! R where
E is a �nite state-space.

We use a random walk Metropolis

Kβ (x , y) = αβ (x , y) q (x , y) +

 
1� ∑

z2E
αβ (x , z) q (x , z)

!
δx (y)

targetting

πβ (x) =
exp (�βU (x))

Zβ
.

We want to increase β to ∞ as time increases as then πβ (x)
concentrates itself on the set of global maxima of U (x) .
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Denoting η0 the initial distribution of X0, then we have
Xn+1j xn � Kβn

(xn, �)

ηn+1 = η0Kβ1
� � �Kβn .

We know that
πβn

= πβn
Kβn .

and we want to study ηn � πβn

 .
The idea consists of usingηn+1 � πβn+1

 =
ηnKβn

� πβn
Kβn

+ πβn
� πβn+1


�

ηnKβn
� πβn

Kβn

| {z }
mixing properties

+
πβn

� πβn+1

| {z }
discrepancy successive targets
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We have ηnKβn
� πβn

Kβn

 � β
�
Kβn

� ηn � πβn

 .

Lemma. For any β > 0 and (x , y) 2 E � E then

Kβ (x , y) � exp (�βoscU) q (x , y)

where
oscU = max

x2E
U (x)�min

x2E
U (x) .

Proof. Clearly we have

Kβ (x , y) � αβ (x , y) q (x , y)

where

αβ (x , y) = min (1, exp (�β (U (y)� U (x)))) � exp (�βoscU) .
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It follows that
β
�
Kβn

�
� 1� exp (�βnoscU) .

Lemma. We haveπβn
� πβn+1

 � �βn+1 � βn
�
.oscU

Proposition. We have for any n > 0ηn+1 � πβn+1

 �
ηnKβn

� πβn
Kβn

+ πβn
� πβn+1


� (1� exp (�βnoscU))

ηn � πβn

+ �βn+1 � βn
�
.oscU.
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Lemma. Let In, an, bn be three sequences positive numbers such that
for n � 1

In � (1� an) In�1 + bn.
If

lim
n!∞

bn
an
= 0

and

lim
n!∞

n

∏
p=1

(1� ap) = 0

then
lim
n!∞

In = 0.
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Proof. For any ε > 0, 9 n (ε) � 1 such that for n � n (ε)

bn � εan,
n

∏
p=1

(1� ap) � ε.

Thus for n � n (ε)

In � ε � (1� an) In�1 � ε (1� an)
= (1� an) (In�1 � ε)

� (I0 � ε)
n

∏
p=1

(1� ap) .

It follows that

0 � In � ε+ ε (I0 + ε) � ε (1+ ε+ jI0j) .

The result follows.
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Theorem. Let fXngn�0 be the simulated annealing scheme, then for
any initial distribution η0 and βn =

log(n+e)
C , C > oscU then

lim
n!∞

ηn � πβn

 = 0.

Proof. We haveηn+1 � πβn+1

 � (1� exp (�βnoscU))
ηn � πβn


+
�

βn+1 � βn
�
.oscU

so by writing In+1 =
ηn+1 � πβn+1

 then
In+1 � (1� an+1) In + bn+1

where

an+1 = exp (�βnoscU) =
1

(n+ e)
oscU
C

,

bn+1 =
oscU
C

1
n+ e
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We have

lim
n!∞

bn
an
= lim

n!∞

1

(n+ e)1�
oscU
C

= 0

and

n

∏
p=1

(1� ap) � exp

 
n

∑
p=1

log (1� ap)
!

� exp

 
�

n

∑
p=1

ap

!
!
n!∞

0
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