CPSC 535

Introduction to General State-Space Markov Chains

AD

April 2007

Markov chains

- Let (E, \mathcal{E}) be a measurable space and $M_{1}(E)$ be the set of probability measures on (E, \mathcal{E}).

Markov chains

- Let (E, \mathcal{E}) be a measurable space and $M_{1}(E)$ be the set of probability measures on (E, \mathcal{E}).
- A Markov transition kernel on E is a family of probability measures

$$
\left\{K(x, \cdot) \in M_{1}(E) ; x \in E\right\}
$$

indexed by the elements of E and such that $K(x, A)$ is measurable for any $A \in \mathcal{E}$.

Markov chains

- Let (E, \mathcal{E}) be a measurable space and $M_{1}(E)$ be the set of probability measures on (E, \mathcal{E}).
- A Markov transition kernel on E is a family of probability measures

$$
\left\{K(x, \cdot) \in M_{1}(E) ; x \in E\right\}
$$

indexed by the elements of E and such that $K(x, A)$ is measurable for any $A \in \mathcal{E}$.

- Starting from $\mu \in M_{1}(E)$ and a sequence of kernels $\left\{K_{n} ; n \geq 1\right\}$ then

$$
P_{\mu}\left(X_{0} \in A_{0}, \ldots, X_{n} \in A_{n}\right)=\int_{x_{0} \in A_{0}} \cdots \int_{x_{n} \in A_{n}} \mu\left(d x_{0}\right) \prod_{i=1}^{n} K_{i}\left(x_{i-1}, d x_{i}\right) .
$$

Notation

- Let $K\left(x_{1}, d x_{2}\right)$ be a Markov kernel from $\left(E_{1}, \mathcal{E}_{1}\right)$ to $\left(E_{2}, \mathcal{E}_{2}\right)$.

Notation

- Let $K\left(x_{1}, d x_{2}\right)$ be a Markov kernel from $\left(E_{1}, \mathcal{E}_{1}\right)$ to $\left(E_{2}, \mathcal{E}_{2}\right)$.
- For any (measurable) function f on E_{2}, we define

$$
K(f)\left(x_{1}\right)=\int_{E_{2}} K\left(x_{1}, d x_{2}\right) f\left(x_{2}\right)
$$

Notation

- Let $K\left(x_{1}, d x_{2}\right)$ be a Markov kernel from $\left(E_{1}, \mathcal{E}_{1}\right)$ to $\left(E_{2}, \mathcal{E}_{2}\right)$.
- For any (measurable) function f on E_{2}, we define

$$
K(f)\left(x_{1}\right)=\int_{E_{2}} K\left(x_{1}, d x_{2}\right) f\left(x_{2}\right)
$$

- For any $\mu \in M_{1}\left(E_{1}\right)$, we define

$$
\mu K(A)=\int_{E_{1}} \mu\left(d x_{1}\right) K\left(x_{1}, A\right)
$$

Notation

- Let $K\left(x_{1}, d x_{2}\right)$ be a Markov kernel from $\left(E_{1}, \mathcal{E}_{1}\right)$ to $\left(E_{2}, \mathcal{E}_{2}\right)$.
- For any (measurable) function f on E_{2}, we define

$$
K(f)\left(x_{1}\right)=\int_{E_{2}} K\left(x_{1}, d x_{2}\right) f\left(x_{2}\right)
$$

- For any $\mu \in M_{1}\left(E_{1}\right)$, we define

$$
\mu K(A)=\int_{E_{1}} \mu\left(d x_{1}\right) K\left(x_{1}, A\right)
$$

- We have

$$
\mu(K(f))=(\mu K)(f) .
$$

- Given $K_{1}\left(x_{1}, d x_{2}\right)$ a Markov kernel from $\left(E_{1}, \mathcal{E}_{1}\right)$ to $\left(E_{2}, \mathcal{E}_{2}\right)$ and $K_{2}\left(x_{2}, d x_{3}\right)$ a Markov kernel from $\left(E_{2}, \mathcal{E}_{2}\right)$ to $\left(E_{3}, \mathcal{E}_{3}\right)$ then we can define a new Markov kernel from $\left(E_{1}, \mathcal{E}_{1}\right)$ to $\left(E_{3}, \mathcal{E}_{3}\right)$

$$
K_{1} K_{2}(x, A)=\int_{E_{2}} K_{1}(x, d y) K_{2}(y, A)
$$

for any $(x, A) \in E_{1} \times \mathcal{E}_{3}$.

- Given $K_{1}\left(x_{1}, d x_{2}\right)$ a Markov kernel from $\left(E_{1}, \mathcal{E}_{1}\right)$ to $\left(E_{2}, \mathcal{E}_{2}\right)$ and $K_{2}\left(x_{2}, d x_{3}\right)$ a Markov kernel from $\left(E_{2}, \mathcal{E}_{2}\right)$ to $\left(E_{3}, \mathcal{E}_{3}\right)$ then we can define a new Markov kernel from $\left(E_{1}, \mathcal{E}_{1}\right)$ to $\left(E_{3}, \mathcal{E}_{3}\right)$

$$
K_{1} K_{2}(x, A)=\int_{E_{2}} K_{1}(x, d y) K_{2}(y, A)
$$

for any $(x, A) \in E_{1} \times \mathcal{E}_{3}$.

- Given $K\left(x, d x^{\prime}\right)$ a Markov kernel from (E, \mathcal{E}) to (E, \mathcal{E}), we can define the iterated kernel

$$
K_{n}(x, A)=\int_{E^{n-1}} K\left(x, d x_{1}\right) K\left(x_{1}, d x_{2}\right) \cdots K\left(x_{n-1}, A\right)
$$

which is the probability to move from x to A in n iterations of the Markov kernels.

- Given $K_{1}\left(x_{1}, d x_{2}\right)$ a Markov kernel from $\left(E_{1}, \mathcal{E}_{1}\right)$ to $\left(E_{2}, \mathcal{E}_{2}\right)$ and $K_{2}\left(x_{2}, d x_{3}\right)$ a Markov kernel from $\left(E_{2}, \mathcal{E}_{2}\right)$ to $\left(E_{3}, \mathcal{E}_{3}\right)$ then we can define a new Markov kernel from $\left(E_{1}, \mathcal{E}_{1}\right)$ to $\left(E_{3}, \mathcal{E}_{3}\right)$

$$
K_{1} K_{2}(x, A)=\int_{E_{2}} K_{1}(x, d y) K_{2}(y, A)
$$

for any $(x, A) \in E_{1} \times \mathcal{E}_{3}$.

- Given $K\left(x, d x^{\prime}\right)$ a Markov kernel from (E, \mathcal{E}) to (E, \mathcal{E}), we can define the iterated kernel

$$
K_{n}(x, A)=\int_{E^{n-1}} K\left(x, d x_{1}\right) K\left(x_{1}, d x_{2}\right) \cdots K\left(x_{n-1}, A\right)
$$

which is the probability to move from x to A in n iterations of the Markov kernels.

- In the MCMC context, we have typically $X_{0} \sim \mu \in M_{1}(E)$ and K an MCMC kernel of invariant distribution π and we want the measure

$$
\mu K^{n}
$$

to converge as fast as possible to π.

Total Variation Norm

- We denote $M(E)$ the space of bounded measures on (E, \mathcal{E}) equipped with the norm

$$
\|\mu\|=\frac{1}{2}\left[\sup _{A \in \mathcal{E}} \mu(A)-\inf _{A \in \mathcal{E}} \mu(A)\right]
$$

Total Variation Norm

- We denote $M(E)$ the space of bounded measures on (E, \mathcal{E}) equipped with the norm

$$
\|\mu\|=\frac{1}{2}\left[\sup _{A \in \mathcal{E}} \mu(A)-\inf _{A \in \mathcal{E}} \mu(A)\right]
$$

- We can think of $M_{1}(E)$ as

$$
M_{1}(E)=\{\mu \in M(E): \mu(E)=1 \text { and } \mu(A) \geq 0 \text { for any } A \in \mathcal{E}\}
$$

Total Variation Norm

- We denote $M(E)$ the space of bounded measures on (E, \mathcal{E}) equipped with the norm

$$
\|\mu\|=\frac{1}{2}\left[\sup _{A \in \mathcal{E}} \mu(A)-\inf _{A \in \mathcal{E}} \mu(A)\right]
$$

- We can think of $M_{1}(E)$ as

$$
M_{1}(E)=\{\mu \in M(E): \mu(E)=1 \text { and } \mu(A) \geq 0 \text { for any } A \in \mathcal{E}\}
$$

- We can easily show that for any $\mu \in M_{1}(E)$

$$
\|\mu\|=\frac{1}{2}
$$

and

$$
\mu \in M_{1}(E) \Rightarrow \mu K \in M_{1}(E)
$$

- We also introduce

$$
M_{0}(E)=\{\mu \in M(E): \mu(E)=0\} .
$$

- We also introduce

$$
M_{0}(E)=\{\mu \in M(E): \mu(E)=0\}
$$

- For any $x, y \in E(x \neq y)$ then

$$
\mu=\delta_{x}-\delta_{y} \in M_{0}(E)
$$

and

$$
\|\mu\|=1
$$

- We also introduce

$$
M_{0}(E)=\{\mu \in M(E): \mu(E)=0\}
$$

- For any $x, y \in E(x \neq y)$ then

$$
\mu=\delta_{x}-\delta_{y} \in M_{0}(E)
$$

and

$$
\|\mu\|=1
$$

- Moreover we have

$$
\mu \in M_{0}(E) \Rightarrow \mu K \in M_{0}(E) .
$$

Dobrushin Coefficient

- We denote by $b(K)$ the norm of the operator K on the normed space $\left(M_{0}(E),\|\cdot\|\right)$

$$
b(K)=\sup _{\mu \in M_{0}(E)} \frac{\|\mu K\|}{\|\mu\|}
$$

Dobrushin Coefficient

- We denote by $b(K)$ the norm of the operator K on the normed space $\left(M_{0}(E),\|\cdot\|\right)$

$$
b(K)=\sup _{\mu \in M_{0}(E)} \frac{\|\mu K\|}{\|\mu\|}
$$

- Clearly we have for any $\mu_{1}, \mu_{2} \in M_{1}(E)$ that $\mu_{1}-\mu_{2} \in M_{0}(E)$ and

$$
\left\|\mu_{1} K-\mu_{2} K\right\| \leq b(K)\left\|\mu_{1}-\mu_{2}\right\|
$$

so $b(K)$ is a measure of the contraction induced by K.

- The number $a(K) \in[0,1]$ defined as follows

$$
a(K)=\inf \left\{\sum_{i=1}^{m} \min \left(K\left(x, A_{i}\right), K\left(y, A_{i}\right)\right)\right\}
$$

where the infimum is taken over all points $x, y \in E$, the integers $m \geq 1$ and the finite partitions $\left\{A_{i} ; 1 \leq i \leq m\right\}$ of E. It is called the Dobrushin coefficient.

- The number $a(K) \in[0,1]$ defined as follows

$$
a(K)=\inf \left\{\sum_{i=1}^{m} \min \left(K\left(x, A_{i}\right), K\left(y, A_{i}\right)\right)\right\}
$$

where the infimum is taken over all points $x, y \in E$, the integers $m \geq 1$ and the finite partitions $\left\{A_{i} ; 1 \leq i \leq m\right\}$ of E. It is called the Dobrushin coefficient.

- We will show later on that

$$
a(K)+b(K)=1
$$

i.e. we want $b(K)$ close to zero and $a(K)$ close to one for fast mixing.

Properties

- If $\mu \in M_{0}(E)$ then

$$
\|\mu\|=\sup _{A \in \mathcal{E}} \mu(A)
$$

Properties

- If $\mu \in M_{0}(E)$ then

$$
\|\mu\|=\sup _{A \in \mathcal{E}} \mu(A)
$$

- Moreover for any $\mu_{1}, \mu_{2} \in M_{1}(E)$ then

$$
\left\|\mu_{1}-\mu_{2}\right\|=\sup _{A \in \mathcal{E}}\left|\mu_{1}(A)-\mu_{2}(A)\right|
$$

Properties

- If $\mu \in M_{0}(E)$ then

$$
\|\mu\|=\sup _{A \in \mathcal{E}} \mu(A)
$$

- Moreover for any $\mu_{1}, \mu_{2} \in M_{1}(E)$ then

$$
\left\|\mu_{1}-\mu_{2}\right\|=\sup _{A \in \mathcal{E}}\left|\mu_{1}(A)-\mu_{2}(A)\right|
$$

- When the space is finite, then we have

$$
\left\|\mu_{1}-\mu_{2}\right\|=\frac{1}{2} \sum_{x \in E}\left|\mu_{1}(x)-\mu_{2}(x)\right|
$$

and when μ_{1}, μ_{2} have densities f_{1}, f_{2} with respect to say λ then

$$
\left\|\left.\mu_{1}-\mu_{2}\left|\|=\frac{1}{2} \int_{E}\right| f_{1}(x)-f_{2}(x) \right\rvert\, \lambda(d x)\right.
$$

Proofs

- If $\mu \in M_{0}(E)$ then for any $A \in \mathcal{E}$ then

$$
\mu(E)=0=\mu(A)+\mu\left(A^{c}\right) \text { where } A^{c}=E-A .
$$

Proofs

- If $\mu \in M_{0}(E)$ then for any $A \in \mathcal{E}$ then

$$
\mu(E)=0=\mu(A)+\mu\left(A^{c}\right) \text { where } A^{c}=E-A .
$$

- Thus we have

$$
\sup _{A \in \mathcal{E}} \mu(A)=-\sup _{A \in \mathcal{E}} \mu\left(A^{c}\right)=-\inf _{A \in \mathcal{E}} \mu(A)
$$

and

$$
\|\mu\|=\sup _{A \in \mathcal{E}} \mu(A)
$$

Proofs

- If $\mu \in M_{0}(E)$ then for any $A \in \mathcal{E}$ then

$$
\mu(E)=0=\mu(A)+\mu\left(A^{c}\right) \text { where } A^{c}=E-A .
$$

- Thus we have

$$
\sup _{A \in \mathcal{E}} \mu(A)=-\sup _{A \in \mathcal{E}} \mu\left(A^{c}\right)=-\inf _{A \in \mathcal{E}} \mu(A)
$$

and

$$
\|\mu\|=\sup _{A \in \mathcal{E}} \mu(A)
$$

- Assume now that $\mu_{1}, \mu_{2} \in M_{1}(E)$ then clearly $\left(\mu_{1}-\mu_{2}\right) \in M_{0}(E)$ so it follows that

$$
\begin{aligned}
& \left\|\mu_{1}-\mu_{2}\right\|=\sup _{A \in \mathcal{E}}\left(\mu_{1}(A)-\mu_{2}(A)\right) \\
& =\sup _{A \in \mathcal{E}}\left(\mu_{2}(A)-\mu_{1}(A)\right) \text { (by symmetry) } \\
& =\sup _{A \in \mathcal{E}} \sup \left(\left(\mu_{1}(A)-\mu_{2}(A)\right), \mu_{2}(A)-\mu_{1}(A)\right) \\
& =\sup _{A \in \mathcal{E}}\left|\mu_{1}(A)-\mu_{2}(A)\right|
\end{aligned}
$$

- Now consider that E is a finite set and we denote

$$
\theta(x)=\mu_{1}(x)-\mu_{2}(x)
$$

- Now consider that E is a finite set and we denote

$$
\theta(x)=\mu_{1}(x)-\mu_{2}(x)
$$

- As for each $A \in \mathcal{E}$ one has

$$
\theta(A)=\frac{1}{2}\left(\theta(A)-\theta\left(A^{c}\right)\right)
$$

it follows that

$$
\begin{aligned}
\left\|\mu_{1}-\mu_{2}\right\| & =\sup _{A \in \mathcal{E}}|\theta(A)| \leq \sup _{A \in \mathcal{E}} \frac{1}{2}\left(\sum_{x \in A}|\theta(x)|+\sum_{x \in A^{c}}|\theta(x)|\right) \\
& \leq \frac{1}{2} \sum_{x \in E}|\theta(x)|=\frac{1}{2} \sum_{x \in E}\left|\mu_{1}(x)-\mu_{2}(x)\right|
\end{aligned}
$$

- Moreover using once more that $\theta(A)=\frac{1}{2}\left(\theta(A)-\theta\left(A^{c}\right)\right)$, then if we select

$$
A=\{x \in E: \theta(x) \geq 0\}
$$

then

$$
\begin{aligned}
\theta(A) & =\frac{1}{2}\left[\sum_{x: \mu_{1}(x) \geq \mu_{2}(x)} \theta(x)-\sum_{x: \mu_{1}(x) \leq \mu_{2}(x)} \theta(x)\right] \\
& =\frac{1}{2}\left[\sum_{x: \mu_{1}(x) \geq \mu_{2}(x)}|\theta(x)|+\sum_{x: \mu_{1}(x) \leq \mu_{2}(x)}|\theta(x)|\right] \\
& =\frac{1}{2} \sum_{x \in E}\left|\mu_{1}(x)-\mu_{2}(x)\right|
\end{aligned}
$$

- Moreover using once more that $\theta(A)=\frac{1}{2}\left(\theta(A)-\theta\left(A^{c}\right)\right)$, then if we select

$$
A=\{x \in E: \theta(x) \geq 0\}
$$

then

$$
\begin{aligned}
\theta(A) & =\frac{1}{2}\left[\sum_{x: \mu_{1}(x) \geq \mu_{2}(x)} \theta(x)-\sum_{x: \mu_{1}(x) \leq \mu_{2}(x)} \theta(x)\right] \\
& =\frac{1}{2}\left[\sum_{x: \mu_{1}(x) \geq \mu_{2}(x)}|\theta(x)|+\sum_{x: \mu_{1}(x) \leq \mu_{2}(x)}|\theta(x)|\right] \\
& =\frac{1}{2} \sum_{x \in E}\left|\mu_{1}(x)-\mu_{2}(x)\right|
\end{aligned}
$$

- Hence it follows that

$$
\left\|\mu_{1}-\mu_{2}\right\|=\frac{1}{2} \sum_{x \in E}\left|\mu_{1}(x)-\mu_{2}(x)\right|=\sum_{x \in E: \mu_{1}(x)>\mu_{2}(x)} \mu_{1}(x)-\mu_{2}(x)
$$

Theorem (Dobrushin)

- For any Markov kernel K on E, the number

$$
\begin{aligned}
& b(K)=\sup _{\mu \in M_{0}(E)} \frac{\|\mu K\|}{\|\mu\|} \in[0,1] \text { can be written as } \\
& b(K) \\
& =\sup _{\mu_{1}, \mu_{2} \in M_{1}(E)}\left\|\mu_{1} K-\mu_{2} K\right\| /\left\|\mu_{1}-\mu_{2}\right\| \\
& \\
& =\sup _{x, y \in E}\|K(x, \cdot)-K(y, \cdot)\| \\
& \\
& =1-a(K) .
\end{aligned}
$$

Theorem (Dobrushin)

- For any Markov kernel K on E, the number

$$
\begin{aligned}
& b(K)=\sup _{\mu \in M_{0}(E)} \frac{\|\mu K\|}{\|\mu\|} \in[0,1] \text { can be written as } \\
& b(K)=\sup _{\mu_{1}, \mu_{2} \in M_{1}(E)}\left\|\mu_{1} K-\mu_{2} K\right\| /\left\|\mu_{1}-\mu_{2}\right\| \\
&=\sup _{x, y \in E}\|K(x, \cdot)-K(y, \cdot)\| \\
&=1-a(K) .
\end{aligned}
$$

- Remark. Showing that sup $\|K(x, \cdot)-K(y, \cdot)\|=1-a(K)$ is

$$
x, y \in E
$$

equivalent to show that for any $\mu_{1}, \mu_{2} \in M_{1}(E)$ then

$$
\left\|\mu_{1}-\mu_{2}\right\|=1-\inf \left\{\sum_{i=1}^{m} \min \left(\mu_{1}\left(A_{i}\right), \mu_{2}\left(A_{i}\right)\right)\right\}
$$

- Corollary. Assume there exists an integer $p \geq 1, \gamma \in M_{1}(E)$ and $\varepsilon>0$ such that for any $(x, A) \in(E, \mathcal{E})$

$$
K^{p}(x, A) \geq \varepsilon \gamma(A)
$$

Thus K^{p} is a contracting operator on $\left(M_{0}(E),\|\cdot\|\right)$ and for any $\mu_{1}, \mu_{2} \in M_{1}(E)$

$$
\left\|\mu_{1} K^{p}-\mu_{2} K^{p}\right\| \leq(1-\varepsilon)\left\|\mu_{1}-\mu_{2}\right\| .
$$

Moreover if K possesses an invariant measure $\mu_{\infty}=\mu_{\infty} K$ then this one is unique and for any initial measure $\mu \in M_{1}(E)$ then

$$
\lim _{n \rightarrow \infty}\left\|\mu K^{n}-\mu_{\infty}\right\|=0
$$

Proof of Corollary

- Clearly from Dobrushin's theorem we have

$$
a\left(K^{p}\right) \geq \varepsilon \text { and } b\left(K^{p}\right)=1-a\left(K^{p}\right) \leq 1-\varepsilon .
$$

Proof of Corollary

- Clearly from Dobrushin's theorem we have

$$
a\left(K^{p}\right) \geq \varepsilon \text { and } b\left(K^{p}\right)=1-a\left(K^{p}\right) \leq 1-\varepsilon .
$$

- For any $n \geq k p$ we have

$$
\begin{aligned}
\left\|\mu K^{n}-\mu_{\infty} K^{n}\right\| & \leq(1-\varepsilon)^{p}\left\|\mu K^{n-k p}-\mu_{\infty} K^{n-k p}\right\| \\
& \leq(1-\varepsilon)^{p}\left\|\mu-\mu_{\infty}\right\|
\end{aligned}
$$

Proof of Corollary

- Clearly from Dobrushin's theorem we have

$$
a\left(K^{p}\right) \geq \varepsilon \text { and } b\left(K^{p}\right)=1-a\left(K^{p}\right) \leq 1-\varepsilon .
$$

- For any $n \geq k p$ we have

$$
\begin{aligned}
\left\|\mu K^{n}-\mu_{\infty} K^{n}\right\| & \leq(1-\varepsilon)^{p}\left\|\mu K^{n-k p}-\mu_{\infty} K^{n-k p}\right\| \\
& \leq(1-\varepsilon)^{p}\left\|\mu-\mu_{\infty}\right\|
\end{aligned}
$$

- The invariant measure is obviously unique as if we had two then

$$
\left\|\mu_{\infty} K^{p}-v_{\infty} K^{p}\right\| \leq(1-\varepsilon)\left\|\mu_{\infty}-v_{\infty}\right\| \text { (contraction) }
$$

but

$$
\left\|\mu_{\infty} K^{p}-v_{\infty} K^{p}\right\|=\left\|\mu_{\infty}-v_{\infty}\right\| \text { (invariance) }
$$

Proof of Dobrushin's Theorem

- We will only prove the theorem a finite space E.

Proof of Dobrushin's Theorem

- We will only prove the theorem a finite space E.
- We have

$$
b(K)=\sup _{\mu \in M_{0}(E)} \frac{\|\mu K\|}{\|\mu\|} \geq \sup _{\mu_{1}, \mu_{2} \in M_{1}(E)}\left\|\mu_{1} K-\mu_{2} K\right\| /\left\|\mu_{1}-\mu_{2}\right\|
$$

Proof of Dobrushin's Theorem

- We will only prove the theorem a finite space E.
- We have

$$
b(K)=\sup _{\mu \in M_{0}(E)} \frac{\|\mu K\|}{\|\mu\|} \geq \sup _{\mu_{1}, \mu_{2} \in M_{1}(E)}\left\|\mu_{1} K-\mu_{2} K\right\| /\left\|\mu_{1}-\mu_{2}\right\|
$$

- To prove that there is equality, consider a measure $\mu \in M_{0}(E)$ and denote

$$
A_{\mu}^{+}=\{x \in E: \mu(x) \geq 0\}, A_{\mu}^{-}=\{x \in E: \mu(x)<0\}
$$

then

$$
\mu(E)=0 \Rightarrow \mu\left(A_{\mu}^{+}\right)=-\mu\left(A_{\mu}^{-}\right)
$$

- Hence we can rewrite μ as a difference of probability measures up to a normalizing constant

$$
\begin{aligned}
\mu(B) & =\mu\left(A_{\mu}^{+}\right)\left(\frac{\mu\left(A_{\mu}^{+} \cap B\right)}{\mu\left(A_{\mu}^{+}\right)}+\frac{\mu\left(A_{\mu}^{-} \cap B\right)}{\mu\left(A_{\mu}^{+}\right)}\right) \\
& =\mu\left(A_{\mu}^{+}\right)\left(\frac{\mu\left(A_{\mu}^{+} \cap B\right)}{\mu\left(A_{\mu}^{+}\right)}-\frac{\mu\left(A_{\mu}^{-} \cap B\right)}{\mu\left(A_{\mu}^{-}\right)}\right)
\end{aligned}
$$

- Hence we can rewrite μ as a difference of probability measures up to a normalizing constant

$$
\begin{aligned}
\mu(B) & =\mu\left(A_{\mu}^{+}\right)\left(\frac{\mu\left(A_{\mu}^{+} \cap B\right)}{\mu\left(A_{\mu}^{+}\right)}+\frac{\mu\left(A_{\mu}^{-} \cap B\right)}{\mu\left(A_{\mu}^{+}\right)}\right) \\
& =\mu\left(A_{\mu}^{+}\right)\left(\frac{\mu\left(A_{\mu}^{+} \cap B\right)}{\mu\left(A_{\mu}^{+}\right)}-\frac{\mu\left(A_{\mu}^{-} \cap B\right)}{\mu\left(A_{\mu}^{-}\right)}\right)
\end{aligned}
$$

- It follows that

$$
b(K)=\sup _{\mu \in M_{0}(E)} \frac{\|\mu K\|}{\|\mu\|}=\sup _{\mu \in M_{0}(E)} \frac{\left\|\frac{\mu\left(A_{\mu}^{+} \cap \cdot\right)}{\mu\left(A_{\mu}^{+}\right)} K-\frac{\mu\left(A_{\mu}^{-} \cap \cdot\right)}{\mu\left(A_{\mu}^{-}\right)} K\right\|}{\left\|\frac{\mu\left(A_{\mu}^{+} \cap \cdot\right)}{\mu\left(A_{\mu}^{+}\right)}-\frac{\mu\left(A_{\mu}^{-} \cap \cdot\right)}{\mu\left(A_{\mu}^{-}\right)}\right\|}
$$

and the result is proved.

- To show that $b(K)=\sup _{x, y \in E}\|K(x, \cdot)-K(y, \cdot)\|$, we can first show that

$$
\begin{aligned}
b(K) & =\sup _{\mu_{1}, \mu_{2} \in M_{1}(E)}\left\|\mu_{1} K-\mu_{2} K\right\| /\left\|\mu_{1}-\mu_{2}\right\| \\
& \geq \sup _{x, y \in E}\left\|\delta_{x} K-\delta_{y} K\right\| /\left\|\delta_{x}-\delta_{y}\right\| \\
& =\sup _{x, y \in E}\left\|\delta_{x} K-\delta_{y} K\right\|
\end{aligned}
$$

- To show that $b(K)=\sup _{x, y \in E}\|K(x, \cdot)-K(y, \cdot)\|$, we can first show that

$$
\begin{aligned}
b(K) & =\sup _{\mu_{1}, \mu_{2} \in M_{1}(E)}\left\|\mu_{1} K-\mu_{2} K\right\| /\left\|\mu_{1}-\mu_{2}\right\| \\
& \geq \sup _{x, y \in E}\left\|\delta_{x} K-\delta_{y} K\right\| /\left\|\delta_{x}-\delta_{y}\right\| \\
& =\sup _{x, y \in E}\left\|\delta_{x} K-\delta_{y} K\right\|
\end{aligned}
$$

- To show the equality, remember that if $\mu=\mu_{1}-\mu_{2}$ where $\mu_{1}, \mu_{2} \in M_{1}(E)$ then

$$
\|\mu\|=\frac{1}{2} \sum_{x \in E}|\mu(x)|=\sum_{x \in E: \mu(x)>0} \mu(x)=-\sum_{x \in E: \mu(x)<0} \mu(x) .
$$

- For any $C \in \mathcal{E}$ and $\mu=\mu_{1}-\mu_{2}$, we also have

$$
\begin{aligned}
\mu K(C) & =\sum_{\mu \geq 0} \mu(x) K(x, C)+\sum_{\mu<0} \mu(x) K(x, C) \\
& =\sum_{\mu \geq 0} \mu(x) K(x, C)-\sum_{\mu<0}(-\mu(x)) K(x, C) \\
& \leq \sum_{\mu \geq 0} \mu(x) K(x, C)-\left[\inf _{x} K(x, C)\right] \sum_{\mu<0}(-\mu(x)) \\
& =\sum_{\mu \geq 0} \mu(y)\left[K(y, C)-\inf _{x} K(x, C)\right] \\
& \leq \sum_{\mu \geq 0} \mu(y)\left[\sup _{y} K(y, C)-\inf _{x} K(x, C)\right] \\
& =\|\mu\| \sup _{x, y}|K(y, C)-K(x, C)|
\end{aligned}
$$

- For any $C \in \mathcal{E}$ and $\mu=\mu_{1}-\mu_{2}$, we also have

$$
\begin{aligned}
\mu K(C) & =\sum_{\mu \geq 0} \mu(x) K(x, C)+\sum_{\mu<0} \mu(x) K(x, C) \\
& =\sum_{\mu \geq 0} \mu(x) K(x, C)-\sum_{\mu<0}(-\mu(x)) K(x, C) \\
& \leq \sum_{\mu \geq 0} \mu(x) K(x, C)-\left[\inf _{x} K(x, C)\right] \sum_{\mu<0}(-\mu(x)) \\
& =\sum_{\mu \geq 0} \mu(y)\left[K(y, C)-\inf _{x} K(x, C)\right] \\
& \leq \sum_{\mu \geq 0} \mu(y)\left[\sup _{y} K(y, C)-\inf _{x} K(x, C)\right] \\
& =\|\mu\| \sup _{x, y}|K(y, C)-K(x, C)|
\end{aligned}
$$

- Now by taking the supremum on the $C \in \mathcal{E}$, the result follows.
- The final result that $b(K)=1-a(K)$ follows from the following proposition.
- The final result that $b(K)=1-a(K)$ follows from the following proposition.
- Proposition. For any $\mu_{1}, \mu_{2} \in M_{1}(E)$, we have

$$
\begin{aligned}
\left\|\mu_{1}-\mu_{2}\right\| & =1-\sup _{v \leq \mu_{1}, \mu_{2}} v(E) \\
& =1-\sum_{x \in E} \min \left(\mu_{1}(x), \mu_{2}(x)\right)
\end{aligned}
$$

- The final result that $b(K)=1-a(K)$ follows from the following proposition.
- Proposition. For any $\mu_{1}, \mu_{2} \in M_{1}(E)$, we have

$$
\begin{aligned}
\left\|\mu_{1}-\mu_{2}\right\| & =1-\sup _{v \leq \mu_{1}, \mu_{2}} v(E) \\
& =1-\sum_{x \in E} \min \left(\mu_{1}(x), \mu_{2}(x)\right)
\end{aligned}
$$

- Proof. We have

$$
\begin{aligned}
& 2\left\|\mu_{1}-\mu_{2}\right\|=\sum_{\mu_{1}<\mu_{2}}\left(\mu_{2}(x)-\mu_{1}(x)\right)-\sum_{\mu_{1} \geq \mu_{2}}\left(\mu_{2}(x)-\mu_{1}(x)\right) \\
& =2-\sum_{\mu_{1} \geq \mu_{2}} \mu_{2}(x)-\sum_{\mu_{1}<\mu_{2}} \mu_{1}(x) \\
& =2\left(1-\sum_{\mu_{1} \geq \mu_{2}} \min \left(\mu_{1}(x), \mu_{2}(x)\right)-\sum_{\mu_{1}<\mu_{2}} \min \left(\mu_{1}(x), \mu_{2}(x)\right)\right)
\end{aligned}
$$

thus

$$
\left\|\mu_{1}-\mu_{2}\right\|=1-\sum_{x \in E} \min \left(\mu_{1}(x), \mu_{2}(x)\right)
$$

- So it follows from this result that the measure v is defined by

$$
v(x)=\min \left(\mu_{1}(x), \mu_{2}(x)\right)
$$

and

$$
1-v(E)=\left\|\mu_{1}-\mu_{2}\right\| \geq 1-\sup _{\gamma \leq \mu_{1}, \mu_{2}} \gamma(E) .
$$

- So it follows from this result that the measure v is defined by

$$
v(x)=\min \left(\mu_{1}(x), \mu_{2}(x)\right)
$$

and

$$
1-v(E)=\left\|\mu_{1}-\mu_{2}\right\| \geq 1-\sup _{\gamma \leq \mu_{1}, \mu_{2}} \gamma(E) .
$$

- But if $\gamma \leq \mu_{1}, \mu_{2}$ then we also have $\gamma(x) \leq v(x)$ so it follows that $v(x)$ is maximal and

$$
\begin{aligned}
1-v(E) & =1-\sup _{\gamma \leq \mu_{1}, \mu_{2}} \gamma(E)=\left\|\mu_{1}-\mu_{2}\right\| \\
& \geq 1-\sup _{\gamma \leq \mu_{1}, \mu_{2}} \gamma(E) .
\end{aligned}
$$

- So it follows from this result that the measure v is defined by

$$
v(x)=\min \left(\mu_{1}(x), \mu_{2}(x)\right)
$$

and

$$
1-v(E)=\left\|\mu_{1}-\mu_{2}\right\| \geq 1-\sup _{\gamma \leq \mu_{1}, \mu_{2}} \gamma(E) .
$$

- But if $\gamma \leq \mu_{1}, \mu_{2}$ then we also have $\gamma(x) \leq v(x)$ so it follows that $v(x)$ is maximal and

$$
\begin{aligned}
1-v(E) & =1-\sup _{\gamma \leq \mu_{1}, \mu_{2}} \gamma(E)=\left\|\mu_{1}-\mu_{2}\right\| \\
& \geq 1-\sup _{\gamma \leq \mu_{1}, \mu_{2}} \gamma(E) .
\end{aligned}
$$

- To prove the results in general measurable spaces then we need to use the Hahn-Jordan decomposition of the measure

$$
\mu=\mu^{+}-\mu^{-} .
$$

Application to Convergence of Simulated Annealing

- Assume we are interested in maximizing a function $U: E \rightarrow \mathbb{R}$ where E is a finite state-space.

Application to Convergence of Simulated Annealing

- Assume we are interested in maximizing a function $U: E \rightarrow \mathbb{R}$ where E is a finite state-space.
- We use a random walk Metropolis

$$
K_{\beta}(x, y)=\alpha_{\beta}(x, y) q(x, y)+\left(1-\sum_{z \in E} \alpha_{\beta}(x, z) q(x, z)\right) \delta_{x}(y)
$$

targetting

$$
\pi_{\beta}(x)=\frac{\exp (-\beta U(x))}{Z_{\beta}}
$$

Application to Convergence of Simulated Annealing

- Assume we are interested in maximizing a function $U: E \rightarrow \mathbb{R}$ where E is a finite state-space.
- We use a random walk Metropolis

$$
K_{\beta}(x, y)=\alpha_{\beta}(x, y) q(x, y)+\left(1-\sum_{z \in E} \alpha_{\beta}(x, z) q(x, z)\right) \delta_{x}(y)
$$

targetting

$$
\pi_{\beta}(x)=\frac{\exp (-\beta U(x))}{Z_{\beta}}
$$

- We want to increase β to ∞ as time increases as then $\pi_{\beta}(x)$ concentrates itself on the set of global maxima of $U(x)$.
- Denoting η_{0} the initial distribution of X_{0}, then we have $X_{n+1} \mid x_{n} \sim K_{\beta_{n}}\left(x_{n}, \cdot\right)$

$$
\eta_{n+1}=\eta_{0} K_{\beta_{1}} \cdots K_{\beta_{n}}
$$

- Denoting η_{0} the initial distribution of X_{0}, then we have $X_{n+1} \mid x_{n} \sim K_{\beta_{n}}\left(x_{n}, \cdot\right)$

$$
\eta_{n+1}=\eta_{0} K_{\beta_{1}} \cdots K_{\beta_{n}}
$$

- We know that

$$
\pi_{\beta_{n}}=\pi_{\beta_{n}} K_{\beta_{n}}
$$

and we want to study

$$
\left\|\eta_{n}-\pi_{\beta_{n}}\right\|
$$

- Denoting η_{0} the initial distribution of X_{0}, then we have $X_{n+1} \mid x_{n} \sim K_{\beta_{n}}\left(x_{n}, \cdot\right)$

$$
\eta_{n+1}=\eta_{0} K_{\beta_{1}} \cdots K_{\beta_{n}}
$$

- We know that

$$
\pi_{\beta_{n}}=\pi_{\beta_{n}} K_{\beta_{n}}
$$

and we want to study

$$
\left\|\eta_{n}-\pi_{\beta_{n}}\right\|
$$

- The idea consists of using

$$
\begin{aligned}
\left\|\eta_{n+1}-\pi_{\beta_{n+1}}\right\| & =\underbrace{\left\|\eta_{n} K_{\beta_{n}}-\pi_{\beta_{n}} K_{\beta_{n}}+\pi_{\beta_{n}}-\pi_{\beta_{n+1}}\right\|}_{\text {mixing properties }} \\
& \leq \underbrace{\left\|\eta_{n} K_{\beta_{n}}-\pi_{\beta_{n}} K_{\beta_{n}}\right\|}_{\text {discrepancy successive targets }}+\underbrace{\| \pi_{\beta_{2}}}_{\beta_{n}-\pi_{\beta_{n+1}} \|}
\end{aligned}
$$

- We have

$$
\left\|\eta_{n} K_{\beta_{n}}-\pi_{\beta_{n}} K_{\beta_{n}}\right\| \leq \beta\left(K_{\beta_{n}}\right)\left\|\eta_{n}-\pi_{\beta_{n}}\right\| .
$$

- We have

$$
\left\|\eta_{n} K_{\beta_{n}}-\pi_{\beta_{n}} K_{\beta_{n}}\right\| \leq \beta\left(K_{\beta_{n}}\right)\left\|\eta_{n}-\pi_{\beta_{n}}\right\|
$$

- Lemma. For any $\beta>0$ and $(x, y) \in E \times E$ then

$$
K_{\beta}(x, y) \geq \exp (-\beta \operatorname{osc} U) q(x, y)
$$

where

$$
\operatorname{osc} U=\max _{x \in E} U(x)-\min _{x \in E} U(x)
$$

- We have

$$
\left\|\eta_{n} K_{\beta_{n}}-\pi_{\beta_{n}} K_{\beta_{n}}\right\| \leq \beta\left(K_{\beta_{n}}\right)\left\|\eta_{n}-\pi_{\beta_{n}}\right\| .
$$

- Lemma. For any $\beta>0$ and $(x, y) \in E \times E$ then

$$
K_{\beta}(x, y) \geq \exp (-\beta \operatorname{osc} U) q(x, y)
$$

where

$$
\operatorname{osc} U=\max _{x \in E} U(x)-\min _{x \in E} U(x)
$$

- Proof. Clearly we have

$$
K_{\beta}(x, y) \geq \alpha_{\beta}(x, y) q(x, y)
$$

where

$$
\alpha_{\beta}(x, y)=\min (1, \exp (-\beta(U(y)-U(x)))) \geq \exp (-\beta \operatorname{osc} U)
$$

- It follows that

$$
\beta\left(K_{\beta_{n}}\right) \leq 1-\exp \left(-\beta_{n} \operatorname{osc} U\right) .
$$

- It follows that

$$
\beta\left(K_{\beta_{n}}\right) \leq 1-\exp \left(-\beta_{n} \operatorname{osc} U\right) .
$$

- Lemma. We have

$$
\left\|\pi_{\beta_{n}}-\pi_{\beta_{n+1}}\right\| \leq\left(\beta_{n+1}-\beta_{n}\right) . \operatorname{osc} U
$$

- It follows that

$$
\beta\left(K_{\beta_{n}}\right) \leq 1-\exp \left(-\beta_{n} \operatorname{osc} U\right)
$$

- Lemma. We have

$$
\left\|\pi_{\beta_{n}}-\pi_{\beta_{n+1}}\right\| \leq\left(\beta_{n+1}-\beta_{n}\right) . \operatorname{osc} U
$$

- Proposition. We have for any $n>0$

$$
\begin{aligned}
\left\|\eta_{n+1}-\pi_{\beta_{n+1}}\right\| & \leq\left\|\eta_{n} K_{\beta_{n}}-\pi_{\beta_{n}} K_{\beta_{n}}\right\|+\left\|\pi_{\beta_{n}}-\pi_{\beta_{n+1}}\right\| \\
& \leq\left(1-\exp \left(-\beta_{n} \operatorname{osc} U\right)\right)\left\|\eta_{n}-\pi_{\beta_{n}}\right\|+\left(\beta_{n+1}-\beta_{n}\right)
\end{aligned}
$$

- Lemma. Let I_{n}, a_{n}, b_{n} be three sequences positive numbers such that for $n \geq 1$

$$
I_{n} \leq\left(1-a_{n}\right) I_{n-1}+b_{n}
$$

If

$$
\lim _{n \rightarrow \infty} \frac{b_{n}}{a_{n}}=0
$$

and

$$
\lim _{n \rightarrow \infty} \prod_{p=1}^{n}\left(1-a_{p}\right)=0
$$

then

$$
\lim _{n \rightarrow \infty} I_{n}=0
$$

- Proof. For any $\epsilon>0, \exists n(\epsilon) \geq 1$ such that for $n \geq n(\epsilon)$

$$
b_{n} \leq \epsilon a_{n}, \quad \prod_{p=1}^{n}\left(1-a_{p}\right) \leq \epsilon
$$

Thus for $n \geq n(\epsilon)$

$$
\begin{aligned}
I_{n}-\epsilon & \leq\left(1-a_{n}\right) I_{n-1}-\epsilon\left(1-a_{n}\right) \\
& =\left(1-a_{n}\right)\left(I_{n-1}-\epsilon\right) \\
& \leq\left(I_{0}-\epsilon\right) \prod_{p=1}^{n}\left(1-a_{p}\right)
\end{aligned}
$$

It follows that

$$
0 \leq I_{n} \leq \epsilon+\epsilon\left(I_{0}+\epsilon\right) \leq \epsilon\left(1+\epsilon+\left|I_{0}\right|\right) .
$$

The result follows.

- Theorem. Let $\left\{X_{n}\right\}_{n \geq 0}$ be the simulated annealing scheme, then for any initial distribution η_{0} and $\beta_{n}=\frac{\log (n+e)}{C}, C>\operatorname{osc} U$ then

$$
\lim _{n \rightarrow \infty}\left\|\eta_{n}-\pi_{\beta_{n}}\right\|=0
$$

- Theorem. Let $\left\{X_{n}\right\}_{n \geq 0}$ be the simulated annealing scheme, then for any initial distribution η_{0} and $\beta_{n}=\frac{\log (n+e)}{C}, C>\operatorname{osc} U$ then

$$
\lim _{n \rightarrow \infty}\left\|\eta_{n}-\pi_{\beta_{n}}\right\|=0
$$

- Proof. We have

$$
\begin{aligned}
\left\|\eta_{n+1}-\pi_{\beta_{n+1}}\right\| \leq & \left(1-\exp \left(-\beta_{n} \operatorname{osc} U\right)\right)\left\|\eta_{n}-\pi_{\beta_{n}}\right\| \\
& +\left(\beta_{n+1}-\beta_{n}\right) \cdot \operatorname{osc} U
\end{aligned}
$$

so by writing $I_{n+1}=\left\|\eta_{n+1}-\pi_{\beta_{n+1}}\right\|$ then

$$
I_{n+1} \leq\left(1-a_{n+1}\right) I_{n}+b_{n+1}
$$

where

$$
\begin{aligned}
a_{n+1} & =\exp \left(-\beta_{n} \operatorname{osc} U\right)=\frac{1}{(n+e)^{\frac{o s c U}{C}}} \\
b_{n+1} & =\frac{\operatorname{osc} U}{C} \frac{1}{n+e}
\end{aligned}
$$

- We have

$$
\lim _{n \rightarrow \infty} \frac{b_{n}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{1}{(n+e)^{1-\frac{\text { oscU }}{C}}}=0
$$

and

$$
\begin{aligned}
\prod_{p=1}^{n}\left(1-a_{p}\right) & \leq \exp \left(\sum_{p=1}^{n} \log \left(1-a_{p}\right)\right) \\
& \leq \exp \left(-\sum_{p=1}^{n} a_{p}\right) \underset{n \rightarrow \infty}{\rightarrow} 0
\end{aligned}
$$

